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The Bulk Viscosity in Dense Fluids 
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A method for calculating bulk viscosity is described. This method relies on the 
results of the revised Enskog theory for hard-sphere fluid mixtures and the use 
of the temperature- and density-dependent diameter of Mansoori-Canfield and 
Rasaiah-Stell to model each species of the real mixtures. Using this method the 
predicted values of the bulk viscosity of several mixtures of hydrocarbons and 
noble gases were calculated. These results are mainly predictive. 
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1. I N T R O D U C T I O N  

The study of the bulk viscosity (BV) of dense fluids has aroused 
considerable interest during the past years. However, even though some 
advances have been made in recent years, our means to obtain theoretical 
values for the BV of real fluids are still quite limited. 

From the experimental standpoint, almost all the experiments carried 
out to measure BV in real fluids have employed sound attenuation 
measurements. In these experiments, the BV value is calculated from the 
excess of the sound absorption actually measured, relative to the classical 
value, which involves only the shear viscosity and the thermal conductivity. 
The BV measured in this way are quite uncertain because the absorption 
excess has different sources, particulary in polyatomic fluids, as we mention 
later. Presently, experimental BV data are limited to a few fluids, most of 
them monoatomic and usually involving experimental uncertainties which 
can be as high as 50% [1, 2]. Examples of these measurements are those of 
Madigosky on argon [3] ,  Cowan and Ball on argon [4]  and krypton [5] ,  
Cowan and Leech on xenon [6] ,  and Malbrunot et al. [2]  on the same 
gases near their triple point. 
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The bulk viscosity of polyatomic fluids is usually associated with 
molecular relaxation processes, since the particles of the fluid have, in 
general, various internal degrees of freedom which can be excited in dif- 
ferent ways. The existence of these relaxation processes induces dispersion 
and absorption of sound waves, thus producing an enhancement of the 
measured BV. In order to deal with the different contributions to the BV, 
some authors [ 1 ] have explicitly divided them into a part due to molecular 
and collisional contributions and another due to the internal degrees of 
freedom. In particular, we are interested in developing predictive methods 
for the former, i.e., for the intrinsic BV of simple fluids and their mixtures. 

Another approach to estimate the BV values of fluids is based on 
molecular dynamics simulations of systems modeled by the Lennard-Jones 
potential. Starting with the work of Levesque et al. [7], all simulations 
have been limited to the vicinity of the triple point [8-10]. 

Kinetic theory gives a third alternative to obtain the BV of fluids 
modeled by simple interatomic potentials. Earlier work on dilute 
monoatomic fluids using the Boltzmann equation showed that they do not 
have BV [11]. This was not the case for dilute polyatomic fluids [12, 13]. 
In order to obtain transport coefficients in dense fluids, Enskog generalized 
the Boltzmann equation to describe the hard-sphere dynamics in the dense 
regime Ell]. This theory was later extended in order to deal with binary 
[11] and multicomponent [14] dense hard-sphere fluid mixtures, but the 
extensions were found to be inconsistent with irreversible thermodynamics 
[15]. The inconsistency was resolved by van Beijeren and Ernst [16], who 
proposed what is called the revised Enskog theory (RET). Explicit 
expressions for the BV of mixtures were derived and discussed in detail by 
Karkheck and Stell [17] and Lopez de Haro et al. [18], whose formulas 
are the basis for our predictive method. Another related work was done by 
Hanley and Cohen [ t ] in the framework of the modified Enskog eqation 
(MET), but it has not been able to extend this approach to mixtures. 

The main difficulty in applying the RET bulk viscosity formulas to 
real fluids lies in relating the contact values of the hard-sphere radial dis- 
tribution function and the hard-sphere diameters appearing in the theory 
to quantities associated with real systems. Our procedure to achieve this 
connection is presented in Section 2. In Section 3, the results of our 
calculations are presented for several one-component and binary mixtures. 

2. THE BULK VISCOSITY OF DENSE FLUIDS 

Our starting point is the set of coupled nonlinear kinetic equations 
for multicomponent hard-sphere mixtures in the RET first given by 
van Beijeren and Ernst [16]. In the case of a binary mixture and in the 
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absence of an outside field, 
integrodifferential equations for the 
function f~(f, v'i, t) ( i=  1, 2): 

+ e. f,(r; e,, t) 

where 

this set consists of two coupled nonlinear 
two-single-particle distribution 

2 

= ~ J~(f~f#) (1) 
j = l  

J*J(fefJ) = If (~- 6 ' ) ~  6')~dzu(r% p+ ~,jkl {nk })L(~, ~;, t) 

x f,(r~+ aJ~, if;, t)-- Zi;(F, F-- ao-/~ I {nk}) 

x f,(r; ~,, t ) f , ( e - - ~ L  ~,, t)] a~d 6 

Here f,.((, G, t) is the average number of hard spheres of component i (with 
diameter ai and mass m~) at the position f with velocity G at time t; 
~s~ = 6 - G  is the relative velocity of two spheres with velocities ~;i and 6 ,  
respectively;/~ is a unit vector directed along the line of centers from the 
sphere of component j to the sphere of component i upon collision (i.e., at 
contact); and 0 is the Heaviside step function. ~; and ~j denote the 
velocities of the restituting collision, which are connected to those of the 
direct collision G and 6 by the relations 

,Y; = ~ + 2MsHc . 6i)f: 

6; = 6 - 2Mij(]~- 60)k 

where M U = rn](m~ + mj). Zo is the radial distribution function of two hard 
spheres, one of component i and the other of component j, at contact, i.e., 
when the distance between their centers is a~; = (a~+ r In the RET, the 
Z~'s are the same functional of the local number densities {hi} as in a 
binary mixture in nonuniform equilibrium. The molecular fluxes and the 
transport coefficients for dense hard-sphere binary mixtures, UP to the 
Navier-Stokes level, can be directly obtained from Eqs. (1) on the basis of 
the procedure used in Ref. 18, and we do not repeat the derivation here. 
Instead we quote only the relevant results. It turns out that the momentum 
flux fi is given by 

where 

2 ( 2  ) 
p =  • n i kaT  1 +  ~ pbo.zij "s (2) 

i = l  j = l  
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is the thermostatic pressure, / is  the unit tensor, r/is the coefficient of shear 
viscosity, tc is the bulk viscosity, L7 is the hydrodynamic velocity, and the 
symbol ~ denotes the symmetric traceless part. In Eq. (2), pb~ = 2~nj0-~/3, 
kB is Boltzmann's constant, T is the absolute temperature, and Zej~ s is the 
equilibrium value of the radial distribution function for spheres of species i 
and j at contact, where the equilibrium density has been replaced by the 
local equilibrium density n = nl + n=. Explicit expressions for q and x for 
binary mixtures in terms of the molecular parameters are given in Refs. 18 
and 22. The latter reads 

=4 ~ ~ (2rcrnern, kBT~ 1/2 4 us 
K -~ \ m e + mj / nenjaug~162 

i=1  j = l  

+ 2kBT = 1- ~ j~l  Pb~ (e) ( 3 )  

where the hi o are coefficients that appear in the Sonine polynomial expan- 
sion of the one-particle distribution functions. In the so-called Nth Enskog 
approximation, i.e., when N Sonine polynomials are taken into account in 
the expansion, the h~ i) are determined from a set of linear equations (for 
details see Ref. 18). 

The evaluation of ~ for given {ni}, {o"e}, {me}, and T using Eq. (3) 
requires knowledge of Z,jcHs. An exact, explicit equation for X,j I~s in terms of 
the number densities and the set of hard-sphere diameters is not available, 
but several approximate expressions already exist. In particular, the so- 
called Carnahan-Starling [19] approxirfiation appears to be quite accurate 
when compared to molecular dynamics data. 

In order to use Eq. (3) to obtain numerical estimates of the BV of real 
mixtures, we need a prescription to get state-dependent hard-sphere 
diameters in terms of the parameters associated with the potentials chosen 
to model the actual systems. While several routes are possible, we follow 
the one taken in our previous work [20-22], namely, we consider that 
each component of the binary mixture is modeled through a Lennard-Jones 
potential 61 

- L \ 7 /  - k - r -  / j 

where ~e is the well depth and 0"oi is the minimal separation of two 
molecules of species i such that ~b}J(0"oe)= 0, and we determine separately 
the effective diameters in terms of a0i, ei, and the thermodynamic state of 
the system. As for the cross interaction, we assume it to be that of a hard- 
sphere mixture with effective diameters, i.e., 

0"12 = 0"21 ~--- (0"1 + 0-2)/2 
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The effective diameters ~i(i = 1, 2), can be obtained by several schemes 
well stablished in equilibrium liquid state theory. Our previous work 
showed us that the variational method of Mansoori-Canfield and 
Rasaiah-Stell (MC/RS) is the best suited for our task [20-22]. 

3. NUMERICAL RESULTS AND DISCUSSION 

Values for the BV of several monocomponents and binary systems 
were calculated following the method described above, i.e., the bulk 
viscosities were obtained from Eq.(3) up to the 10th Enskog 
approximation with the effective state-dependent diameters calculated with 
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Fig. 1. The calculated values of the bulk 
viscosity versus the mass density for 11 
monocomponent systems at 234.5K ( � 9  
Experimental data for argon [3]. 
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the MC/RS prescription and the Zlj Hs evaluated with the Carnahan-Starling 
approximation. 

Figure 1 shows the calculated values of the BV versus the mass density 
for 11 monocomponent systems in a log-log plot, at 234.5 K. For argon we 
plotted the experimental data of Madigosky [3] ,  and for the other fluids 
our calculations are predictive since there is no experimental 
measurements. As we can see from Fig. 1, there is a rough linear relation 
between log ~ and log p, consistent with the approximate relation ~ ~ p2. 

Figure 2 shows in a semilog plot the calculated values of the bulk 
viscosity for several binary mixtures of neon at 300 K at a very high density 
(molar density fixed to 0.03 mol/cm 3 in all  calculations). All calculations 
are predictive. 

Figure 3 shows the ratio of bulk to shear viscosities versus the reduced 
density (n* = n a  3) for three noble gases and several binary systems. The 
shear viscosity was calculated with the same formalism as that presented in 
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Fig. 2. The calculated values of the bulk viscosity for 
several binary mixtures of neon at 300 K at  a very high 
density (0.03 t o o l - c m -  3 in all calculations) versus the mole 
fraction. 
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Fig. 3. The ratio of bulk to shear viscosities versus the reduced density of a few 
monocomponent  and several binary systems (X~ =0.25) at T*(=kT/e)  = 1.35. 

Section 2 (see Refs. 22 24). We can see two interesting features: (a) at high 
densities the intrinsic bulk viscosity is a physical property as important in 
magnitude as the shear viscosity; and (b) all systems relate the ratio of bulk 
to shear viscosities to the reduced density in the same form as if a 
corresponding state principle were obeyed. Although this quantity K/q can 
follow a corresponding state law as suggested by Cowan and Leech [6] 
from experimental determinations, in our case this correspondence is 
built-in by the hard-sphere approach and in some way it is a proof of the 
internal consistency of the method. 

At lower temperatures Fig. 3 changes slightly to higher values, but 
there were no changes for calculations made at different concentrations. In 
particular, for concentrations of XI =0.5 and X1=0.75 (not shown in 
Fig. 3), we obtain the same curve as in Fig. 3. One interesting application 
of the curve defined in Fig. 3 could be to use it in conjunction with some 
realistic method to predict the shear viscosity of hydrocarbons [as the 
TRAPP procedure given by Ely and Hanley (23, 24)] in order to obtain 
good estimates of bulk viscosities of these compounds. This study is under 
way and will be described in a coming paper. 

In summary, these results are encouraging and could be a point of 
departure to obtain multicomponent bulk viscosities. However, the lack of 
experimental and molecular dynamics results is a hindrance to testing our 
method. 
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