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Abstract

A method to predict the shear viscosity of fluid mixtures is described. The method
relies on the results of the Revised Enskog Theory for hard-sphere fluid mixtures
and the use of temperature and density dependent diameters to model each
species of the real mixture. The predictions are compared against the empirical
Dean and Stiel correlation scheme for twenty six binary mixtures mainly of
hydrocarbons. While the overall qualitative agreement is satisfactory, quantita-
tive results may differ substantially. Possible sources of this discrepancy are brief-
ly discussed.

Introduction

The need for accurate values of transport properties of working fluid mixtures for
industrial or scientific purposes increases every day, but it is clear that the acqui-
sition of reliable data for the enormous variety of mixtures and thermodynamic
states can never be completely achived by direct measurement only. One way out
in engineering calculations is to use empirical correlation schemes quite limited to
narrow ranges of temperatures and pressures, and often to pure fluids. A review
of these methods is given in Reid et al [1].

Another procedure has been presented recently [2, 3] in order to estimate trans-
port properties of dense non-polar fluid mixtures, which is based on the corre-
sponding states principle and the one-fluid conformal solution concept, with
great success.

There is another option to get transport coefficients based on more theoretical
foundations [4-8]. Here explicit expressions for transport coefficients of real
simple or multicomponent dense fluids in terms of the intermolecular force para-
meters have been obtained quite recently for simple models. Among these, the
hard-sphere model has played a prominent role in kinetic studies at liquid-like
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densities. Hence, in this paper we present the results of calculations for binary
mixtures mainly of hydrocarbons in order to find out the usefulness of the Re-
vised Enskog Theory (RET) [6] to predict shear viscosities of real fluid mixtures,
with hard-sphere diameters modeled with the procedures developed in equilib-
rium liquid theory [9-12]. This paper is organized as follows: in section 1 the
RET formulae are reviewed and the shear viscosity expression used is given. Our
procedure to handle Lennard-Jones binary mixtures through RET is mentioned.
In section 3 the results and some discussion is presented. The effect of using the
Barker-Henderson (BH) [9], the Rasaiah-Stell/Mansoori-Canfield (RS/MC)
[10, 117 or the Weeks-Chandler-Andersen (WCA) [12] prescriptions in the cal-
culation of shear viscosity is examined. We compare our results with the Dean-
Stiel empirical correlation scheme [13].

1. The shear viscosity of dense Lennard-Jonesian binary mixtures

Asit was mentioned in the introduction there are some advances in kinetic theory
that let explicit expressions for transport coefficients of real dense fluids to be
derived in terms of the intermolecular force parameters of simple models. The
first kinetic theory applicable for dense fluids is due to Enskog [14] who gen-
eralized the Boltzmann equation to describe the hard-sphere dynamics in the
dense regime. This theory was later extended in order to deal with binary [14]
and multicomponent [15] dense hard-sphere fluid mixtures, but the extensions
were found to be at odds with the irreversible thermodynamics [16]. The in-
consistency was resolved by van Beijeren and Ernst [17] who proposed what is
called the Revised Enskog Theory (RET). H-Theorems have been derived from
the RET equation [18—-20] and van Beijeren pointed out that the RET has other
attractive features [21]. In addition, explicit expressions for the linear transport
coeflicients were gathered and discussed in detail by Lopez de Haro, Cohen and
Kincaid [6].

The main difficulty in applying the RET transport coefficient expressions to real
fluids lies in relating the contact values of the hard-sphere radial distribution
function and the hard-sphere diameters appearing in the theory to quantities
associated with the real system. Our procedure to achieve this connection is
presented here.

Then, our starting point is the set of coupled non-linear kinetic equations for
multicomponent hard-sphere mixtures in the RET first given by van Beijeren and
Enrst [17]. In the case of a binary mixture and in the absence of an outside field,
this set consists of two coupled nonlinear integrodifferential equations for the
two single particle distribution functions f; (r, ¥}, 1), (i = 1, 2):

o ., 91, 2
a—t-+ f 5;:Ifi("aVia t)=j§.1Jij(fifj) | 1)
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where
Ji(if) =ff @& V) (k-V,) 0; [xi; (v, v + 0,5k {n;})
LV 0) fi(r+ 0K, Vi, 8) — x3(r,r — o5k {n;})
[V, 0 f;(r—o; If, D] dl?de .

Here f;(r,V,, t) is the average number of hard spheres of component i (with
diameter o; and mass m;) at the position r with velocity V; at time #; V}; = V; — V}is
the relative velocity of two spheres with velocities ¥;and V;, respectively, E is a unit
vector directed along the line of centers from the sphere of component j to the
sphere of component i upon collision (i. €. at contact) and @ is the Heaviside step
function. ¥; and V; denote the velocities of the restituting collision, which are

connected to those of the direct collision V; and V; by the relations

Vi= Vi+2Mji(V;'i'i‘)E,
Vi=V,—2M;V; bk, (@)

where M;; = m;/(m; + m;). x;; is the radial distribution function of two hard
spheres, one of component i and the other of component ; at contact, i.e., when
. . . o;+ 0;

the distance between their centersis o;; = (—'2—’ . In the RET, the yx;;’s are the
same functionals of the local number densities {n;} as in a binary mixture in
nonuniform equilibrium. The molecular fluxes and the transport coefficients for
dense hard-sphere binary mixtures, up to the Navier-Stokes level, can be directly
obtained from Egs. (1) on the basis of the procedure used in ref. [6] and we will
not repeat the derivation here. Instead we quote only the relevant results. It turns
out that the momentum flux P is given by

oUu 0
P=pl— ZnE——K(ar U)I, 3
where
2
pP= '=Zl nikBT'(:l + Z le_IXuc) (4)

is the thermostatic presure, I the unit tensor, # the coefficient of shear viscosity,
the bulk viscosity, U the hydrodynamic velocity and the symbol = denotes the
symmetric traceless part. In Eq. (4) eb;j= =27n; o, » kg 1s Boltzmann’s constant,
T the absolute temperature and y&: je S is the equlhbnum value of the radial distri-
bution function for spheres of species i and j at contact, where the equilibrium
density has been replaced by the local equilibrium density n = n; + n,. Explicit
expressions for 7 and « for binary mixtures in terms of the molecular parameters
were given in ref. [6]. The former reads [6-8]
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2 n; : 2 2 (Dumum; kg T\'?
n="1Y i§1 Kz{;kBTbg)+4/15 PIED < m,-+1m: ) n;n; O'UXUS (5)

i=1 j=1
it
where

2
k: = 1 + 4/5 Z Qbu _n.Xuc
j=1

and the b{) are coefficients that appear in the Sonine polynomial expansion of the
one particle distribution functions. In the so-called NP Enskog approxi-
mation, i.e. when N Sonine polynomials are taken into account in the expansion,
the b are determined from a set of linear equations (for details see reference [6]).

The evaluation of n for given {n;}, {o;}, {m;} and T using Eqs (5), requires
knowledge of xjis. At this time an exact, explicit equation for xHe in terms of the
number densities and the set of hard-sphere diameters {o;} is not available, but
several approximate expressions already exist. In particular, the so-called
Carnahan-Starling [22] approximation appears to be quite accurate when com-
pared to molecular dynamics data.

In order to use Eq. (5) to obtain numerical estimates of the shear viscosity of real
mixtures, we need a prescription to get state-dependent hard-sphere diameters in
terms of the parameters associated with the potentials chosen to model the actual
systems. While several routes are possible, we follow the one taken in our previ-
ous work [ 7, 8] namely we consider that each component of the binary mixture is
modeled through a Lennard-Jones potential.

P (r) = 4e; [00:/'* — (60:/1)°] (6)

where ¢; is the well depth and ¢, is the minimal separation of two molecules of
species i such that &} (¢,;) = 0, and determine separately the effective diameters
in terms of o,;, ¢;, and the thermodynamic state of the system. As for the cross
interaction, we assume it to be that of a hard-sphere mixture with effective diame-
ters i.e.

1
012 = 034 =§(0'1+0'2)-

The effective diameters o; (i = 1, 2), are obtained using three alternative schemes,
well established in equilibrium liquid state theory. These are the variational
method of Mansoori-Canfield and Rasaiah-Stell (MC/RS) and the perturbative

methods of Barker and Henderson (BH) and Weeks, Chandler and Andersen
(WCA).
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2. Numerical Results and Discussion

In two previous papers [7, 8] we reported preliminary results for the shear viscos-
ity of Neon-Argon mixtures obtained with the scheme presented in the previous
section. Although the comparison with experimental data showed quite a good
agreement, the potential of the method as a correlation prescription requires a
more stringent test. In this section we present the results of extensive calculations
performed for the twenty six binary mixtures shown in table 1 in the dense
regime. Rather than presenting a comparison with individual experimental data,
which would presumably not be available for all the densities, temperatures and
mole fractions examined in this study, we compare our results with the empirical
correlation method of Dean and Stiel [13] widely used to obtain shear viscosity
information of fluid mixtures [1]. According to this method, the viscosity of
nonpolar mixtures is calculated from the following relation.

nES = 15, + 10.8 X 1075 (e7143%m _ g~ 1.1110125%) £ =1 (7
where
£ = To° /M *pZl}

with T, the critical temperature, p_,, the critical pressure and M, the molecular
weight of the mixture; and #;, and g, stand for the low pressure viscosity and the
reduced mass density of the mixture respectively. Equation (7) has a claimed
3.7% overall average deviation when applied to data of gases at high pressure
and liquids at high temperature, but the accuracy for liquids with reduced dens-
ities greater than about 2 is expected to be poor.

In order to compare our method with this correlation, we use the following
procedure:

1) n,,is obtained from equations (5), using the effective state dependent diameters
as explained above. And

2) nrf is computed according to equation (7) with 2 determined using the Wilke
estimation method [1] for the viscosity of gas mixtures at low pressure and the

pseudocritical constants 7, and P,,, appearing in £ calculated with the modified
Prausnitz and Gunn rules [1].

In table 1 a summary of selected results obtained using the MC/RS criterion to fix
the hard-sphere diameter of each component of the mixture is presented. All the
data are for "= 250°K and X; = 0.75 and the corresponding o,; and ¢; were
taken from reference [1]. The MC/RS criterion was chosen because it gave the
overall best estimates. For comparison, however, we show in table 2 the results
obtained using either the BH or WCA criteria. As reported earlier [7, 8], for the
lower reduced densities these latter criteria work better than the MC/RS scheme
but as the reduced density is increased beyond 0.8, only the MC/RS criterion
accurately fits the data. This is not surprising because both the BH and WCA
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methods were built to fit the low density equilibrium properties, whereas the
MC/RS criterion was directed towards the denser regimes. The important point
to emphasize is that since the crossover occurs at a reduced depsity of about 0.8,
our recommendation is that one uses the BH or WCA schemes from g, < 0.8
and the MC/RS criterion from g, = 0.8 onwards. Of course, one would not
expect our method to be accurate at very small densities and the question arises
whether one can determine in a similar way the reduced density at which one
should switch from the exact Chapman-Enskog formula to our method with
either the BH or WCA criteria. Since our main interest was the prediction of
viscosities at liquid like densities we have not examined this question here.

Although not explicity shown, the features contained in the results of tables 1 and
2 remain the same when either the composition or the temperature or both are
varied. This fact stresses that our method shares an important aspect of the
Dean-Stiel correlation scheme namely, that the residual viscosity for most of the
mixtures follows a universal curve. This is shown in figure 1. Given the different
characteristics of each individual mixture, it is remarkable that a hard-sphere

Tab. 1: Deviation between the Revised Enskog Theory viscosities using RS/CM criteria to model
diameters. (T = 250°K, X; = 0.75) and the Dean-Stiel empirical correlation scheme*.

Qr = 0.8 Ql‘ = 1.2 Qr = 1_6 Qr = 2_0

Binary Mixture 14 n° 0 o 1] /)
O,/Ar 2950 E-2 183452 124 10.9 12.3 12.6
N,/Ar 3.670 E-2 166.728 11.5 11.2 13.9 16.3
N,/O, 3.775E-2 160.723 122 11.9 14.8 16.9
N,/CO, 3.329E-2 146.516 133 131 17.0 20.9
N,/CH, 4129 E-2 141.237 10.8 9.4 11.2 11.9
N,/CH,=CH, 3.841 E-2 132278 139 11.8 13.8 15.6
N,/CH;—CH, 3.841 E-2 128.728 13.7 123 14.9 18.1
N,/CH;—CH,—CH, 3.772E-2 118.998 16.5 17.3 239 |, 313
CH,/Ar 3944 E-2 125590 7.3 0.3 1.8 0.0
CH,/O, 4.120E-2 117.887 99 51 4.2 23
CH,/CO, 3.657E-2 108.783 10.0 5.7 5.8 6.3
CH,/CH=CH 4205E-2 92949 149 9.3 8.3 8.3
CH,/CH,=CH, 4307E-2 92.680 14.7 8.8 7.9 6.6
CH,/CH;—CH, 4297 E-2 90.406 14.1 9.4 9.2 94
CH,/CH;—CH,—CH, 4.137 E-2 85.782 149 12.2 15.6 20.7
CH,/CH,—CH,—CH,—CH, 4.017 E-2 81.902 17.2 1.6 —38.1 —15.8
CH,/n-pentane 3.938 E-2 78.336 174 13.1 16.6 22.8
CH=CH/N, 3376 E-2 99.741 16.4 129 155 18.8
CH=CH/CH;—CH, 3.376 E-2 84.452 17.2 12.7 16.0. 21.2
CH,=CH,/CH;—CH, 3.582E-2 83.834 17.0 11.6 12.9 16.3
CH,;—CH;/0, 3.452 E-2 96.249 14.5 11.8 15.7 19.3
CH,—CH,;/CO, 3.193E-2 91.138 13.6 11.5 16.5 22.7
CH;—CH,;/CH,;—CH,—CH, 3.502E-2 76.257 154 13.6 19.9 28.8
CH;—CH,/n-pentane 3.418 E-2 71.215 16.2 13.0 19.0 28.8
Kr/Ar 2422 E-2 205.585 11.8 9.1 10.0 10.5
Ar/Xe ) 2177E-2 201.764 11.0 7.2 7.8 8.8

* 6 = Percent deviation
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Tab. 2: Comparison summary of absolute average deviation between theoretical results using any
criteria to select effective diameter and Dean-Stiel correlation-scheme.*

e, =0.8 o, =12 e,=1.6 e, =20
] o ] o ] o é o
MC/RS 13.7 2.6 10.3 38 12.8 5.1 15.8 8.0
B/H 12.7 3.5 18.9 52 30.3 9.5 42.4 14.5
WCA 12.8 3.6 20.0 54 329 10.0 46.9 15.5
* § = Average absolute percent deviation * o = Standard deviation

theory with state dependent diameters is able to predict qualitatively this feature
without involving any corresponding states principle.

The sources of discrepancy may be of two types. One, due to the fact that we are
comparing our results with an empirical correlation scheme with its own devi-
ation from the experimental values. The other source comes from the use of a
hard-sphere theory to model real fluids (not spherical and with internal degrees
of freedom). This can be seen in a rough way in figure 2. Here a graph of the
average of internal degrees of freedom vs the average Pitzer acentric factor, both
for the binary mixtures, easily shows that as the binary mixtures have more
degrees of freedom and a lesser spherical shape there is a larger deviation from
the Dean-Stiel correlation scheme.

100.0
€
L
—
oE
1
= 3
10.0 : : —
_ . i ] _ X Ng/CHgq
;) O Ny/CHy-CHg
¥ CH4/CHy-CHj-CHg
i ) ® CH,/Nn-pentane
u/ = + Np/CO,
. % Ng/Op
' O Np/CHp=CHy
Q CHECH/N,
A CHy~CHy/CO,
V CHy-CHy/0,
b - — - © CHp=CHp/CHg-CHy
© CHECH/CH3-CHy
A CH /CHg—CHy
Vv 03/Ar
. b Ny/Ar
1.0 . :

0.8 ' 1.2 1.6 - 2.0 Prm

Fig. 1: Calculated values of (7 — #°)£ vs the reduced density of the mixture for different binary sy-

stems (n calculated by equation (5) and 7° estimated by the Wilke method as given in the text).
The Dean-Stiel empirical correlation scheme is the solid line.
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Fig. 2: Graph of the average of internal degrees of freedom (3 N-3 non-linear molecules and 3 N-4
linear molecules) vs the average of Pitzer’s acentric factor for different binary mixtures. In
parenthesis appears the absolute percent deviation from Dean-Stiel scheme at g,,, = 2. This
figure shows in a rough way that as the binary mixtures have more degrees of freedom and
lesser spherical shape there is a larger deviation from the Dean-Stiel correlation scheme.

In summary, these results are encouraging and show that the procedure we fol-
lowed requires very little input while still yielding reasonably accurate predic-
tions. A detailed comparison of this method with other correlation schemes like
that of Ely and Hanley [2] at higher reduced densities will be published shortly
[23].
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