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Abstract
This review paper presents a procedure for measuring the mesoscopic scales in micellar
solutions embedded with giant cylindrical micelles using the mean square displacement
determined with a quasi-elastic multiple light scattering method (diffusing wave spectroscopy)
and theory. The mesoscopic scales of interest are the micelles’ total contour length, persistence
and entanglement lengths, and the mesh size of the entangled micellar network. All of them
depend on the physicochemical parameters of the solutions and determine the rheological
behavior. We present an assessment of the whole procedure, the scattering experiments
performance, the recovery of optical parameters, which includes dealing with the light
absorption and its treatment, and how to develop the micro-rheology for obtaining the
mesoscopic scales in these complex fluids.

Keywords: light scattering, diffusing wave spectroscopy, wormlike micelles, micro-rheology,
light absorption, viscoelasticity

(Some figures may appear in colour only in the online journal)

1. Introduction

Many properties observed in fluid soft materials are related
to the complex supramolecular structures embedded in them.
They introduce a complex dynamics usually described with
multiple characteristic lengths and time scales. The rheological
response of these materials can be linear or non-linear depend-
ing on the applied stress. Usually, nonlinearity is a sign of
structural rearrangement in the system by the applied stress
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juato, León, México
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or deformation. However, there is always a linear response
regime for small enough applied strain or stress for systems
close to thermodynamic equilibrium. One of the most impor-
tant properties in this regime is the shear modulus, G(t), which
connects the deformation and flow of materials in response to
applied stress σ =

∫ t
−∞G(t − t′)γ̇ dt′ [1]. Here, σ is the shear

stress and γ̇ is the shear rate. In the frequency domain, G(t) can
be transformed into the response to shear excitations character-
ized by the complex shear modulus G∗(ω) = iω

∫∞
0 G(t)e−iωt dt

that determines the stress induced on a material upon apply-
ing an oscillatory shear strain, γ, at a frequency ω. The com-
plex shear modulus can be expressed as G∗(ω) = G′(ω) +
iG′′(ω). The real part is the elastic (storage) modulus in phase
with the applied γ. The imaginary part corresponds to the vis-
cous (loss) modulus in phase with γ̇. In contrast with simple
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liquids or solids, the shear modulus in soft materials exhibits
a substantial time dependence; it can be in the range of mil-
liseconds to seconds or even to minutes; consequently, soft
materials are viscoelastic, i.e., they exhibit both a viscous and
elastic response. Linear viscoelasticity properties are usually
measured with rotational mechanical rheometers [2] in the fre-
quency domain, probing macroscopic samples in the milliliter
range, along a limited frequency range (ω∼ 10−1–50 rad s−1),
and with different deformation geometries depending on the
extent of strain and the magnitude of shear modulus to be
measured.

On the other hand, microrheological techniques, which
essentially measure the same shear modulus, but with sev-
eral advantages, are nowadays reliable to get useful structural
and dynamic information in soft materials. Micro-rheology
does not describe a particular technique. The general principle
behind micro-rheology is to minimize the mechanical probe
that deforms the medium, which could be a small particle, like
a colloidal microsphere, and a modern technique to trace the
particle probe movement. In particular, a colloidal particle is
a delicate probe, which introduces the slightest possible per-
turbation in the structure and dynamics of delicate soft matter
(thermal energies ∼ kBT, kB is the Boltzmann’s constant, T is
absolute temperature). That combination allows the measure-
ment of the rheological material properties at the micrometer
and sub-micrometer scales. In contrast to what occurs with
rotatory mechanical rheometers, the material’s strain is virtu-
ally negligible during measurements due to the probes’ small
size. Particularly, this feature is useful in complex fluids, in
which even small imposed strains can cause structural reor-
ganization in those materials and, consequently, a change in
the viscoelastic properties. The basic assumption in micro-
rheology is that the surrounding medium’s mechanical prop-
erties determine the micron-sized colloidal particles’ motion
dispersed within a fluid. Naturally, micro-rheology can be
used to examine the linear response of complex fluids. Exper-
imental methods fall into two classes depending on the forces
operating on the probe particles [3, 4]. In passive microrhe-
ology, the material’s properties are extracted from the motion
of thermally fluctuating probes. During the last three decades,
micro-rheological techniques have boomed for their ability to
extract information at small lengths and time scales. Scaling
down the probing devices as colloidal microspheres [5, 6] or
microcantilevers made that possible when used as the sen-
sors [7–9]. We find in this group particle tracking with video
microscopy, diffusing wave spectroscopy (DWS), and exten-
sions like multispeckle DWS [10]. In active microrheology
[6], a probe is actively driven within the material, either in
oscillatory or steady motion using optical tweezers, magnetic
tweezers, or atomic force microscopy. In the case of DWS, it
is possible to make an extension to measure the viscoelastic
spectrum to high frequencies, ω ∼ 106 rad s−1, that can pro-
vide an insight into fast relaxation times in complex fluids,
which are out of the range for rotatory mechanical rheometry;
although, also there are mechanical piezoelectric devices that
can reach high frequencies [11]. In the case of colloidal probes,
which are embedded in the complex fluid of interest, local tra-
jectories are tracked along in response to stochastic thermal

forces, similar to those observed in the well-known Brownian
motion in simple liquids but now altered by the viscoelastic
susceptibility of the liquid bulk. The mean square displace-
ment (MSD, 〈Δr2(t)〉) of these particles can be related to the
viscoelastic spectrum G∗(ω) of the fluid by a generalization
of the Stokes–Einstein equation, given by Mason and Weitz
[12–14], as we will describe below.

In fluids embedded with self-assembled giant cylindrical
micelles, also called wormlike micelles (WLMs), the capac-
ity to reach high-frequencies by DWS provides a significant
step forward for micro-rheology because it is an outstanding
alternative to standard static scattering techniques, as small-
angle neutron scattering (SANS) or small-angle x-ray scat-
tering (SAXS) [15], to obtain structural information. DWS
micro-rheology can estimate the most important characteris-
tic lengths of major interest to understand the structure and
dynamics of WLMs, using approximate relations coming from
theory. For example, the total contour length of the micelles,
LC, their persistence length lp, entanglement length, le, and the
mesh size, ξ, of the entangled micellar network. In the men-
tioned scattering techniques, scattering spectra (neutron or x-
ray scattering intensity vs wave vector, q) of WLM solutions
are obtained and related to scattering spectra of theoretical
models of assemblies of cylindrical micelles where polydisper-
sity effects in size and diameter can be included. These scat-
tering curves can give information about the apparent radius of
gyration and apparent molar mass at the lowest q, and in some
cases, the total contour length and micelle flexibility, given by
lp, in the intermediate q range, as well as the local structure
at higher q as micelle diameter and the mass per length of the
cylindrical micelle. SAXS and SANS have been able to deter-
mine the cylindrical nature of WLMs, and they have provided
characteristic lengths for many WLM systems. However, com-
plex facilities are needed to do the experiments, where the user
must obtain beam-time and funds for traveling, as well as an
elaborate data treatment is finally needed to extract the desired
information. These requirements make these techniques not
easy to use to develop systematic studies, like those needed
to understand the whole picture of how the solution’s physico-
chemical parameters affect the WLM’s characteristic lengths.
In contrast, in micro-rheology, standard light scattering equip-
ment, which is commonly affordable in many laboratories, can
give complementary information to scattering techniques that
help understand the micellar structure and dynamics. Other
techniques getting some of these characteristic lengths can be
used as neutron spin echo [16, 17], birefringence measure-
ments [18], and in some cases dynamic light scattering [19],
but with limited success.

In solution, amphiphilic molecules self-assemble to form
various supramolecular structures, the geometry of which can
be spherical, cylindrical, lamellar, etc [20, 21]. The preferred
geometry is fixed by the spontaneous curvature determined by
the assembled aggregates’ most effective packing. The organi-
zation within these structures will depend on a complex inter-
play of molecular geometry, amphiphilic character, and charge
of all the involved entities in the supramolecular structures.
The interplay can be modified by several factors, namely, sur-
factant concentration, cosurfactants, hydrotope salts, and pH,
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temperature, and ionic strength of the media (salt addition).
The preferred interfacial curvature optimizes the system ener-
getically, but it does not account for entropy effects. At low
concentration, below the critical micelle concentration (CMC),
i.e., below micelles are formed, entropy favors a uniform dis-
solution of the amphiphile in the solvent, so that self-assembly
and aggregation are negligible. Above the CMC interaction
dominates, and entropy effects are reduced. Consequently, the
number of aggregates, usually spherical, sharply increases.
Afterward, amphiphiles form cylindrical micelles with moder-
ate spontaneous curvature. In these structures, energy is opti-
mized when the curvature is uniform everywhere, forming
long linear structures (giant cylindrical micelles or WLMs).
However, entropy introduces a degree of randomness through
the bending of the cylindrical micelles, which adds confor-
mational entropy like the configurational entropy of poly-
meric chains and certain topological defects in the form of
end-cap and/or branch junction points. These two defects are
introduced by forming regions with differing local curvatures
that sustain different energetic penalties. The overall entropic
gain associated with end-caps is greater than that of branch
points. Although topological defects’ appearance introduces
an entropy gain, the type of defect that dominates the system
is set by the amphiphile spontaneous curvature. If the scission
energy, Esc, of a cylindrical micelle (the energy required to cre-
ate two end-caps from an infinite cylinder) is large enough,
then the linear micelles may become very long and entangled
at a relatively low total volume fraction of surfactant. Low-
ering the scission energy shortens the total contour length,
LC, of the linear micelles and entropy increases by increas-
ing the number of micelles in the micelle solution. This com-
petition between energy and entropy mainly determines LC.
The distance between entanglement points along a WLM will
be denoted by le. On the other hand, branch junction points
increase the number of possible configurations, enabling per-
colation and the formation of extended micellar networks,
which leads to a multi-connected rather than an entangled net-
work of cylindrical micelles. Although, transitions between
linear and branched micelles are unusual. When salt is added
to ionic surfactants, the electrostatic repulsions between head-
groups are screened, inducing a linear growth because the scis-
sion energy increases. However, after a maximum, salt addi-
tion suggests a decrease in micellar size. Above the CMC,
the micellar system is in the dilute regime up to the overlap
concentration; the semidilute regime lies between the overlap
concentration and a concentration where the network mesh
size, ξ, is larger than the WLM persistence length, lp. Here,
the linear rheology is dominated in a good approximation by
a single relaxation time at low and intermediate frequencies,
as in a Maxwellian fluid, i.e., a single relaxation mode domi-
nates, and the viscoelastic modulus that can be written as: G(t)
= Go e−t/τ [22, 23]. Go denotes the elastic modulus, which is
related to the micellar mesh size, and τ is the relaxation time.
The reptation-reaction model [24] for WLMs proposes that the
relaxation time is the geometric mean of two characteristic
times: micellar breaking and recombination, τ b, and micelle
reptation, τR, where τ b must be much smaller than τR. There-
fore, linear rheology at low frequencies in WLMs is mainly

dominated by reptation and reversible breaking and recom-
bination between them. At high frequencies, other relaxation
modes appear. Micro-rheology can contribute to estimating the
characteristic lengths of the WLM network due to its capability
to obtain G∗(ω) at high frequencies and approximate relations
coming from theory. At time scales shorter than WLM break-
age time that corresponds to high frequencies, the Maxwellian
stress relaxation processes are fundamentally frozen; WLMs
behave like semiflexible polymer chains. Then, stress relaxes
first dominated by the Rouse–Zimm modes and later by inter-
nal relaxation of Kuhn segments. G∗(ω) exhibits, at those fre-
quencies, a power-law behavior, |G∗| ∼ ων , with the exponent
ν ∼ 5/9 in the Rouse–Zimm regime, which shifts to ν ∼ 3/4,
where the internal bending modes of Kuhn segments domi-
nate. That change occurs at a frequency ωo (ωo ≈ kBT/8ηslp3;
ηs is the solvent viscosity) [11] that corresponds to the shortest
relaxation time in the Rouse–Zimm spectrum. From ωo com-
ing from the slope change in |G∗(ω)|, lp can be obtained, and
the other characteristic lengths can be evaluated. The WLM
network mesh size can be obtained in the loose entanglement
regime with ξ ∼= (AkBT/Go)1/3, where the prefactor A = 9.75
is a recent correction [25]. In the same way, le can be calcu-
lated using lp = ξ5/3/lp2/3 [26]. From G′′

min/Go
∼= (le/LC)0.8, the

total contour length can be estimated by incorporating breath-
ing and high-frequency Rouse modes. The exponent in this
equation is a correction given by Granek [27]. Here, G′′

min is a
local minimum of G′′(ω) after the first crossing between G′(ω)
and G′′(ω). The ratio of the entanglement length to the persis-
tence length can also be obtained, αe = le/lp, and it is helpful
to determine if the system is in the loose (αe > 2) or tight
entanglement regime (αe < 1) [25].

At low and intermediate frequencies, Maxwell-like behav-
ior is followed by most of the WLM solutions, i.e., a single
relaxation dominates, where the moduli follow a semicircle
[G′′(ω) − 0]2 +

[
G′(ω) − Go/2

]2
=

[
Go/2

]2
that is known as

the Cole–Cole plot. However, at higher frequencies, the
crossover to other relaxation modes appear (breathing) and
express themselves as a minimum in this plot, so the subtle
departures from exponential behavior in this crossover region
are easily seen in this Cole–Cole representation. One crucial
point of the reptation-reaction model [24] is that this dip’s
height is directly related to the average number of entangle-
ments along the WLM chain. There are examples of WLM
systems where that semicircle is followed at low frequencies,
but at higher frequencies, there is no minimum, or it is not
deep enough. Here, the mentioned equations are not expected
to work for multiple reasons such as, τ b is not much smaller
than τR, or there is a mechanism that does not allow the
solution to reach equilibrium [28]. When these flaws do not
occur, the reptation-reaction model has shown to be adequate
to describe the behavior of WLM systems, as determined from
experiments [29, 30] and simulations [25–27, 31].

DWS extends the analytical power of dynamic light scat-
tering to the limit of multiple scattering events [32, 33]; some
of the first examples to study WLM solutions can be found in
references [30, 34, 35]. It is based on two fundamental assump-
tions: (1) the diffusion approximation of light, where the light
intensity is carried by scattered photons due to the embedded

3



J. Phys.: Condens. Matter 34 (2022) 034003 A Tavera-Vázquez et al

probe particles in the fluid to be studied along many paths to
the detector, with step sizes of the order of the transport mean
free path, l∗, and (2) an average on scattering events over many
particles, instead of considering just individual events. Nev-
ertheless, DWS can provide unique information on particle
motion on short time scales because coherent light is scattered
from a large number of colloidal particles, where each parti-
cle moves only a small fraction of a wavelength. Cumulative
change in the path length produces an interference speckle pat-
tern at the detector. At a low concentration (particle volume
fractionsφ∼ 0.01–0.02), interparticle interactions can be con-
sidered to be negligible. Therefore, DWS allows us to examine
a fluid forming a turbid suspension due to the embedded parti-
cles, and their motion can be probed at short length scales from
∼1 nm up to∼1μm, by measuring a time autocorrelation func-
tion of the scattered light intensity, which can be related to the
MSD of these probe particles. However, it is essential to men-
tion that the fluid under investigation must not absorb light in
a first approximation before the microsphere addition. Weitz
and Pine first suggested this correction but without presenting
analytical results [32, 33]. To deal with this problem, differ-
ent methods are used. In Sarmiento-Gómez and co-workers’
procedure [36], the measured field autocorrelation function
must include a correction term, l∗/la, that quantifies the loss
of light by absorption effects. la is the so-called absorption
length, which is equivalent to the inverse of the absorption
coefficient, μa, and l∗ is the transport mean-free path that is
the length over which the direction of light propagation is ran-
domized. The absorption of light is given as an exponential
attenuation, cutting off the longest paths. For recovering l∗ and
la from the fluid of interest, several procedures can be followed.
In reference [36], the authors used the inverse adding doubling
(IAD) method [37–39], where just three measurements need
to be performed, namely, total reflectance, total transmittance,
and collimated transmittance of the incident light on the fluid
with probes. The recovered optical parameters are: μ′

s = 1/l∗,
μa = 1/la, and the anisotropy factor g (cosine average of the
scattering angles due to all the scattering events in the turbid
medium). These measurements are done using an integrating
sphere. Hajjarian and Nadkarni [40] simulated light propaga-
tion in any medium with arbitrary optical properties, using a
computational intensive Monte-Carlo ray tracing algorithm.
They derived a numerical solution to relate the intensity cor-
relation function with the MSD for glycerol and water solu-
tions, where the optical properties of the mixtures were tuned
by adding various concentrations of TiO2 particles and car-
bon light-absorbing nano-powder. In all cases, Mie’s theory
was used to calculate the optical properties, and measurements
were developed in backscattering geometry, which limited the
frequency range of the rheological modulus (ω < 20 rad s−1).
The results go in the right direction but present large deviations
when compared with the mechanical rheological data. Zhang
et al [41] developed a method that instead of comparing the
optical properties of the non-adsorbing sample with another
sample whose l∗ is known, they determine the static optical

properties of the sample in a particular commercial instru-
ment, in forward and backscattering, to perform DWS mea-
surements. The method relies on a comparison with an exten-
sive set of calibration measurements. l∗ and la are obtained
with an accuracy∼8% and 14%, respectively. They tested their
approach on suspensions of polystyrene latex spheres where
absorption is introduced by adding different amounts of green
food dye. They did not compare their micro-rheological results
with mechanical rheological measurements neither reported
using the technique for a structured complex fluid.

Our group has developed a procedure for measuring the
mesoscopic scales in micellar solutions embedded with giant
cylindrical micelles using the MSD determined with a quasi-
elastic multiple light scattering method and theory of these
micelles. Here, we present an assessment of the whole pro-
cedure, namely, how the scattering experiments are performed
with DWS, to overcome the challenges of recovering the opti-
cal parameters, to treat absorption in the case that systems
absorb light, to develop the micro-rheology for obtaining the
mesoscopic scales in these complex fluids. Afterward, we dis-
cuss how the information given by these mesoscopic scales in
a fluid embedded with cylindrical micelles can improve our
understanding of the rheological behavior of these fluids.

2. Theory behind the quasi-elastic multiple light
scattering method

2.1. Diffusing wave spectroscopy without light absorption

In DWS, there are two different allowed experimental geome-
tries: total transmission and backscattering. The multiply scat-
tered light loses information of its origin and propagation
direction after traveling a distance∼ l∗, within a planar sample
with a light path L 	 l∗. This l∗ is related to the mean free path,
l, which is the distance traveled among every scattering event
l∗ = l/〈1 − cos θ〉. Here, θ is the single-event scattering angle,
and 〈. . . 〉 represents an ensemble average upon all realizations
of scattering events. For small particles, near the Rayleigh scat-
tering limit, when koa 
 1 (ko = 2π/λ is the wave vector of
the incident light, a is the radius of the particles and λ is the
wavelength of light), single-particle scattering is isotropic, and
the direction of light is randomized after one scattering event
(l∗ = l). For larger particles in the Mie scattering limit, the scat-
tering reaches a maximum in the forward direction. There are
necessary several scattering events, on average, to randomize
in the direction of propagation (l∗ > l). Each beam emerges
from the sample with a phase that depends on its total path
length s. Assuming independence of light paths, the normal-
ized field autocorrelation function can be written as [32, 33]:

g(1)(t) =
〈E(0)E∗(t)〉〈

|E|2
〉 =

∫ ∞

0
P(s) exp

[
−1

3
k2

0

〈
Δr2(t)

〉 s
l∗

]
ds,

(1)
where E(t) is the scattered electric field, P(s) is the path distri-
bution function of scattered photons. A diffusion equation of
the energy density describes the transport of light, which is like
Fick’s law. For calculating P(s), the diffusion equation must
obey the initial and boundary conditions to ensure no net flux
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of diffusive photons entering the sample. For details, see refer-
ence [33]. The resulting equations can be solved using Green’s
functions techniques, as discussed by Carslaw and Jaeger [42].
The most used geometry in the laboratory is the transmission
one, which is useful to probe motion over length scales much
shorter than λ. For the case of a sample with parallel plane
faces and with uniform illumination of a plane-wave beam,
the autocorrelation function can be written as a function of the
MSD of probe particles as:

g(1)(t) =
L/l∗+4/3
α∗+2/3

[
sinh (α∗x) + 2

3 x cosh (α∗x)
]

(
1 + 4

9 x2
)

sinh
(

L
l∗ x

)
+ 4

3 x cosh
(

L
l∗ x

) , (2)

with x =
√

k2
0〈Δr2(t)〉 and α∗ = z0/l∗. The value z0 ∼ l∗,

although numerical values are insensitive to the exact choice
of z0, since L 	 z0. A different choice of z0 would affect only
the first few steps in a random walk that consists of many
steps. Backscattering geometry can also be used [43]. The
MSD of probe particles can then be determined by collecting
their scattered light from a single speckle during an extended
period (40 to 180 min), evaluating the time-averaged intensity
auto-correlation function.

2.2. Diffusing wave spectroscopy including light absorption

Recently, a method was developed to circumvent absorption
issues in DWS, deriving a correction to the theory [36]. As

mentioned above, Weitz and Pine first suggested this correc-
tion, although they did not present an actual proof of the
method [32, 33]. They pointed out that absorption exponen-
tially attenuates light paths according to their path length, cut-
ting off the longest paths. Therefore, if P(s) is the path length
distribution in the absence of absorption, the path length dis-
tribution in the presence of absorption must be P(s)exp(−s/la),
as derived from first principles in [36]. Then, equation (1) can
be rewritten as:

g(1)(t) =
∫ ∞

0
P(s) exp

[
−
(

1
3

k2
0

〈
Δr2(t)

〉
+

l∗

la

)
s
l∗

]
ds. (3)

The effect of absorption represents a time delay in the
time axis by l∗/la. As for the conventional DWS, a diffusion
equation for the energy density is necessary to get an ana-
lytical expression for g(1)(t). Therefore, an absorption term
must be included to get the correct path distribution function
of scattered photons. A diffusion equation can be derived
from the radiative transport equation, with an absorption-
independent diffusion coefficient [44], by considering a
nearly isotropic light distribution and assuming that la 	 l∗

[45, 46]. For the transmission geometry, following reference
[36], the equation for the field autocorrelation function is:

g(1)(t) =

(
1+ 4

9 η
2
)

sinh
(

L
l∗ η

)
+ 4

3 η cosh
(

L
l∗ η

)

sinh(α∗η)+ 2
3 η cosh(α∗η)

[
sinh (α∗xa) + 2

3 xa cosh (α∗xa)
]

(
1 + 4

9 x2
a

)
sinh

(
L
l∗ xa

)
+ 4

3 xa cosh
(

L
l∗ xa

) , (4)

where η =
√

3l∗/la and xa =
√

k2
0〈Δr2(t)〉+ η2. Equation

(4) seems to be more complicated than its counterpart with
no absorption. Nevertheless, when la → ∞, we recover the
equation (2). The measured time-averaged light intensity auto-
correlation function g(2)(t) can be related to the electric field
autocorrelation function g(1)(t) through the Siegert relation
[33]. The theoretical ensemble average involved in g(1)(t) can
be switched to a temporal average when ergodic systems are
assessed. In conclusion, when light absorption in the fluid of
interest cannot be neglected, the MSD of the microspheres can
be obtained by numerical inversion of equation (4). However,
there are some technical restrictions. One must guarantee that
9 � L/l∗ � 25 [36, 47], which refers to the number of scat-
tering events in the sample. If the relation L/l∗ is too small,
diffusing light beams decreases; on the contrary, if L/l∗ is large,
the possibility for colloidal particle interactions among them
increases [43]. Besides, it would be convenient that la/l∗ � 30
[36]. It refers to whether the absorption is too much. If it is not
obeyed, light paths can be attenuated more than needed, pro-
ducing a deficiency of scattering events, and consequently, an
absence of diffusing light beams.

2.3. Micro-rheology

The method starts at the standard Langevin description for
a particle immersed in a complex fluid undergoing Brown-
ian motion, modified to include viscoelastic effects, using a
time-dependent memory function, the Maxwellian fluid time-
dependent memory function, which accounts for both energy
loss and storage upon deformation. The MSD of the colloidal
particles can be related to the continuum viscoelastic prop-
erties of the system through the generalized Stokes–Einstein
equation relationship proposed by Mason and Weitz [12, 14,
48] in the Laplace domain:

G̃(z) =
kBT

πaz 〈Δr2(z)〉 , (5)

a is the particle radius, and z is the Laplace frequency. Equiva-
lently, in the Fourier domain, G∗(ω) can be given [14, 48]. For
both formulas, it is assumed: (a) the complex fluid is treated as
a continuum medium around the spherical particle. This argu-
ment is valid when the length scales of the structures giving
rise to the elasticity are much smaller than the particle’s radius.
(b) The Stokes relation for the drag, ζ∗, in the fluid can be
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used to determine a complex viscosity, η∗, (ζ∗(ω)= 6πaη∗(ω))
overall frequencies, which is related to the complex modulus,
η∗(ω) = G∗(ω)/iω. The equation relating the complex modu-
lus of a viscoelastic fluid with the unilateral Fourier transform
(Iu) of the probe particle MSD can be written as:

G∗(ω) =
kBT

πa (iω)Iu {〈Δr2(t)〉} . (6)

Different authors have followed several procedures to deter-
mine the unilateral Fourier transform. One method develops
locally around the frequency of interest using a power law
and evaluating the logarithmic derivative [14]. Here, G′(ω) =
|G∗(ω)|cos(πα(ω)/2), G′′(ω) = |G∗(ω)|sin(πα(ω)/2), and

|G∗(ω)| ≈ kBT
πa 〈Δr2(1/ω)〉Γ(1 + |α(ω)|) , with

α(ω) ≡ d ln
〈
Δr2(t)

〉
d ln t

|t=1/ω. (7)

Another procedure is related to the relation between the
dynamic relaxation modulus G(z) and the dynamic compliance
modulus γ =

∫ t
−∞J(t − t′)σ̇ dt′. J∗(ω) = iω

∫∞
0 J(t) e−iωt dt,

and J∗(ω)G∗(ω) = 1, and therefore equation (5) can be
expressed as [49]:

J(z) =
1

zG(z)
=

[
πa
kBT

]〈
Δr2(z)

〉
, or J(t) =

[
πa
kBT

]〈
Δr2(t)

〉
.

(8)
Thus, from the 〈Δr2(t)〉 data, numerically evaluated data

points (ti, Ji) can be obtained, or J(t) can be obtained by fitting
a model curve to the experimental values of 〈Δr2(t)〉 vs t. For
recovering G∗(ω), the following formula is used [50]:

iω
G∗(ω)

= iωJ(0) + (1 − e−iωt1 )
[J1 − J(0)]

t1
+

e−iωtN

η

+
N∑

k=2

(
Jk − Jk−1

tk − tk−1

)(
e−iωtk−1 − e−iωtk

)
. (9)

One different procedure is to employ z → iω (analytic con-
tinuity) in equation (6), to obtain the real and complex com-
ponents of G∗(ω), where 〈Δr2(t)〉 could be obtained by fit-
ting a model curve to the experimental values of 〈Δr2(t)〉 vs t
obtained from the numerical inversion of the intensity corre-
lation functions. For the case of particles immersed in WLM
solutions, the experimental MSD curves can be best fitted to a
model curve suggested by Bellour et al [51]:

〈
Δr2(t)

〉
= 6δ2(1 − e

−
(

Do
δ2 t

)γ′

)
1
γ′
(

1 +
Dm

δ2
t

)
. (10)

Here, 6δ2 measures the plateau of 〈Δr2(t)〉 vs t curve (a
graph of this curve is in figure 4), Do, and Dm are the dif-
fusion coefficients for particles in the solvent at infinite dilu-
tion and at long times, respectively, and γ ′ is a parameter that
accounts for the broad spectrum of relaxation times at the
plateau. It is common for doing the fittings to leave to δ, Dm,
Do, and γ ′ as free parameters. In this function, we observe

three different motion regimes shared by all micellar solu-
tions reported in the literature, no matter the concentration
or the temperature. At short times, there is a regime where
〈Δr2(t)〉 is almost a linear function of time; 〈Δr2(t)〉 = 6Dot,
where Do is the diffusion coefficient. At intermediate times,
〈Δr2(t)〉 remains constant for a given time interval (a plateau).
Here, the model was built to describe the motion of Brownian
particles harmonically bound around a stationary mean posi-

tion, as a consequence 〈Δr2(t)〉 = 6δ2(1 − e−
(

Do
δ2 t

)
), where

the particle’s amplitude of the motion, the cage size δ, is
related to the elastic modulus Go (δ2 = kBT/6πaGo), which
does not depend on ω. At those intermediate times, particles
are bound to their mean position, on time scales smaller than
the micellar system’s longest characteristic time, τM = ηm/Go

[24]; here, ηm is the long-time viscosity of the system. At the
inflection point, 6δ2 is the value of the mean square displace-
ment. In a WLM fluid, the cage where particles are momen-
tarily trapped fluctuates due to the breaking/reptation process.
Then, at longer times, 〈Δr2(t)〉 is once again a linear func-
tion of time, 〈Δr2(t)〉 = 6Dmt; as a consequence, it was pro-

posed that 〈Δr2(t)〉 = 6δ2(1 − e−
(

Do
δ2 t

)
)
(
1 + Dm

δ2 t
)
. However,

this last expression did not correctly describe the plateau onset
time dynamics because the microspheres’ dynamics exhibit
a vast time relaxation spectrum. This led to including the
parameter γ ′ to give equation (10) [51].

3. Quasi-elastic multiple light scattering
experiments

a. Samples. In these experiments, rectangular optical glass
cuvettes with different optical path lengths, from 1 to 5 mm
(Starna Cells, Inc. or Hellma GmbH & Co.), are used to
place the suspensions to be measured in the scattering exper-
iments where the micellar system and the microspheres are
added. Depending on the experiment, the microspheres can
be functionalized to change their surface’s charge or chem-
istry to make the suspension more stable. They must have a
low polydispersity (Bangs Laboratories), and it is common to
use polystyrene microspheres (∼ 800 nm). The larger the dif-
ference of index of refraction between microspheres and the
solvent, the better. It is a good practice for obtaining the actual
weight concentration to perform thermogravimetric measure-
ments evaporating the solvent with a thermogravimetric ana-
lyzer (TGA, TA Instruments).

b. Diffusing wave spectroscopy. Our DWS setup is a home-
made instrument (see figure 1(a)) [30]. A 514.5 nm laser beam
(1) (Ar+, Spectra-Physics, or Melles Griot) pass through a spa-
tial filter (2), where it is expanded, and subsequently, a large
pupil eliminates the external part of the Gaussian beam to
approximate the beam to a plane wave (4). The beam shines the
sample in a thermally stabilized bath (5) and (6). The scattered
light passes through an achromatic doublet (7) and through a
crossed polarizer (8) to increase the autocorrelation response.
Next, the light is collected by an optical fiber (OZoptics
Inc.) (9) and detected by two photomultipliers (Thorn EMI)
(10). The autocorrelation function is obtained by a Digital
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Figure 1. (a) DWS experimental setup. The branch within the red
dashed frame is used to recover the samples’ optical parameters (l∗,
la, and g). Setup of the integrating sphere to obtain (b) MR and
(c) MT. Laser light is sent to the sample to obtain the reflected or
transmitted light. ∗Corresponds to the location of the sample to be
analyzed.

Correlator (Flex 02-08D/C, USA) in cross-correlation mode,
controlled with a computer (11). For determining the values of
l∗ and la, a mirror (3) is set next to the spatial filter to make use
of the branch framed by a red dashed square in figure 1(a). We
use an integrating sphere (Oriel, Newport) (15) [52]. Between
the mirror and the integrating sphere, we set an optical filter
and two diaphragms (13 and 14), separated at a fixed dis-
tance to obtain the input parameters for IAD. The light signal
is detected by a photomultiplier tube (Hamamatsu Photonics,
Japan) (16), connected to a voltmeter (17). After a numeri-
cal inversion procedure, the IAD method gives l∗, la, and the
anisotropy factor g [36, 37, 53].

c. Inverse adding doubling (IAD) method. To recover the
optical parameters l∗ and la from the suspensions, we fol-
lowed the procedure described in reference [36] using the IAD
method [37–39]. In this method, a general numerical solution
for a radiative transport equation is given through the following
steps: (a) an educated guess for a set of the optical param-
eters is given. (b) The samples’ reflection and transmission
are estimated using the adding doubling method [54, 55]. (c)
Transmittance and reflectance are compared with the exper-
imental measurements. (d) If the match is not good enough,
the set of optical parameters is modified using a minimization
algorithm. The process is iteratively followed until a match
with the experimental measurements is reached. The IAD
method also considers several features experimentally chal-
lenging to assess, such as light lost out of the sample cell edges
and non-linear effects in the integrating sphere measurements.
We followed the experimental considerations and computa-
tional algorithms described in the literature and used the avail-

able open-source code [39, 53]. Collimated transmittance:
a light beam is sent to the integrating sphere that goes first
through an optical attenuator (12, in figure 1(a)) and then to the
sample (black dashed line in figure 1(a)). According to simula-
tion studies [53], diaphragm apertures (r), separations between
the sample and the first diaphragm (d), both diaphragms (D),
and from the second diaphragm to the integrating sphere (d)
are crucial for obtaining proper measurements. Previous stud-
ies showed that for D > 25 cm, the results are good enough;
in our case D = 68 cm. Both diaphragms must be as close as
possible to the sample and the integrating sphere (d = 5 cm).
The aperture should be approximately the same size as the
original profile waist, r = 0.15 cm. Collimated transmittance
is related to the Beer–Lambert law, which determines a log-
arithmic dependence between the collimated transmittance,
MU, of light through the sample, and the attenuation coeffi-
cient times the traveled distance within the sample, MU = Ii/I0

= e−μl, where Ii is the intensity of the light beam with a sam-
ple, and I0 is the intensity of the beam without sample. The
coefficient of attenuation considers the attenuation due to scat-
tering and absorption, namely μ= μs + μa = μs + 1/la. Where
μs = μ′

s/(1 − g) = 1/(l∗(1 − g)). The term μ′
s is named the

reduced scattering coefficient, which is a property incorporat-
ing the scattering coefficientμs and the anisotropy factor g. μ′

s

describes photons’ diffusion in a random walk step size (the
transport mean free path, l∗); each step involves isotropic scat-
tering (considered in the term 1 − g). This equation connects
the mean free path of light with the transport mean free path.
So, g = 〈cos θ〉, with θ the deflection angle due to each scat-
tering event. Reflectance and transmittance: to measure total
reflectance, MR, and total transmittance, MT, of light on and
through the sample, respectively, with the integrating sphere,
we used the equations [39]:

MR ≡ rstd
R
(
rdirect

s , rs
)
− R (0, 0)

R (rstd, rstd) − R (0, 0)
,

MT ≡ T
(
tdirect
s , rs

)
− Tdark

T (0, 0) − Tdark
. (11)

Each term in these equations is measured independently,
according to figures 1(b) and (c), which shows just the ele-
ments within the framed branch of the experimental setup
shown in figure 1(a). We used a diaphragm with an aperture
∼ 4 mm. For reflectance (figure 1(b)), rstd is the reflectance
value of the integrating sphere walls, R(rstd, rstd) is the reflec-
tion measurement for a standard sample, R(rs

direct, rs) is the
reflection measurement for the sample, and R(0, 0) is the mea-
surement of the intensity of light without sample when light is
allowed to go out of the sphere. For transmittance (figure 1(c)),
the sphere’s back wall is never open (light that does not interact
with the sample bounces around in the sphere). T(0, 0) is the
measurement of light intensity when the light strikes inside the
sphere without sample, T(ts

direct, rs) is the transmission mea-
surement through the sample, and Tdark is the measurement of
the intensity of light with the entrance port blocked.
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Figure 2. Beer–Lambert law for the collimated transmittance
experiment of a suspension of polystyrene microspheres
(2a = 800 nm). The red curve is an exponential fit.

Table 1. IAD results compared with Mie theory and
collimated transmittance MU (Beer–Lambert law).

l∗ (mm) la (mm) g

IAD 10.8120 75.2445 0.9116
Mie theory 11.9492 0.9166
MU (fit) 11.2311

4. Typical results from experiments

4.1. Fresnel coefficients and Beer–Lambert law

Usually, quick checks of the collimated transmittance
experiment’s proper operation are done previous to an exper-
imental study: (a) measuring MU, of deionized water in a
cuvette (optical glass). Usually, a difference of around 0.33%
is found from the theoretical value given by the Fresnel coeffi-
cients [55]. (b) The Beer–Lambert law on microsphere water
suspensions (polystyrene, 2a = 800 nm, φ = 0.000 21) can
be evaluated using different optical path lengths. As expected,
an exponential decay is measured with a coefficient of
1/μ= 0.9799 mm. Corrections due to the reflection of light on
cuvette walls and water always have to be done. An example
of these results is presented in figure 2.

Sample’s optical parameters are recovered with the IAD
method, and they were compared with theoretical results given
by Mie scattering [45, 56]. Table 1 shows typical examples
of obtained results. MU (fit) comes from an exponential fit
(figure 2), and the others from an IAD calculation for μ′

s,
μa, and g. These results prove that our measurement methods
are working reasonably well. Theory and experiments were in
good agreement; deviation among them is 9.2% (Mie/IAD),
and 6% (Mie/MU (fit)).

4.2. MSD of microspheres when light absorption is present
As a test of the procedure described above, figure 3 presents
results obtained with DWS for microsphere suspensions where
Indian ink was added (2a = 2 μm, φ = 0.030, l∗ = 150 μm),
to obtain a series of suspensions with different light absorp-
tion by adding successive aliquots, from a stock solution of ink
(multiples 5 μl). At these dilutions, ink does not scatter light.
Figure 3(a) shows the MSDs without any correction coming

directly from the autocorrelation functions (equation (2)) pre-
sented in the inset of figure 3(a). As equation (3) predicted,
the time delay in the autocorrelation functions shifts to longer
times when the amount of ink increases. Artificially, at a partic-
ular time, MSDs are shorter as more ink is added to the suspen-
sion as if they had less diffusivity. As a consequence, longer
times are needed to reach a specific MSD value. The inten-
sity associated with longer paths is attenuated with absorption
until they cannot be detected or correlated. The delay time
in the autocorrelation function might be misinterpreted as a
change in the probes’ colloidal dynamics. The correction given
by equation (4) is employed to overcome this issue, presented
in figure 3(b). All the MSDs almost collapse on one curve,
laying over the MSD of the original particle suspension with-
out ink. A minor deviation to this rule is observed when 30 μl
is added. This is probably because this suspension is slightly
less concentrated than the nominal value due to ink addi-
tion, even though the agreement is satisfactory. A comparison
with previous experiments can be made using figure 3(c). The
MSDs and autocorrelation functions are shown for particles of
2a = 140 nm (l∗ = 250 μm), with different la values, with-
out correction [36]. The shift on the autocorrelation function
is also to longer times, which is more evident due to the parti-
cle diffusivity, which depends on the particle size. These are
either the reasons that contribute to the difference between
figures 3(a) and (c). Small particles diffuse more quickly than
bigger ones, so they present longer MSDs. However, as absorp-
tion increases, MSDs of particles are shorter. The corrected
MSD for the corresponding in figure 3(c) can be found in
figure 3(d).

4.3. MSD of giant micelles without light absorption
Here we will present as examples two micellar systems with
self-assembled WLMs, where light absorption is negligible.
Figure 4 presents typical 〈Δr2(t)〉 spanning over more than
seven orders of magnitude in time curves obtained using
800 nm diameter microspheres dispersed in the micel-
lar solutions. For CTAB/NaSal/water (CCTAB = 0.1 M,
R = [NaSal]/[CTAB] = 1, T = 25 ◦C) the 〈Δr2(t)〉
is presented in figure 4(a), and for TDPS/SDS/brine
(CTDPS = 0.046 M, R = [SDS]/[TDPS] = 0.45, [NaCl]
= 0.5 M, T = 25 ◦C) in figure 4(b). The 〈Δr2(t)〉 curves are
the result of a numerical inversion of equation (1), where the
g(1)(t) came from DWS experiments shown in the insets. In
these figures, we included the best-fit curves to the model
curve proposed by Bellour et al (red lines) described above,
where all the parameters Do, Dm, δ2, and γ ′ can be obtained.
As observed in figure 4, the fittings are quite good.

4.4. MSD of giant micelles with light absorption
Certain diblock copolymers can form WLMs in water solu-
tions, as is the case of 1, 4 poly(1, 3-butadiene)-polyethylene
oxide (PBPEO) diblock copolymer; the degree of polymeriza-
tion m = 37 for the PB block and n = 45 for the PEO block,
Mw = 4000 g mol−1 (2000-b-2000) [28, 58]. Before adding
probe particles to the WLM solutions made of PBPEO, the
optical parameters were determined via the IAD method
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Figure 3. MSDs and correlation functions (a) MSDs for a suspension of microspheres of 2 μm, as a function of added ink without
correction, obtained from correlation functions given in the inset. (b) MSDs of the suspensions presented in (a) corrected for absorption. All
plots almost overlap on the curve for the case with no light absorption. (c) Comparison with a suspension with microspheres of 140 nm [36],
where MSDs are presented as a function of la. Here, la was used instead of the amount of ink added. Inset: correlation functions for the
different values of la. In both insets, the color code is the same as in the main figure. (d) Corrected MSD obtained from the correlation
functions of (c), after ink addition, as a function of la. The extension to longer MSD times in some cases is notorious compared to the case
with no absorption (black dots) [36].

because the PBPEO samples are opaque even at very low con-
centrations, see figure 5. As an example, at a concentration of
1.2 wt% of PBPEO, the recovered values are l∗ = 109.5 mm,
la = 59.2 mm, and g = 0.8954. They were obtained with a
cuvette of an optical path length of 5 mm. According to these
results, in this sample, light is significantly absorbed before
it becomes random. However, it is possible to make DWS
experiments with a small contribution of scattered light.

As a test for our procedure to treat light absorption, we
artificially increased even more the micellar solution’s absorp-
tion by adding Indian ink in the same way described above. A
series of suspensions with different light absorption levels was
prepared by adding successive aliquots from a stock ink solu-
tion (multiples 5 μl). Figures 6 and 7 present the results for
two micellar solutions (1.5 wt% and 2 wt%) with suspended
microspheres of 2a = 2 μm at φ = 0.030.

The correction for absorption is significant in all cases. The
results are quite satisfactory because they lay over a single
curve after employing the correction. An exception occurs at
longer times, where a deviation from the expected value shows
up for all the cases. This is due to a lack of data at long corre-
lation times. 900 s of data collection is not sufficient to obtain
good quality data at these stages; however, in this particular
case, the system’s nature does not permit measurements for

longer times: probe particles precipitate easily due to their size
and the low PBPEO solution viscosity (<1 Pa s). It is often
possible to observe a feature in the corrected MSD vs t curves;
they can reach longer times when ink is added, independently
from the lack of data at longer times in the case of PBPEO sus-
pensions. As the correlation function is moved to longer times
due to the contribution of la values in the factor l∗/la on the
equation (3), the tail of g(1)(t) goes not so fast to zero, permit-
ting to extend the MSDs numerical calculations. This effect
can be observed in 140 nm microspheres in figure 3(d) from
data in reference [36]; this extension effect is apparent once
the correction for absorption is done. The degree of extension
is still a question to answer, and further experiments should be
performed.

Figures 8(a) and (b) present a plot of l∗ vs la for four PBPEO
concentrations to determine where our measurements are valid
within the diffusion approximation. l∗ values are essentially
constant. The same sample was used for each ink addition,
so particle fill fractions were not recalculated because the
change was very small. The figure’s dashed line corresponds to
l∗ = 150 μm, which is a prediction from Mie’s theory for the
scattering coefficient [45] computed for that particle size and
volume fraction estimates for polystyrene particles in water.
This value varies from experimental ones, possibly due to
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Figure 4. A typical 〈Δr2(t)〉 curve obtained in a DWS experiment
in WLM solutions using microspheres of a diameter of 800 nm of
the systems (a) CTAB/NaSal/water, parameters of the fitting curve:
6δ2 = 49.9 nm2, Dm = 20.11 × 10−17 m2 s−1, and γ ′ = 0.26.
Reprinted with permission by Springer Nature Customer Service
Centre GmbH: [Springer Nature] [The European Physical Journal]
[30]. (b) TDPS/SDS/brine, parameters of the fitting curve: 6δ2 =
351 nm2, Dm = 1.67 × 10−17 m2 s−1, and γ ′ = 0.274. Reprinted
with permission from [57]. Copyright 2010 American Chemical
Society. Insets correspond to the intensity time correlation function
for the same solution. We included the best-fit curves to the model
curve proposed by Bellour et al [51] (red lines).

particles’ sedimentation, which is relatively fast in samples
with low viscosity, as mentioned before. Error bars represent
the maximum and minimum l∗ measured values before and
after DWS experiments that are attributed to particle sedimen-
tation. Figure 8(c) shows a plot of L/l∗ vs la/l∗. The cross-
hatched region in this plot is the allowed one where the dif-
fusion approximation of light is valid, i.e., 9 � L/l∗ � 25 and
la/l∗ � 30. In all cases, the diffusion approximation is achieved.

4.5. From the MSD to the viscoelastic moduli
As mentioned above, there are different procedures to deter-
mine the viscoelastic modulus. Here, we discuss three of
them to give a clear idea of the results they produce. In the
first one, equation (6) is used with the logarithmic deriva-
tive, equation (7). In the second one, J(t) is evaluated through
equation (8), and G∗(ω) is computed using equation (9). In
the third method, the unilateral Fourier transform is performed

Figure 5. PBPEO WLM samples at concentrations of 1.2 wt% are
not transparent.

on the best fits of the Bellour et al model described above to
the 〈Δr2(t)〉 experimental curves, as indicated in equation (6).
Figure 9 presents the moduli obtained for two different WLM
solutions using the three mentioned procedures applied to the
typical experimental MSD presented in figure 4. The results of
mechanical rheology were included for comparison. All meth-
ods, most of the time, follow the same trend. However, the
two first methods are pretty noisy, particularly after the cross-
ing. This is not the case when the Bellour et al model is used.
Noise is quite damaging either around the minimum in G′′(ω)
because it determines the value of le/LC, and at high frequen-
cies where the frequencyωo is obtained through a slope change
in |G∗(ω)| that allows us to estimate lp. The origin of that
noise is apparently because the 〈Δr2(t)〉 experimental curves
are not analog functions; they are couples of series of num-
bers (〈Δr2(t)〉, ti), coming from the correlation functions given
by a digital correlator through equation (2). Using the Bellour
et al method from the beginning produces an analogic func-
tion, which avoids noise propagation and correctly extends the
MSD data close to short and long times, where the correlation
function could be noisy. We conclude that for estimating the
characteristic lengths of the WLM network, the use of the best
fits of the Bellour et al model to the experimental data is more
reliable.

4.6. Viscoelastic spectra for giant cylindrical micelles
without light absorption

The viscoelastic spectra for the WLM solutions that we will
describe here were obtained applying a Laplace transform
using z → iω (analytic continuity) in equation (6) to obtain
the real and complex components of G∗(ω), where 〈Δr2(t)〉,
as explained above, was obtained by best fitting a model
curve to the experimental values of 〈Δr2(t)〉 vs t. Exam-
ples of results for two different systems (CTAB/NaSal/water
and TDPS/SDS/brine) are shown in figure 10, where the
elastic and viscous moduli are presented as a function of
the frequency [30, 57]. The same kind of data is also pre-
sented, at low and intermediate frequencies, determined with
a mechanical rheometer. The agreement between the moduli
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Figure 6. Results for WLM solutions made of PBPEO at 1.5 wt%
as a function of added ink. (a) MSD for the correlation functions
given in the inset, when no correction for absorption is used.
(b) MSD for the examples presented in (a), including the correction
for absorption.

obtained by mechanical rheometry and DWS is quite well, at
low and intermediate frequencies, where the behavior of the
fluids is Maxwellian (a Cole–Cole plot can show this eas-
ily) [30, 59]. Here, stress relaxation occurs mainly through
micellar reptation and micellar breaking and recombination;
as a consequence, a single relaxation time dominates. The
plateau modulus and the relaxation time are obtained from
the first crossover. DWS micro-rheology reaches a bandwidth
far beyond the conventional rheometry, allowing us to observe
two crossovers in G∗(ω). Probe size and solvent inertial effects
are negligible below frequencies of ω = 106 rad s−1. At time
scales shorter than those of WLM breakage time, which occurs
at high frequencies, the Maxwellian stress relaxation pro-
cesses are essentially frozen, and micelles can be considered as
semiflexible chains. Stress relaxes through intramicellar pro-
cesses: first, it is dominated by the Rouse–Zimm modes and
then by the internal relaxation of individual Kuhn segments.
In this frequency range, G∗ exhibits a power-law behavior,
G∗ ∼ ων , with the exponent ν ∼ 5/9 in the Rouse–Zimm
regime which switches to ν ∼ 3/4, where internal bending
modes of Kuhn segments dominate. This change occurs at
a frequency ωo corresponding to the shortest relaxation time

Figure 7. Results for solutions made of PBPEO at 2 wt% as a
function of added ink. (a) MSD for the correlation functions given in
the inset, when no correction for absorption is used. (b) MSD for the
examples presented in (a), including the correction for absorption.

in the Rouse–Zimm spectrum. This feature can be observed
in the inset of figure 10(b). Another important feature to be
pointed out is related to the local minimum of G′′(ω) after
the first crossing between G′(ω) and G′′(ω) denoted by G′′

min.
This is usually better defined in DWS micro-rheology than in
mechanical rheometry and will be important for estimating the
characteristic lengths of the WLMs in the solution, as shown
below.

4.7. Viscoelastic spectra for giant cylindrical micelles with
light absorption

We previously discussed the absorption in PBPEO WLMs; the
resulting G′(ω) and G′′(ω) coming from MSDs are described
in reference [58]. Now, we will discuss a different class of sys-
tems. Several WLM solutions have been reported with the abil-
ity to respond to external stimuli when specific molecules are
incorporated within the micelles. These stimuli can be a tem-
perature change, light irradiation, pH variations, etc, and they
can generate a structural change in the system. For example,
azobenzene derivatives are photoswitchable molecules pre-
senting a trans-cis isomerization when they are UV-irradiated.
When incorporated into the micelles, UV irradiation can break
them, and the rheological properties can be drastically mod-
ified in some cases. These systems, called smart materials,
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Figure 8. Variation of l∗ vs la for four micellar solutions of PBPEO. (a) 1 wt%. It also indicates the quantities of ink added with the same
code of colors as in previous figures. (b) 1.5 wt%, 1.7 wt%, and 2 wt%. Horizontal dashed lines refer to Mie’s theory predicted value of
l∗ = 150 μm. Error bars include the maximum and minimum of each measured value of l∗. (c) Variation of L/l∗ vs la/l∗. The cross-hatched
area is where L/l∗ and la/l∗ are valid in the diffusion approximation. The vertical dashed line is placed at la/l∗ = 30.

Figure 9. Typical G′(ω) and G′′(ω) obtained for two WLM solutions
(a) CTAB/NaSal/water (CCTAB = 0.1 M, R = 2, at 22 ◦C) and
(b) TDPS/SDS/brine (CTDPS = 0.046 M, R = 0.45, CNaCl = 0.5 M,
T = 25 ◦C) using microspheres of a diameter of 800 nm. They were
obtained from the MSD of figure 4 with three procedures:
equation (6) in conjunction with the logarithmic derivative; J(t)
evaluated through equation (8), and G∗(ω) evaluated using
equation (9); the unilateral Fourier transform is performed on the
best fits to the Bellour et al model to the 〈Δr2(t)〉 experimental
curves, through equation (6). Moduli obtained from mechanical
rheometric measurements were included for comparison.

can be used in different material science applications and
are of much interest [60]. Here, we will present WLM solu-
tions where a small chromophore, 4-(phenylazo)benzoate ion
(AzoCOO−) is added [61, 62]. The main challenge to get infor-
mation with DWS in these micellar solutions is the high light
absorption of azo compounds. UV–Vis experiments reveal a
significant absorption contribution in these compounds around
514 nm, which is in the range of the laser’s wavelength used
in DWS experiments. A measurement employing the IAD
method for a sample of only AzoCOO− at 20 mM concentra-
tion without colloidal microspheres gives an idea of the aro-
matic molecules’ absorption strength. The optical path length
was varied with cuvettes of different widths. Scattering events
were negligible, but la = 2.33 mm remained on the average.
Figure 11 presents MU vs the optical path length, showing an
exponential decay that agrees with the Beer–Lambert law; 1/μ
= 2.3 ± 0.1 mm.

Following the procedures described above, to pre-
pare DWS experiments, table 2 summarizes the optical
parameters obtained from the micellar solutions of
CTAB/NaSal/AzoCOO− when probe functionalized micro-
spheres were added (2a = 800 nm, amine-functionalized,
φ = 0.035). However, at higher AzoCOO− concentration,
it was impossible to perform collimated transmittance mea-
surements because of the large amount of absorbed light
due to the chromophore. We also added NaCl to the WLM
solution, TDPS/SDS/NaCl/AzoCOO−, which would increase
the micellar total contour length. The results are similar
to those of CTAB/NaSal/AzoCOO− (see table 3). In both
micellar solutions, the values of L/l∗ provide sufficiently
l∗ steps for light beams to assure multiscattering events.
Although for many solutions la/l∗ � 30, these values were
not sufficiently high as recommended in a few cases. It
was possible to measure the correlation functions assur-
ing the diffusion regime of light. We will comment on it
later.

Figure 12(a) shows g(1)(t) vs t curves for microemul-
sions of CTAB/NaSal/AzoCOO− at different AzoCOO−

concentrations, and the inset presents the same sort of
curves for the TDPS/SDS/NaCl/AzoCOO−. Figure 12(b)
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Figure 10. Viscoelastic spectra of the same solutions from figure 4
for (a) CTAB/NaSal/water for different R values and at the same
temperature. Reprinted with permission by Springer Nature
Customer Service Centre GmbH: Springer Nature. The European
Physical Journal. [30]. Red colored symbols correspond to data
obtained using mechanical rheometry. (b) TDPS/SDS/brine shows
the key points to determine the characteristic lengths of the WLM
network. Reprinted with permission from [57]. Copyright 2010
American Chemical Society. Full circles are the data from
mechanical rheometry (blue G′(ω), red G′′(ω)), and lines represent
the best fit to a Maxwell fluid model. The inset shows G∗ ∼ ων at
high frequencies; here, ν in the power-law changes from 5/9 to 3/4.

Table 2. Optical parameters calculated using the IAD method.
The values correspond to all different CTAB/NaSal/AzoCOO−

samples studied.

AzoCOO− 0 5 mM 10 Mm 15 mM

la (mm) 31.070 5.7700 2.8100 2.5200
L/l∗ 14.780 17.250 13.250 13.180
la/l∗ 404.04 39.780 14.890 13.260

shows the MSDs vs t curves corrected for absorption
of CTAB/NaSal/AzoCOO− and in the inset, the case
of TDPS/SDS/NaCl/AzoCOO−. In both micellar solutions,
g(1)(t) curves are surely shifted to longer times due to light

Figure 11. Collimated transmittance measurements in a solution of
AzoCOO− (20 mM) without added microspheres. Various cuvettes
with different optical path lengths were used in these experiments.
The red curve is an exponential fit. The fit confirms that the
decaying effect is just due to light absorption. The AzoCOO− does
not scatter visible light.

Table 3. Optical parameters calculated using the IAD method.
The values correspond to all different
TDPS/SDS/NaCl/AzoCOO− samples studied.

AzoCOO− 0 5 mM 10 mM

la (mm) 159.95 5.2200 2.6600
L/l∗ 16.270 19.720 14.830
la/l∗ 1041.3 41.180 15.750

absorption as the AzoCOO− concentration increases. How-
ever, the addition of chromophore also modifies the micellar
structure, which is the ultimate information pursued by the
experimentalist interested in the solutions’ physicochemical
properties, not in light absorption. g(1)(t) curves look different
as the AzoCOO− concentration increases due to the system’s
mentioned structural changes. The changes are more evident in
the corrected MSDs vs t plots. When AzoCOO− is not added,
the autocorrelation functions present two-time decays; the sec-
ond one appears to be quite delayed with respect to the first
decay. In contrast, when the chromophore is added, the time
decays are not so separated. This feature can be interpreted as
a sign of different relaxation time scales due to tubular struc-
tures with different length scales in the micellar solution. As it
can be observed in these figures, as the AzoCOO− concentra-
tion increases, it was possible to obtain an intensity correlation
function, despite the fact that la/l∗ � 30 is not strictly obeyed.
However, at short times, these functions present noise, which
is translated to the MSDs.

Figure 13 presents the viscoelastic spectra for the
micellar solutions of CTAB/NaSal, and in figure 14 for
TDPS/SDS/NaCl; in both cases, varying concentrations of
AzoCOO−. We included the moduli obtained with micro-
rheology covering a broad range of frequencies (more than
seven orders of magnitude). For comparison, we also included
the moduli at low and medium frequencies obtained by
mechanical rheology. The black lines are fittings of the
Maxwell model at low and intermediate frequencies. The
crossing points provide the Go values and relaxation times.
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Figure 12. Results in two micellar systems: (a) g(1)(t) vs t for the
micellar solutions of CTAB/NaSal where AzoCOO− was added.
Inset: g(1)(t) curves for micellar solutions of
TDPS/SDS/NaCl/AzoCOO−. (b) The corresponding MSD vs t plots
for (a). Inset: the same plots for TDPS/SDS/NaCl/AzoCOO−

microemulsions for the correlation functions in the inset of (b). The
color code is the same as in the main figure. Black lines correspond
to the Bellour et al model fittings. Reprinted with permission from
[61]. Copyright 2019 American Chemical Society. Reprinted from
[62], Copyright 2021, with permission from Elsevier.

The viscoelastic spectra coming from DWS and mechanical
rheology are quite similar for the micellar solutions. However,
sometimes, the former ones are displaced to higher frequencies
with respect to the latter ones. This is evident at the crossing
between G′(ω) and G′′(ω). Nevertheless, Go values obtained
from both kinds of measurements are almost the same. The
major difference occurs in the relaxation times. In those cases,
the measured relaxation times with DWS give shorter values
due to the frequency displacement. These features cannot be
attributable to light absorption corrections because they are
observed in some DWS experiments of transparent fluids, as
in the examples without chromophore given in figures 13(a)
and 14. In previous experiments, it has been pointed out that
for relaxation times < 10 s, the deviation between both meth-
ods is more significant (∼ one order of magnitude) [57]. It
was suggested that hydrotrope salt ions in the solution could
be responsible for this deviation [63]. Here, the chromophore

Figure 13. Viscoelastic spectra of micellar solutions of
CTAB/NaSal with different concentrations of AzoCOO− obtained
by micro-rheology (squares) where we used MSDs corrected for
light absorption (main and corresponding inset plots). For
comparison, results of mechanical rheology are included (circles).
Black lines are fittings to the Maxwell model for the mechanical
rheology. Full symbols are the storage moduli, and open symbols
are the loss moduli, independently of the plot color. Reprinted with
permission from [61]. Copyright 2019 American Chemical Society.

is playing this role. However, this suggestion is not supported
by experimental work. Quite recently [49], possible problems
of numerical nature using analytical continuation have been
reported, going from the Laplace transform of the relaxation
modulus to the frequency domain dynamic moduli. However,
as we analyzed above, it seems not to be the case. Neverthe-
less, we can not discard that residual effects of the MSD fitting
could produce small deviations in G′(ω) and G′′(ω) obtained
by our procedure. Curiously in figure 13(b), for the CTAB
and NaSal at 15 mM AzoCOO−, DWS and mechanical spec-
tra are very close. The more substantial discrepancy occurs
when AzoCOO− is concentrated at 5 mM (inset figure 13(a))
and 10 mM (inset of figure 13(b)). In the case of the
micellar solutions of TDPS/SDS/NaCl/AzoCOO−, the same
features were observed (figure 14). Finally, it has been sug-
gested that the real and imaginary parts of G∗(ω), which are
determined in a mechanical oscillatory shear experiment from
the amplitude and phase shift of the response signal, are much
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Figure 14. Viscoelastic spectra for microemulsions of
TDPS/SDS/NaCl with different concentrations of AzoCOO−,
obtained by micro-rheology (squares). Here we used MSDs
corrected for light absorption (main and corresponding inset plots).
For comparison, results of mechanical rheology are included
(circles). Black lines are fittings to the Maxwell model for the
mechanical rheology. Full symbols are the storage moduli, and open
symbols are the loss moduli, independently of the plot color.
Reprinted from [62], Copyright 2021, with permission from
Elsevier.

more accurate than those of DWS, where the MSD is measured
in time-space.

5. Typical mesoscopic scales in giant cylindrical
micelles

As mentioned in the introduction, at high frequencies, G∗(ω)
exhibits a power-law behavior, |G∗| ∼ ων , where an exponent
change occurs at ωo due to a change in the dominant modes of
relaxation. From ωo, which is observed as a slope change in
|G∗(ω)|, lp can be obtained, and with this data, all other length
scales of the network formed by the WLMs can be computed,
namely, LC, le, and ξ. In micellar solutions that absorb light,
we can access this information because we are able to obtain
the complex modulus at high frequencies implementing the
absorption correction.

The ability to reach high frequencies makes micro-rheology
a complementary alternative to standard static scattering tech-
niques to obtain structural information of cylindrical micelles
embedded in a fluid. DWS results allow us to have G∗(ω) at
high frequencies. These quantities change when the amount
of surfactant, the ratio of hydrotrope salt to surfactant, tem-
perature, or ionic strength of the media vary. It is essential to
mention that theory developed for WLMs is far from being
complete. Over the last decade, several small but significant
changes have been made to the original formulas developed to
estimate these characteristic lengths [11, 25–27].

In figure 15(a), data obtained from [30], show how the
characteristic lengths vary for the system CTAB/NaSal as
we vary the R = [NaSal]/[CTAB] as well as the tempera-

ture. The characteristic lengths were corrected to take into
account the improvements in the way to calculate them using
the formulas given in the introduction [11, 25–27]. As we can
observe, lp, le, and ξ are quite insensible to variations of R
and temperature. On the contrary, LC is quite sensible; these
WLMs are extremely large, and their contour length can vary
more than one order of magnitude varying R. Although the
temperature is varied in a very short range, it is pretty evi-
dent that as temperature increases, LC decreases. The ratio of
LC/le also decreases with the temperature, explaining why the
lower temperature corresponds to a larger viscosity. Entangle-
ment decreases on increasing temperature, which also explains
why in this micellar solution, the elasticity number (ratio of
Wi number, Wi = γ̇τ over the Reynolds number) measured
in Couette flow decreases when increasing temperature. The
upper panel of figure 15(b) presents LC as a function of the
azo compound, which was added to be incorporated into the
WLMs of the mentioned systems: TDPS/SDS/NaCl [62] and
CTAB/NaSal/NaCl [61]. LC decreases exponentially with the
increase of AzoCOO− concentration in CTAB/NaSal/NaCl.
However, in TDPS/SDS/NaCl, LC increases to a maximum
at [AzoCOO−] ∼ 5 mM. For 10 mM, LC reaches the same
value as the original micellar solution without chromophore.
The lower panel of figure 15(b) presents le, lp, and mesh size ξ
as a function of the azo concentration for the micellar solu-
tion TDPS/SDS/NaCl. lp and ξ almost do not significantly
change with the increment of the AzoCOO− concentration,
but le decreases. The ratio LC/le increases in samples when the
chromophore is added, compared to the micellar solution with-
out chromophore; for [AzoCOO-] = 0, 5, and 10 mM; LC/le
= 14.4, 62.5, and 20.3, respectively. There is more entangle-
ment per average micelle, which could be one of the reasons to
have an increase in viscosity at low γ̇ in the samples increas-
ing the AzoCOO− concentration [62]. A larger entanglement
hampers flow in micellar solutions with added chromophore in
comparison with the micellar solutions without chromophore.
Figure 15(c) shows how LC increases as the ionic strength in
the solution increases by adding NaCl, as described in [57].
As the ionic strength of the media increases, the micelles are
discharged, and there is an increase in their scission energy,
which promotes a linear growth of the WLMs. Although, after
a maximum, there is a decrease in LC. Also, in this system, LC

is shorter as the temperature increases for the same quantity of
added salt, and LC also grows with the increase of the zwitte-
rionic surfactant concentration, Cz, following a power-law LC

∼ Cz
β [57]. Surprisingly, there is no significant variation of

lp, le, and ξ with salt concentration and temperature changes;
only le presents a slight decrease as the temperature increases.
WLMs of diblock copolymers have also been studied with the
procedure described here. In the system made of WLMs of
a PB-PEO [58], lp has been obtained, and it was shown that
the interaction between WLMs sensibly modifies lp, since it
increases as the concentration decreases close to C∗, giving
values close to those of SANS measurements (0.5 wt% ∼ lp
= 225 nm). The explanation of this behavior was given in
reference [58].
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Figure 15. Characteristic lengths in WLM solutions. Lengths were recalculated from the original reports to take into account the changes in
the formulas for calculating them, as given in the introduction. (a) CTAB/NaSal: R = [NaSal]/[CTAB], [CTAB] = 0.1 M from [30].
Numbers to the right of the symbols indicate temperature in ◦C. (b) Upper panel: LC vs [AzoCOO−] for two systems at 25 ◦C and pH = 12:
TDPS/SDS/NaCl (R = [SDS]/[TDPS] = 0.55, [TDPS] = 46 mM) and CTAB/NaSal/NaCl (R = [NaSal]/[CTAB] = 0.5, [CTAB] = 80 mM)
in both cases as a function of the added azo compound [61, 62]. Lower panel: le, lp and ξ vs [AzoCOO−] for TDPS/SDS/NaCl (R =
[SDS]/[TDPS] = 0.55, [TDPS] = 46 mM) [62]. (c) LC as function of brine concentration at different temperatures for TDPS/SDS/NaCl (R
= [SDS]/[TDPS] = 0.55, [TDPS] = 46 mM). In all figures, lines are guides to the eye.

6. Conclusions

The whole procedure for determining the mesoscopic scales
in micellar solutions embedded with giant cylindrical micelles
was presented performing quasi-elastic multiple light scatter-
ing experiments. In particular, we discussed how the scatter-
ing experiments were conducted with DWS, how to solve the
problems of recovering the optical parameters from micellar
solutions implementing the IAD method, which are indispens-
able in developing measurements with this spectroscopy, and
how to treat the absorption in the case micellar solutions also
absorb light. The capacity for reaching G∗(ω) at high frequen-
cies makes micro-rheology complementary to standard scat-
tering techniques for obtaining structural information in a fluid
with embedded cylindrical micelles. G∗(ω) allows us to esti-
mate the important characteristic lengths of the WLM network
as LC, lp, le, and ξ, which determine the dynamical behavior in
these systems employing approximate relations coming from
WLM theory. These mesoscopic characteristic lengths depend
on the solution’s physicochemical parameters, and we showed
that these lengths could be helpful to understand the rheolog-
ical behavior of WLM solutions. This is an available tool for
getting a different perspective of what is occurring in solutions
made of giant micelles providing a helpful physical insight not
available with other techniques.
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