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Linearized kinetic-variational theory and short-time kinetic theory
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We discuss the linearization of the kinetic-variational theory {KVT) II equation for mixtures
around absolute equilibrium for a family of pair potentials with hard core and soft tail. In the case
of a continuous soft tail, the linear equation reduces to that of Sung and Dahler [J. Chem. Phys. 80,
3025 (1984)], which in turn generalizes to mixtures, the short-time result of Lebowitz, Percus, and
Sykes [Phys. Rev. 188, 487 (1969)] that had subsequently been obtained by others using diFerent
means. Our equation also represents a generalization of the linearized revised Enskog theory to po-
tentials with attractive tails. Hence, at this level of theory the application of the fundamental tech-
nique in the kinetic-variational approach, maximization of entropy subject to constraints, is
equivalent to the approaches used by others. However, this technique appears to be more amenable
to the production of more general theories. Analysis of the structure of the KVT II theory reveals
the necessity of relaxation mechanisms for fluid equilibration that are absent in the various linear
theories. These include a mechanism for mixing kinetic and potential energies and a temperature
associated with the relaxation of the fluid structure. Various options for these are described and
compared. A consistent set of mechanisms provided by a more general class of kinetic-variational
theories (KVT III) is discussed. These should serve as a useful guide in improving the alternative
approaches that are equivalent to linearized KVT II.

I. INTRODUCTION

defining G, the KVT I closure is given by

G(x &, x2, t) =g& '(r&, r, ln), (2)

In this paper we discuss some properties exhibited by
the kinetic-variational theory (KVT) II defined in Ref. I,
and we relate that theory to others obtained by quite
different means. The kinetic equation associated with
KVT II is a member of a sequence of kinetic equations
that are derived through a principle of entropy maximi-
zation subject to given constraints. These equations de-
scribe the dynamics of particles interacting through a po-
tential consisting of a short-ranged repulsive hard-sphere
core tt'(r) and a longer-ranged soft (but not necessarily
continuous) tail P'(r). The sequence of equations is gen-
erated by imposing different constraints which yield
diverse closures of the exact "first hierarchy" equation.
This relates f, (x&, t), the one-particle distribution func-

tion, to f (x,2, tx),&the two-particle distribution func-
tion [here x = ( r, v )]. With

f,(x, ,x, , t) =f, (x „t)f, (x, , t)G(x, ,x„t),

where g2 (r, , rz~n) denotes the pair correlation function
of a nonuniform hard-sphere Auid at equilibrium. When
this closure is introduced in Eq. (2) of Ref. 3 we get the
KVT I equation. This has been thoroughly investigated
and generalized to mixtures. In Ref. 5 it was shown that
the KVT I is internally consistent only with soft poten-
tials that are weak and long ranged (%ac potentials).

If one imposes a constraint associated with total poten-
tial energy in the maximization procedure one obtains a
G(x, ,x2, t) such that

G (x, , xz, t) =g2(r, , rz.,P(t)
~
n ), (3)

where the P(t) is a Lagrange multiplier conjugate to po-
tential energy.

In Eq. (3) the g~ depends on the full potential rather
than just the hard-sphere part. This closure yields the
KVT II theory. The extension to mixtures of this result
is straightforward and the detailed derivation and study
of the transport coeKcients associated with it appear else-
where. Here we limit ourselves to the derivation of the
linearized version of KVT II for mixtures. This work ex-
tends to mixtures previous work of Karkheck for the
linearized one-component KVT II, which was found to
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coincide with the short-time Lebowitz-Percus-Sykes
(LPS) equation derived from linear-response theory.
Moreover, this linearized KVT II produced an equation
which is identical in structure to the linearized revised
Enskog theory (RET) which in turn is identical to a ki-
netic equation for hard-sphere dynamics that was derived
by alternative many-body methods. ' Furthermore, it
can be shown" that KVT II can also be associated with
the same subset of graphs that van Beijeren used' to ob-
tain the RET from a formally exact theory. We show
below that the linearized KVT II for mixtures is identical
to an equation of Sung and Dahler' (SD) that was ob-
tained by using the Mori-Zwanzig formalism. Thus the
short-time LPS and SD theories, which were originally
derived by different means, can be obtained thorough a
maximum-entropy formalism with subsequent lineariza-
tion. The structure of the kinetic-variational (KV) ap-
proach is such that it provides new insight into several
limitations of these theories. '

The KVT II does not exhibit local energy conserva-
tion, as has been shown in Ref. 1. Therefore the linear
version also bears this shortcoming, which appears to re-

II. LINEARIZATION OF THE EQUATION

For a potential of the form

P, =oo, r~o.
,

r)cr, ,
(4)

where P, is the potential between a molecule of species i
and a molecule of species j, the KVT II kinetic equations
for the one-particle distribution functions of an S-species
mixture can be written as

strict the theory to describing relaxation processes in
which kinetic-potential energy exchange is not a
significant factor. This shortcoming prevents consistent
introduction of a local spatially varying temperature
field, which is a requisite for general relaxation processes,
such as transport considered by SD, ' but is not essential
for correctly describing the restricted class of short-time
phenomena considered by LPS. The KV approach pro-
vides an avenue to eliminate this shortcoming that is dis-
cussed in Sec. III.

a a+v, f;(r„v„t)=
Bt Br,

S a, a
dr2n (r2, t)g, (r„r2,p(t)l fnt, J) p,', (r,2). f, (r„v„t)

m, Bv&

5
+ g o.;, f dv2 f de(e g)B(e g)[g; (r, , r, +c7; e;P(t)l [nt, ) )f, (r, , v', , t)f (r, +o; e, vz, t)

—
g;, (r„r,—cr;, e;p(t)l jnk ) )f, (r„v, , t)

Xf, (r, o, e, v„t)], —

where g=v2 —
v&, m, is the particle mass of species i, 6 is the Heaviside function, and g; is the full nonhomogeneous

pair distribution function defined formally by the cluster expansion'

—p(&)p, (~(~)
g~(r„rz, p(t)l [nk J ) =e ' " I+ g f drtn&(r&, t) V,,&(r„rzlr&)+

1=1

The n& is the local density of species l.
In form, Eq. (5) is sufficient to reproduce the LPS and

SD theories. However, the mean-field term does not yield
collisional transfer of kinetic and potential energy, which
is needed to relax p(t). This difficulty does not appear ex-
plicitly in the LPS or SD theories because they treat p as
a purely thermodynamic quantity for which no Auctua-
tion mechanism is provided. As already noted, this is not
generally valid, and will be discussed further in Sec. III.

To provide a relaxation mechanism for p(t), one has
several options. Time smoothing over a small but finite
time interval appears to be one of them; this would add a
considerable amount of technical complexity to the
theory, however. The introduction of a discontinuity in
the potential tail (for example, by truncating the tail)
represents another. This mimics the effect of time
smoothing but is far simpler, and is of interest in its own

right in connection with square-well, truncated Lennard-
Jones, and other model potentials with discontinuities in
the "soft" potential tail. Therefore, instead of Eq. (4), we
consider the potential

P,"= ca, r & o, .

(r)B(R; o'; r), "r ) cr, —

with P,'. (r) smooth and

p,', (R,,o.
, )= —

E,,
such that c., ~0 as R; ~~. The correlation function

g„(r»r2 p(t)l (n. 1)

is still given by Eq. (6) with P,"(r&2) defined by Eq. (7).
The kinetic equation for this potential is
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(c},+v, V, )f, (r„v, , t)

1 f, (r„v„t)fdx, B(R,, cr,, —r„)V,P,', (r,2)f, (x2, t)g„(ri, r2, P(t)l [nk I)
m, .

&
Bv&

S
+ g cr; f dv2 f de(e g)6(e g).[g; (r&, r i+o, e;/3"(t)~ [n& I )f;(ri, v'„t)f (r&+o, e", vz, t)

j=]
—

g;, (r„r, o;~—E;/3. (t)
~ [ni, [ )f, (r, , v„t}f,(r, o, —e, v2, t)]

S
+ g R,,o; f dvz fde(e. g)6(E g)[f, (r„v+, , t)f (r, +R, o, e, v2, t)g,, (r, , r, +R, o;,e;p(t)

~ [nt, I }

f, (r, ,
—v, , t)f, (r, R,,—cr; e, v 2t)g, , (r, , r, R;+cr—, e;P(t)~ [n„ I }

+6(e g —(2E,, /p;, )' )

X[f,(r„v, , t)f (r, R, cr, e—, v~, t)g; (r„r, R;+, c—rje;p(t)j[n„I )

f (r, , v„—t)f (r, +R,,o; e, v2, t)g, (r, , r, +R,, o;,e;p(t}~ [nk I )]

+6((2E,, /p;, )' —e g)

X[f,(r, , v', , t)f (r, R;,o; e, v'z—, t)g;, (r„r, R, o, —e;p(t)~ [nk I )

f, (ri, vi, t)f (r—i+R, cr, E, v2, t)g","("ri,ri+R, o; e;p(t)~ [nl, I )]], (8)

where the first term in the right-hand side (rhs) is a
mean-field term for the smooth part of the potential, the
second term gives the hard-core collision, and the last
three terms represent the square-well-like collisions' at
the discontinuity. To round out the theory, we must in-
clude an equation for the time evolution of the potential
energy, which in essence yields the time evolution of p(t).
Taken together, these equations support an H theorem
which shows that f, and /3(t) relax to the canonical equi-
librium forms. The potential-energy equation itself is not
needed in what follows, however.

Linearization is performed around absolute equilibri-
um,

Since

vi vi =2M~, (g e)E

and

(loa)

v—, —vi=M, [(e g) —[(g e)~.+(2E, /p, , )]'~~je, ( lob)

n, (r„t)=np;+5n, =np + f dv g, , (12)

where M, =m /m, +m and p,, =m, M, , it follows that

"h;(v, )h, (v~) .

Upon integration over the velocity in Eq. (9a) we ob-
tain

f, =np;h, (v)+r/, ,

P(t) =/3„+5P(t),

(9a)

(9b)

whereupon, to linear order, we get

where np, h, (v) is the absolute equilibrium Maxwellian
distribution function and g, is a small fluctuation. The
identification /3p= 1/kTp =const, where Tp is the equilib-
rium temperature appearing in h, , follows from the
leading-order term in the expansion of the square-well-
like collision integrals. The fluctuation 5/3, governed by
the fluctuation of total potential energy, vanishes in the
thermodynamic limit. So the nonfluctuation of p(t) ex-
hibited by the LPS and SD theories arises naturally here
due to collisions at the tail discontinuity.

5g, (r, , r2, t)f dx'gt (x', t)
nL(r', t)

from which we can show that

InpL I

(13)

bg; (ri, ri+R, o; e, t)=e "bg,"(ri,ri+R,+cr, e, t) .

(14)

Combining Eqs. (8), (9), and (11)—(14), we arrive at the
linearized equation
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(c},+v, V, )zl;(r„v„t}
S= —Ph, (v&)v&. g np;np- fdxzB(R; cr; —r&z)V&P,' h(.vz)bg;z

J= 1

S
+ g n p, n p o, h, (v-, )

J= 1

X f dvzh (vz) f drz f de(e g)bg, (r, , rz, t)

X[5(rz —
r& a—

, e)+R,"5(rz —ri R,+—o, e.}—"R,"6(r z
—ri R, —a; e)]

13 g—f dxzB(R, o; —"r~z)vi V~/, ' np;h;(v&)i1~(xz, t)g& (riz)
J=l
S

+ y a,', fdv fdic(e g)8(e g).

X [gj (a;, )[np, h;(vI)z} (r&+o;~e, vz, t)+np h (vz)rt, (r, , v', , t)

—
np, h;(v, )t},(r, —a, e, vz, t.) —np, h, ( vz) z},(r„v, , t)]

+R;~g; (R o; )[np;h, (v~ )z} (r&+R, a, e, vz", t)"+np h (vz ) t,t(r&, v+, , t)
—pc, —/3c,—e 'np, h, (v&)z} (r& R, o; e—, vz, "t) e "np, h—~(vz)Y};(r&,v&, t)

+8(e g
—(2E;, /p;, )' )

E

X[e "np, h, (vi )il (ri R; o,—e, vz, t")+e "np/h/(vz ) t}(r&,v, , )t

np, h—, (v, )i},(r, +R,,a;, e, vz, t) np, h, (v—z)71;(r, , v, , t)]

+8((2e„/p„)'"—e.g)

X[ n,ph( vI) rl(ri R;~a;~e—, vz, t)+noh~(vz)tI;(ri»i, t)

np;h;(v, )t}—/(r, +R~o,~e, vz, t) —.np, h, (vz) };(ir„v&,t)]j] .

The first two terms on the rhs can be combined to yield
S

np, .h,. (v, )v, g f d x}zz( Lxtz)(V, C; ( L) r) zg, t"V(f;L, ), —
L =1

(15)

(16)

where C,t (r) is the homogeneous direct correlation function of the system and some properties of the Mayer function

f &z
=e " —1 have been used.

Combining Eq. (16) with the third term in the rhs of Eq. (15) we finally arrive at

(c},+v, .V ) }i,(7r„vt)
S

=np, h, (v&)v& V& g f dxzz}L(xz t)[CL (r,z)+g L(o,L)8(o+,L —r&z)+(1 —e '
)g L(RLo,t. )8(R, oL,L

—riz)].
L =1

S
+ g o,, f dv f de(e g)8(e.g)

J= 1

X[g,',"(o+,, )[np, h;. (v', )z},(r, +o.;, e, vz, t)+np, h, (vz)z};(r, , v', , t) np, h;(v, )z1—,(r, o,,e, vz, )—
np h, (vz)t—},(r, , v„t)]

+R,,g,, (R;, cr, )Inp, h, (v+-, )i},(r, +R,,o;,e, vz, t)+np, h, (vz )z},(r„v+, , t)
—pe, - n —

0&;,—e 'np, h, (v, )q (r, R; cr, e, vz, t) ——e ""np/h (vz)q;(r~, v~, t)

+8(e g —(2e;, /p, ;, )' )

X[e "np, h, (v, )z},(r, R,,a,,e, vz, t)+—e '
np, h, (vz )il, (r„v, , t)

np;h; (v, )g, (r, +—Rjo,je, vz, t) np, h, (vz)z};(r„v—, , t)]
+8((2e,, /p;J )' —e.g)

X[ nhp, (v', ) i(}r, R, cr, e, vz, t)+np h—(vz") l, (rz, , v&, t)

—
np, h, (v, )rl/(r, +R;~cr;Je, vz, t) —noh~(vz)g, (r&, v&, t)]I ], (17)
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which generalizes the LPS and SD equations. To recover these equations we observe that for short-ranged P,'", s,"~0
strongly as R; ~ ~ so that the step contributions vanish in that limit. Therefore we get

S
(8, +v, V, )i);(r, , v, , t)= g o,,g q(o+, )

J=1

x dvz dE E g 0 E g noh; v1 gj r1+0 gE' v2 t +nojhj v2 P' 7] v

—
no; h, (v~ )i)i(r, —o,~e, vz, t) —nojh~(v2)r), (r, ,v„t)]

S
+no, h, (v. , )v&. V& g f dx2gt (x2, t)[Ct (r&z}—g L( o;+L)6(o'+;L —r&q}] .

L =1

Equation (18) can be Fourier transformed to give

S
(8, + k, )y;= g;,g ( +;)

J=1

X f dv f de(e g)6(e g).
tk 0 —ikcr, ex [no h'y, (k, vI, t) —no h y;(k, v&, t)+no, h e ' y (k, v2, t) no, h,—e " y (k, vz, t)]

S
+ino, h, (v, )v, k g CL(k)+

L =1

4~O. ,L
3

j~(ko;L )g t. (o'+, L ) fyL(k, vL, t)dvL, (19)

where j, (x) is a spherical Bessel function, and

y, (k, v, t)= f dre '"'g, (r, v, t) .

This is the SD equation, which reduces to the LPS equa-
tion in the case of a single species.

III. DISCUSSION

Equation (19) is an extension of RET (Ref. 9) to mix-
tures of particles interacting with potentials which pos-
sess a repulsive core and a continuous tail. Equations of
this type have been used for a description of the short-
time behavior of space- and time-dependent Auctua-
tions. ' We have shown that these linearized kinetic
equations can be obtained from the nonlinear KVT II
theory. The full realm of validity or utility of (19) is not
known. However, several features are already clear.

(i) When applied to initial-value problems associated
with one-particle fluctuations about absolute equilibrium,
Eq. (19) produces correct predictions for short-time be-
havior, just as does the LPS equation, e.g. , sum rules
through third derivative of F(k, t), the intermediate
scattering function. This holds also for Eq. (17), and such
results do not change when local energy conservation
(KVT III) is included. '

(ii) For long times, and in particular for transport ap-
plications, there is no doubt that (19) is not exact, since it
leaves out velocity correlations which build up in time. It
is well known these have a significant numerical effect on
the diffusion coefficient and shear viscosity of the hard-
sphere Auid. These velocity correlations are suppressed
in the LPS and SD theories by neglect of the memory
terms; in KVT II the neglect of velocity correlation stems
from its absence in Eq. (3}. [In the corresponding kinetic
reference theory (KRT II), one replaces'' the effect of

r, +r2R= (20b)

is the midpoint between centers of spheres in contact.
This recipe yields a linearized theory that is not
equivalent to the LPS equation and is somewhat inferior
to it. ' Moreover, its generalization to mixtures is not
unique and whatever choice is made yields a theory that
is inconsistent with the Onsager reciprocal relations, as
first shown by Barajas et al.

For interparticle potentials other than pure hard
spheres, local thermodynamic quantities such as pressure
depend upon local temperature in a nontrivial manner,
and deviations from these local quantities bear depen-
dence upon the gradients of local temperature. An early

this missing correlation by that in a hard-sphere system
at the same temperature and density. This effect is
known quite accurately for hard spheres through com-
puter simulations. ]

(iii) Although the introduction of a discontinuity in

P} (r) provides a mechanism for potential-kinetic energy
transfer in our approximation, there is still no mechanism
for generating a well-defined temperature field f3(r, t) in
KVT II and its linearization or in theories equivalent to
these. The need for such a quantity is supported by the
presence, in general, of a fluctuating temperature T(r, t)
manifested in (9a). This situation is somewhat analogous
to the condition of the original standard Enskog theory
(SET) with regard to density-field dependence. The den-
sity field n (r, t) is manifested in f, , viz. ,

n(r, t)= ff, (r, v, t)dv .

The SET approximant to G(x&,x2, t) is the radial distri-
bution function for a uniform hard-sphere system at equi-
librium evaluated at the number density n =n (R, t)
where
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3n(r, t)kT(r, t)= fm(v —u) f, (r, v, t)dv,

where u(r, t)= fvf, dv/n (r, t), and

(2 la)

attempt to introduce such a local temperature was made
in the theory of Davis, Rice, and Sengers, ' who extended
the Enskog ansatz for density field to the temperature
field, treating G(x„xz, t) again as the equilibrium func-
tion but for a Quid of square-well particles at density
n(R, t) and temperature T(R, t), with R the midpoint
and T defined by

tween these quantities has direct effect on the value of the
bulk viscosity. ] In the resulting theory, ' one still re-
quires an additional mechanism to assure mixing of po-
tential and kinetic energies, and velocity correlation is
still missing in Eq. (3). But the satisfaction of local ener-

gy conservation nevertheless removes an important limi-
tation found in KVT II, and it will be of great interest to
understand how different from (19) the linearized KVT
III equations are found to be, and how the LPS and SD
approaches must be modified to yield the linearized KVT
III equations.

P(r, t)=1/kT(r, t) . (21b) ACKNOWLEDGMENTS
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kT(r, t) given by (21a), as discussed in some detail in Ref.
22, where it was shown that numerical distinction be-

The work of the first three authors was partially sup-
ported by the National Council of Science and Technolo-
gy (CONACYT) Grant No. PVT/PQ/NAL/86/3585.
M.L.H. would like to thank the Spanish Ministry of Sci-
ence and Education for financial support during his stay
in Spain. J.K. is indebted to the National Science Foun-
dation for the support of his initial contributions to this
work and to NATO Research Grant No. 419/82 for fa-
cilitating his contributions to this work. G.S. gratefully
acknowledges the financial support of the Division of
Chemical Sciences, Office of Basic Energy Sciences, Office
of Energy Research, U.S. Department of Energy. J.K.
and G.S. also wish to acknowledge stimulating discus-
sions with Henk van Beijeren on many aspects of this
research.

'On leave from Laboratorio de Energsa Solar, Instituto de In-
vestigaciones en Materiales, Universidad Nacional Autonoma
de Mexico, Temixco, Morelos 62580, Mexico.

'G. Stell, J. Karkheck, and H. van Beijeren, J. Chem. Phys. 76,
3166 (1983).

J. Karkheck and G. Stell, Phys. Rev. A 25, 3302 (1982).
J. Karkheck and G. Stell, J. Chem. Phys. 75, 1475 (1981).

"J.Karkheck, G. Stell, and E. Martina, in Proceedings of the 8th
Symposium on Thermophysical Properties, Gaithersburg, 1981,
edited by J. V. Sengers (American Society of Mechanical En-
gineers, New York, 1982).

5J. Karkheck, E. Martina, and G. Stell, Phys. Rev. A 25, 3328
(1982)~

R. Castillo, M. Lopez de Haro, and E. Martina, Int. J. Ther-
rnophys. 7, 851 (1986); R. Castillo, E. Martina, and M. Lopez
de Haro, Physica A (to be published); Kinam 7A, 61 (1986).

7J. Karkheck, Kinarn 7A, 191 (1986).
J. L. Lebowitz, J. K. Percus, and J. Sykes, Phys. Rev. 188, 487

(1969).
H. van Beijeren and M. H. Ernst, Physica 68A, 437 (1973); see

also H. van Beijeren, Ph. D. thesis, Nijmegen, 1973 (unpub-
lished).
(a) G. F. Mazenko, T. Y. Wei, and S. Yip, Phys. Rev. A 6,
1981 (1972); (b) H. H. U. Konijnendijk and J. M. J. van

Leeuwen, Physica 64A, 342 (1973).
'J. Karkheck (unpublished); J. Blawzdziewicz and G. Stell (un-

published).
' H. van Beijeren and M. H. Ernst, J. Stat. Phys. 21, 125 (1979).
' W. Sung and J. Dahler, J. Chem. Phys. 80, 3025 (1984).
' For an interesting comparison between the original Enskog

theory, the LPS equation, and the equation of Mazenko
et al. , Ref. 10(a), see J. Sykes, J. Stat. Phys. 8, 279 (1973).

'~See, for example, G. Stell, in Phase Transitions and Critical
Phenomena, edited by C. Domb and M. S. Green (Academic,
London, 1976), Vol. 5a.

'6J. Karkheck, H. van Beijeren, I. M. de Schepper, and G. Stell,
Phys. Rev. A 32, 2517 (1985).

' I. M. de Schepper and E. G. D. Cohen, Phys. Rev. A 22, 287
(1980);J. Stat. Phys. 27, 223 (1982).
J. Karkheck, Bull. Am. Phys. Soc. 32, 939 (1987).
J. Karkheck, G. Stell, and J. Xu, J. Chem. Phys. 89, 5829
(1988).
L. Barajas, L. S. Garcia-Coli'n, and E. Pir|a, J. Stat. Phys. 7,
161(1973).

'H. T. Davis, S. A. Rice, and J. V. Sengers, J. Chem. Phys. 35,
2210 (1961).
H. van Beijeren, J. Karkheck, and J. V. Sengers, Phys. Rev. A
37, 2247 (1988).


