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ABSTRACT
A colloidal particle undergoing Brownian motion and interacting with macromolecular structures
embedded in complex fluids usually presents adiffusion regimeat short times,with adiffusion coeffi-
cient related to theviscosityof thehost solvent, andan intermediate regimewhere themean squared
displacement is found to be almost constant. This effect is attributed to the particle confinement in
a cage formed by the surrounding complex fluid that hinders the motion of the tracer particle. An
anomalous smooth transition that may span several decades usually characterises such a short-to-
intermediate transition. In this work, this transition was studied using 1D, 2D, and 3D randomwalker
simulations, finding that the origin of the smooth transition is a wide distribution of confining cages
and the corresponding ensemble-averaged 3D mean squared displacement over all confined parti-
cles. Thewider the cage distribution, the smoother the transition. Our results give the physical origin
of the smooth transition, usually only discussed in terms of a distribution of relaxation times.
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1. Introduction

The Brownianmotion of amicrometer particle in a New-
tonian liquid, i.e. a memoryless, and isotropic solvent is
diffusive. This means that the Mean Squared Displace-
ment (MSD) grows linearly in time, with a diffusion coef-
ficient that depends on the temperature, particle size, and
solvent viscosity [1]. A different scenario is found when
the host solvent is embeddedwithmacromolecular struc-
tures, usually formed by the self-assembly of molecules
in liquid solvents [2]. Due to the different length scales
that present a complex fluid, the Brownian motion also
shows time regimes associated with the interaction of
the particle with the structures [3,4]. Usually, the particle
samples the host solvent at short times, giving a diffusive
regime. Afterward, there is a subdiffusive regime, which

CONTACT Erick Sarmiento-Gómez esarmiento@fisica.ugto.mx Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de
Guanajuato, León, Guanajuato, México

is caused by hindering the motion as the particle inter-
acts with the self-assembled structure. The subdiffusive
exponent decreases as the structure is more compact
and interconnected, even giving an extended plateau for
cross-linked polymers and worm-like micelles formed
by surfactant self-assembly [5–8]. For particles interact-
ing with wormlike micelles in the so-called semi-dilute
regime, the plateau regime extends for several decades up
to a second linear regime, associated with the thermally
activated process of breaking off the micelles, relaxing
the stress, and as a consequence releasing the particle
from the cage [5,9,10]. In all cases, the dynamics at long
times is associated with more extended structures in the
solution and characterised by an effective viscosity that
corresponds to the zero-shear viscosity [3].
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As the Brownian motion is affected by the interac-
tion of the particle with structures of different charac-
teristic lengths of the complex fluid, it is expected that
additional information can be extracted from its MSD.
An excellent example of this correlation is the technique
called microrheology, where a generalised Langevin
equation is used to provide a relation between the Laplace
transform of theMSD of tracer particles and the complex
modulus, i.e. the Fourier transform of the memory func-
tion of a step strain, thus characterising the response of
the solution to a harmonic deformation [11]. This rela-
tion assumes that the local viscoelastic modulus around
the particle is the same as the macroscopic viscoelastic
modulus and that the Stokes relation is valid for all fre-
quencies, thus, a homogeneousmedia around the particle
is required. This approximation holds when the main
lengths of the complex fluids are smaller than the par-
ticle size and only excluded volume interaction between
particles and structures is present [12].

Microrheological techniques are now widely used
to characterise the structure of complex fluids. As the
probe used to sample the system is smaller than in
mechanical rheometry, and considering rapid-response
detection schemes such as photomultipliers in dynamic
light scattering, microrheology usually is able to reach a
broader range of frequencies, only limited by the iner-
tia of the particle [3,13]. This opens the possibility of
estimating the main characteristic lengths of the com-
plex fluids, such as the persistence length, the mesh
size, and the contour length, among others, from the
high-frequency viscoelastic spectra. An excellent exam-
ple of this realisation is the estimation of the character-
istic lengths in wormlike solutions [14–17]. An inter-
esting and common feature found in most of the sys-
tems studied using microrheology is a smooth tran-
sition from the short time regime of the MSD to a
plateau, sometimes ranging several decades in time. This
is usually associated with a broad spectrum of relaxation
times, however, the origin of this feature in terms of the
dynamics of the Brownian particle is still missing in the
literature [10].

Interestingly, the dynamic scenario found in micro-
rheological experiments of tracer particles embedded in
complex fluids is also found in the colloidal glass tran-
sition, i.e. a short-time diffusion associated with small
motion of colloids within the cage induced by their
neighbouring particles, an intermediate regime indica-
tive of particles being trapped in cage, and a long time
diffusion relatedwith the release of the particle from their
cages due to a rearrangement of the particles [18,19].

Several approaches for simulating the Brownian
motion have been developed during the last century

[1,20–22]. Among others, Brownian dynamics is particu-
larly important as it represents a solution to the Langevin
equation in the overdamped regime and can even include
hydrodynamic interactions, i.e. solvent-mediated inter-
actions [23]. In this method, a typical particle trajectory
is simulated using the forces acting on the particle, and
a stochastic variable is selected to fulfill the fluctuation-
dissipation theorem: the computational cost is its main
drawback [23]. On the other hand, a random walker
simulation is computationally less expensive, and it can
mimic most of the main properties of diffusive motion,
such as a linearMSDand theGaussian vanHove function
self-part [24]. For this type of simulation, the step size
and the time between two consecutive times are selected
with simpler rules compared with a Brownian dynamics
simulation, designed to give diffusive dynamics. Several
applications of the random walker simulation can be
found in the literature, such as in the structure of the
networks in areas of sports, music, nonlinear dynamics,
and stochastic chemical kinetics [25], in fields of com-
puter science, physics, chemistry, biology [26] and also,
recently it has been used inmodels that evaluate the effec-
tiveness of drugs that combat coronavirus [27]. In par-
ticular, to model diffusive phenomena, it was found that
a confining region where the walker is unable to escape
gives a two-stage mean squared displacement: a linear
regime at short times followed by a plateau that extends
to larger times showing the same features of microrhe-
ological experiments, but without a long time, diffusive
regime because particle is unable to escape from the con-
fining region. Despite this similarity in the short-time
to the cage transition, in the random walker simulation,
such transition is sharp and can be fitted using the solu-
tion to the Langevin equation of a particle in a parabolic
potential [28].

In this work, the short-to-intermediate transition was
studied using randomwalker 1D, 2D, and 3D simulations
in an ensemble of cages of different sizes. This simulates
the process found inmicrorheology, where all particles lie
in different mesh sizes, and an ensemble-averaged mean
squared displacement is usually measured. This more
realistic confinementmethod gives a smoother transition
from the diffusive to the cage regime as the distribution
of cage sizes becomes wider. The 1D simulation results
are employed to illustrate the method used, while the 3D
results were compared with experimental results. These
outcomes point out that the physical origin of the smooth
transition and quantify the transition’s evolution depend-
ing on the width of the distribution of cage sizes. The 2D
simulations results were not reported, but were used to
study 2D cage distributions and are consistent with the
general conclusions.
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2. Randomwalker simulation

The main features of the random walker simulation used
in this work are widely known [24,28] and have been
explained in a previous publication [28]. Briefly, the sim-
ulation resembles a Brownian dynamic (BD) simulation,
stochastically determining the position of a particle at
time t + �t from the position at t. In a BD simula-
tion, the method used to determine the next step is
based on the solution of the Langevin equation proposed
by Ermak and McCammon [23] designed to fulfil the
so-called fluctuation-dissipation theorem. In a random
walker simulation, as in our case, the step size between
two times, l, is chosen from a flat probability distribution,
P(l), whose width is selected to mimic a particular diffu-
sion coefficient with the selection of time step τ , giving a
short-time diffusion coefficient D = 〈l2〉/2τ , where 〈l2〉
is the second moment of P(l) [24]. Despite the experi-
mental distribution is Gaussian, for the sake of simplicity,
in our case P(l) was selected to be constant within the
interval [−0.25, 0.25] in arbitrary units, now referred to
as microns, which separated a time τ = 0.1 s, produces
a MSD with a diffusion coefficient of 0.21µm2/s, close
to the experimental value of a colloidal suspension of
2.8µm confined between glass plates undergoing a quasi
2Dmotion. It is important to note that this value is lower
than the bulk value predicted using the Stokes-Einstein
relation because particles interact with the glass plates
that confine the system, hindering its motion and reduc-
ing the diffusion coefficient [29]. As previously shown,
the flat distribution evolves to a Gaussian distribution
after a few time steps, becoming dynamically equiva-
lent to the experiments [28]. In this scheme, external
forces are complex to introduce without a bias on the
step selection, but a simple confining condition can be
used to restrict the motion in a desired region, which
resembles most of the properties of a parabolic confin-
ing potential [24]. Interestingly the evolution of the van
Hove function self-part for a free random walker, which
gives the distribution probability of finding a particle at
x, at time t, when the particle is initially located at x=0,
produces a Normal distribution after a few time steps, a
direct consequence of the central limit theorem. Thus the
random walker is dynamically equivalent to more com-
plex BD simulations, and experimental values result after
a few time steps.

As mentioned above, the random walker is based only
on probabilistic rules; thus, a trapping potential cannot
be included directly. Instead, confinement is introduced
as rules that hinder the particle’s escape from a given
region or cage. This work, compares three different con-
fining methods to contrast their properties and select the
most suitable confining condition for our problem.Wait-
ingmethod (a): if the next step selected from the step size

distribution is out of the cage, the walker will remain at
the boundary until a step moves the walker backward.
Reflecting method (b): if the next step selected from the
step size distribution gives a position out of the cage, such
step is performed in the opposite direction, effectively
reflecting the particle back to the cage. Bouncingmethod
(c): if the next step selected from the step size distribution
is out of the cage, particles will move toward the bound-
ary, and the remaining step length, which would come
out, is performed in the opposite direction, effectively
returning to the cage.

The 1D, 2D, and 3D simulations were performed in
an ensemble of cages with no correlation between the
size selection of their sides. The size z of the confining
region was randomly selected using two distributions: a
Normal distribution zN, generated using the Box-Muller
transformation [30]

zN = μ + σ χ , (1)

where μ, σ are the mean and the standard deviation,
respectively, and

χ =
√

−2 ln(ε1) sin(2πε2), (2)

with ε1, ε2 two pseudo-random numbers uniformly dis-
tributed in the interval [0, 1]. χ is the inverse transfor-
mation of our original independent variables ε1 and ε2,
which results is a randomvariablewith a standardnormal
distribution [31]. Additionally, a Log Normal distribu-
tion zLN (LN) was also used to determine the size of
the confining region. It was found that this distribution
fits the mesh size distribution in hydrogels samples, as
determined by a combination of rheology andNMR [32].
Sampling such distribution can be done by consider-
ing that the cumulative distribution function of the LN
distribution is similar to the case of a Normal distribu-
tion but with a variable change zLN = ln (zN). Thus, this
method follows the same protocol as the Normal distri-
bution, taking the output’s exponential value. However,
care must be taken to correctly choose the parameters
μ and σ as in the new distribution; they have different
meanings. Moreover, depending on σ , different regimes
can be defined, with different evolution of the distribu-
tion on its parameters, and thus a proper selection of μ

and σ must be made to give a similar distribution as in
the Normal case [33]. However, increasing σ is generally
associated with a distribution with a long tail and thus
can be used to extend the results obtained using aNormal
distribution if μ is properly selected.

Finally, in both cases, we considered n=150 confined
randomwalkers with 106 steps generated, and the ensem-
ble and time-averaged total mean squared displacement
was calculated up to 105 lag steps, thus corresponding to
104 seconds.
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Figure 1. Position distributions (left column) and their corresponding effective potential (right column) for a randomwalker in a 1D cage
of size 1µm for different confining methods: (a) Waiting method (b) Reflecting method, and (c) Bouncing method.

3. Results

1D simulations are used to illustrate the behaviour that
appears when different confining methods are used. The
position distribution within a cage was calculated for
a fixed cage size of z = 1µm to compare the statisti-
cal properties derived from the three confining methods
described above. In equilibrium, the position distribution
follows a Boltzmann distribution for the random walk-
ers, and the effective potential,U(x), acting on them, can
be extracted from P(x) ∼ exp(−U(x)/(kBT)), where x is
the 1D position of the walker. As expected, the Waiting
method (a) presents two peaks at the cage’s border, see
Figure 1(a). The particle remains in the boundary until a
step moves it backward. This distribution resembles an
attraction between the particle and the cage wall. The
position distribution decreases as the particle position is
close to the boundary, within a region separated from the
wall by exactly a step size. Close to the boundary, any suf-
ficiently big step selected from the step distribution will
produce the particle to be immediately back-reflected,

reducing the probability of finding the particle close to
the boundary. From the position distribution, the effec-
tive potential is calculated and shown in Figure 1(d),
where the two minima at the boundary are present. The
potential is found to have several discontinuities associ-
ated with irregularities in the position distribution. The
reflecting condition also presents a region with lower val-
ues in the position distribution, which is separated from
the wall by a step size as before. However, no peak is
found at the boundary for the position distribution, as
shown in Figure 1(b), giving an effective repulsive inter-
action close to this boundary, as shown in Figure 1(e)
for the effective potential. A region as that present in the
reflective condition is completely absent in the Bouncing
method (c), which produces a constant position distribu-
tion within the cage and, consequently, a flat potential, as
shown in Figure 1(c,f), and thus resembles a confining
cage with impenetrable walls. It is interesting to note that
the same position distribution is obtained when periodic
boundary conditions are applied to a randomwalker and
the position is reduced to a single unit cell.
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Before selecting any particular confining method, we
analyse the most important dynamical property, the
ensemble-averagedMSD, 〈��r(t)2〉, of nwalkers at time t,

〈��r(t)2〉 = 1
n

n∑
i=1

(�ri(t) − �ri(0)
)2 , (3)

where �ri(0) and �ri(t) are the referential position and the
position at time t of the ith particle, respectively. Figure 2
shows the total MSD for a cage size of z = 1µm for
the confining methods under study. In all cases, two
regimes were found: diffusion at short times associated
with the random motion of the particle within the cage
and a plateau region at long times; walkers are unable to
escape from the cage. Despite having the same cage size,
the methods reach different values of the MSD for long
times. The higher MSD values were found in the Wait-
ing method (a) because the random walker has a higher
probability of being found close to the boundary. The
sticking condition at the boundary seems to affect the
short-time diffusion coefficient, having a smaller value
than the other methods, as there is a possibility of a zero
displacement between two consecutive times precisely at
the boundary. In contrast, the smaller value of a plateau
was found on the Reflecting method (b), presumably due
to the effective repulsive potential close to the boundary
associated with such confining method having a smaller
probability of finding the particle close to the boundary.
The case with a plateau value in-between the two men-
tioned methods, with no particularities at short times,
was the Bouncing method (c). Thus, it was used in fur-
ther simulations as it resembles a flat effective potential,
as shown in the position size distribution in Figure 1(c)
and the corresponding effective potential Figure 1(f).

The dynamics presented here, no matter the kind of
confinement used, reflect the same time regimes as in
particles trapped in a parabolic potential, as in optical
tweezers, and can be determined using the solution to the
Langevin equation with negligible inertia, with slightly
different optical stiffnesses to reach different values of
the MSD in the plateau [34]. Equivalently, we can also
use the Smoluchowski formalism to understand the time
regimes shown. The Smoluchowski equation for a parti-
cle trapped in a parabolic potential can be written in 1D
in the following form

∂	

∂t
= ∂

∂x

[
kBT
ξ

∂	(x, t)
∂x

+ k
ξ
(x	(x, t))

]
, (4)

where k is the constant of the parabolic potential and ξ

is the friction coefficient. For a constant diffusion coef-
ficient D = kBT/ξ and considering that the probability
distribution vanishes exponentially, its solution for the

Figure 2. Total mean squared displacement for the 1D random
walker for the different confining methods used in this work and
for the same cage size 1µm.

initial condition 	(x, t = 0) = δ(x − x0), where δ is the
delta function, is given by:

	(x, t) =
√√√√ 1

2π
(

ξD
k

) (
1 − exp

[
−2 k

ξ
t
])

× exp

⎧⎪⎨
⎪⎩−

(
x − x0 exp

[
− k

ξ
t
])2

2
(

ξD
k

) (
1 − exp

[
−2 k

ξ
t
])

⎫⎪⎬
⎪⎭ , (5)

from which the MSD can be calculated, giving 〈(x −
x0)2〉 = (

ξD
k ){1 − exp[−2 k

ξ
t]}. From here, for short-

times the MSD gives 〈(x − x0)2〉 = 2Dt (linear time
dependence); for intermediate times 〈(x − x0)2〉 = 2δ2
{1 − exp[−2 k

ξ
t]} defining 2δ2 = ξD

k , which is similar to
what is observed in Figure 2, and for long times the RMS
reduces to one constant 〈(x − x0)2〉 = 2δ2 (a plateau),
which is a measure of the size of particle’s displace-
ment around a mean position; in 3D in a homogeneous
media, 〈(x − x0)2〉 = 6δ2. Thus, this formalism repro-
duce exactly the same time regimes found in the simu-
lations.

Using the Bouncing method (c), which gives a flat dis-
tribution of positions within the confining cage, we now
move to compute the statistical properties of an ensem-
ble of confined 2D and 3D random walkers whose cage
size is selected from a given distribution. Despite this, the
distribution of confining cage areas (2D) and cage vol-
umes (3D) are quite different, also having an important
dependence on the parameters of the cage size distribu-
tion, as shown in the inset of Figure 3 (left panel). Small
widths give an almost Normal distribution of confining
areas and volumes, as seen in the main part of Figure 3
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Figure 3. Comparison of the distribution of cage areas (left panel) and cage volumes (right panel) with μ = 4, σ = 1, and σ = 2,
respectively. Inset in left: shows the cage size distribution for the same parameters as in the main part of the figure.

(left panel and right panel respectively), but the distribu-
tion evolves with a tail at more extended areas and cage
volumes when increasing σ . This is expected to affect the
ensemble average MSD, as shown below for the 3D case.

Before analysing any dynamical property, we first
examine the shape of the ensemble-averaged position dis-
tribution for the case where a distribution of cage sizes
is employed for the case of the Bouncing method (c) and
compare it with the result shown before in Figure 1 where
the 1D-walker is confined in a cage of constant size.
The Bouncing confinement condition gives a flat posi-
tion distribution at each cage, as shown in Figure 1(c).
However, in the following lines, we will quantify prop-
erties averaged over several random walkers, each ran-
domly selected from a normal distribution of cages. The
normalised histogram of the position averaged over all
walkers is shown in Figure 4, finding a distribution simi-
lar to a normal distribution but with an almost flat region
close to x=0. For this calculation, 500 cage sizes were
randomly selected following the rules motioned above,
withμ = 5 and σ = 1. The central and almost flat part of
the distribution is attributed to the smaller cages, between
2 and 3µm in size, also flat within this range, whereas the
overall shape is the consequence of the averaging of inde-
pendent samples with finite variance and thus similar to
a normal distribution.

Once the behaviour of the different assemblies has
been discussed. Our next step was to perform 3D simu-
lations in an ensemble of cages with a given size distri-
bution for the case of Bouncing confinement. Figure 5
shows the MSD for particles confined in cages with a
mean size between a μ = [5, 10] and σ = [0.25, 7]. In
all the cases, 150 simulations were run, where in each
simulation the three sizes of the confining cagewere inde-
pendently selected using the normal generator indicated

Figure 4. Total position distribution of an ensemble of 500, 1D-
random walkers confined in cages selected from a size Gaussian
distribution with a μ = 5 and σ = 1 for the case of Bouncing
confinement.

in the Section 2. A diffusive regime is always found at
short times no matter the properties of the position dis-
tribution, consistent with the same diffusion coefficient
for a free particle, which is related to the free diffu-
sion of the walkers inside a cage. At long times it is
also found a plateau regime no matter the width of the
distribution. Notable, the MSD deviates from diffusion
and reaches the plateau at different times depending on
the width of the cage distribution. When comparing the
MSDs with the same μ values, broader distributions are
associated with a smoother transition from the linear
to the plateau regime, taking more time to reach such
a regime. A mostly monodisperse 3D simulation with
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Figure 5. Ensembled averaged totalmean squareddisplacement
for 3D random walkers confined in a distribution of cages with a
μ = [5, 7, 10] and σ = [0.25, 2, 3, 4, 7].

μ = 5 and σ = 0.25, usually requires only a decade to
reach the transition, whereas the sample withμ = 10 and
σ = 7 requires approximately two decades to reach the
cage regime. Exactly this smooth transition is found in
microrheological experiments [14–17]. The results found
here indicate that the origin of this transition is related to
the polydispersity of the confining cages, as it is expected
to be present in complex fluids made of cylindrical giant
micelles. Fluctuations in the supramolecular structures
and thermal motion define the fluid stress relaxation and
the cage size that undoubtedly corresponds to the mean
value of the fluctuating cages shown by our simulations.

To quantify the features of results presented in
Figure 5, the totalMSD is fitted to amodel curve partially
proposed by Bellour et al. [10] to describe the MSD of
colloidal particles embedded in solutions of giant cylin-
drical micelles forming a network. These authors sup-
posed that each colloidal particle is harmonically bound
and executes Brownianmotion around a stationarymean
position. They obtained an expression for the MSD simi-
lar to that used in the case of particles trapped by optical
tweezers:

〈�r(t)2〉 = 6δ2
[
1 − e−

(
D
δ2
t
)α]1/α

, (6)

where D is the short-time diffusion coefficient, 6δ2 is the
value of the MSD at the plateau, and α is the smooth
parameter for the short-time to plateau transition. This
initially proposed model curve includes an additional
term required to display a second linear diffusive at long
times, which is not required in our case. Equation (6)with
an α = 1 corresponds to the solution to the Langevin

equation for a particle in a parabolic potential, as shown
before [34]. However, in microrheological experiments
made in WLMs, values of α between 0.25 and 0.3 are
commonly found [10,16,35]. Usually, this model fits well
the experimental MSD data. Using the Mason-Weitz for-
mula, the mesh size gives ξ = πa(6δ2) where a is the
particle radius.

In Figure 6 (left panel), we show the behaviour of
α for different σ(i) value. For a better comparison, the
standard deviation σ(i) was normalised with its corre-
sponding μ values. For a distribution width of zero, α is
found to be close to 0.85, and it decreases monotonically
to a value close to 0.55 for broader size distributions eval-
uated using the normal distribution. This trend agrees
with our finding: the wider the distribution of confining
cages, the smoother the transition to the plateau regime.
Remarkably, the MSD of a trapped particle in a parabolic
potential, experimentally realised using optical tweezers,
can be fitted to Equation (6) with a value near to 0.9,
which is close to our case of a monodisperse cage [34],
which is in agreement that σ defines the size of the cage.

Another key parameter is the value of the MSD at the
plateau (6δ2), see Figure 6 (right panel). The value of the
plateau always remains in the same order of magnitude
no matter the distribution width used. Major changes
occur as the mean value of the distribution is modified,
as expected, due to the different confinement associated
with each cage size. The only difference is the transi-
tion time between the short-time diffusive and plateau
regimes at intermediate times. A linear fit of the short
and plateau regimen (in log scale) was made to quantify
this transition time, identifying the cross time τc as the
interception between both linear fittings. Figure 7 shows
our results. The τc values present significant variations,
close to an order of magnitude between the zero width
and the broadest distribution used here. Comparing Fig-
ures 6 and 7 we can note that the behaviour of τc relative
to σ(i)/μ is similar to the 6δ2.

As reported in the literature, the α parameter associ-
ated with microrheological experiments is found to be
between 0.25 and 0.3 [10,16,35], still far away from our
simulation results. Nevertheless, the trend of this param-
eter α with the cage distribution width is correct. To
better elucidate the origin if this trend, a comparison
with microrheological experiments can be made by fit-
ting the MSD to the model curve proposed by Bellour,
Equation (6), butwithout including theα parameter. This
fitting allows us to better visualise the evolution of the
MSD in terms of normalised time t/τ where τ = δ2/D0,
and the normalised MSD 〈�r2〉/(6δ2). For comparison
purposes, the same fitting was applied to microrheolog-
ical data from the mixture TDPS-SDS surfactants and
brine, which forms a solution with worm-like micelles,
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Figure 6. The α (left panel) and 6δ2 (right panel) parameters of the proposed fitting model in Equation (6) for different σ(i) values
normalised withμ.

Figure 7. Transition τc between the short time diffusion regime
and the plateau region at intermediate times for different σ(i)
values normalised withμ.

as reported in [16]. We will focus our attention in the
case of a total concentration of 46mW, a TDPS/SDS
ratio concentration R = 0.55 and NaCl concentration of
0.4M. From the 3D simulation counterpart, the case for
μ = 10 and σ = 0, 3 and 7 were analysed. The results
are shown in Figure 8. As expected, all curves share
the same diffusion to plateau transition, but the transi-
tion regime evolves differently: increasing the width of
the distribution gives a smoother transition, but more
importantly, the trend when increasing the width of the
distribution is in the direction of the microrheological
WLM experiments. This behaviour suggests that a wider
distribution of cages is required to get a value of α as

Figure 8. Normalized mean squared displacement, MSD/(6δ2)
computed for 3D simulations as a function of the normalised time,
t/τ for particles in an ensemble of cages whose size is selected
from a Normal distribution (labeled as N) and a Log Normal distri-
bution (labeled as LN) at theμ and σ parameters indicated in the
legend. The microrheological experimental data for a worm-like
micelle solution coming from [16] are also shown.

small as in the experiments; however, we are unable to
increase this value further as it would give negative val-
ues for the cage size. This also indicates that a different
model for the distribution of cage sizes is required. To
further push the smoothness of the transition, an LN dis-
tribution was also explored for a particular case, namely
μ = 1.01 and σ = 2.06, whose distribution is shown in
the inset of Figure 8. The MSD associated with this dis-
tribution is shown in Figure 8 as a dashed line, finding a
better agreement with the microrheological case and an
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α value of 0.36, closest to those reported previously in
microrheological experiments [35]. Interestingly the LN
distribution resembles the mesh size distribution deter-
mined by a combination of low-field NMR and mechan-
ical rheology in an interpenetrating polymer network
hydrogel, whose structure is expected to share similari-
ties with the self-assembled system that forms worm like
micelles [32]. Thus, we can conclude that an asymmet-
ric distribution with a higher probability of finding big
cage sizes is required to reproduce the smooth transition
between the short-time and plateau regimes inmicrorhe-
ological experiments. Closely related with this finding,
the mean square displacement of colloids near the glass
transition, at a volume fraction of φ = 0.583, can also
be fitted to the Equation (6), with α ≈ 0.27 (see [19] for
experimental data obtained from dynamic light scatter-
ing) and thus also presents the same anomalous transi-
tion. Then we can also speculate that, in this case, the
relaxation distribution of the so-called beta relaxation is
also relatedwith the distribution of confining cageswhere
each particle is sampling when undergoing Brownian
motion.

4. Conclusions

In this work, we analyse the dynamics of an ensemble of
1D, 2D and 3D random walkers confined in impenetra-
ble cages whose sizes were chosen randomly following a
Gaussian distribution. An averaging process was selected
to simulate microrheological experiments in which col-
loidal tracers interactwith complex fluids embeddedwith
threadlike structures, such as wormlike micelles formed
by the self-assembly of surfactant molecules. An impor-
tant feature of these experiments is a smooth transition
from short-time diffusion to a plateau at intermediate
times related to the confinement of the tracer particle
when interacting with complex fluids. Our results indi-
cate that the 3D simulations can reproduce this smooth
transition’s experimental feature, with a parameter that
increases as the cage size distribution becomes broad.
However, a more complex distribution is required to
obtain a smooth parameter closer to that used in the
experiments, such as a log normal distribution. Interest-
ingly this distribution also resembles the distribution of
mesh sizes reported in the literature for a hydrogel, whose
structure is expected to share similarities with worm-like
micelle systems. Our findings corroborate that the origin
of the anomalous smooth transition in the microrheol-
ogy of worm-like micelles is related to the distribution
of confining cages attributed to the random placement
of threat-like structures that hinders the motion of the
tracer particle.
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