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Abstract 
This PhD project studied the relationship between mesoscopic structure and linear and 

nonlinear rheological behavior of thread-like systems, mainly living polymers and biopolymer gels. 

The study was realized from an experimental physics point of view using rheometric and multiple 

light scattering as principal experimental techniques. This work is divided into 5 Chapters: Chapter 

1, “Introduction,” Chapter 2, “Theory,” Chapter 3, “Experimental Techniques,” Chapter 4 as a 

principal section, “Results”, and Chapter 5, “General Conclusion and Perspectives.”  

Living polymers and biopolymer gels suffer interesting macroscopic phase transitions by 

modification of the environment. These systems have been studied in different stages where they 

can relax as liquid-like and solid-like, depending on protocol measurement or physicochemical 

environments. The principal chapter shows the experimental results and their discussion divided 

into three subsections, taking wormlike micelles solutions as a model of living polymer, gelatin 

solutions as flexible polymer, and chitosan and alginate as charged flexible polymers. The linear 

and nonlinear rheological measurements were performed through SAOS and LAOS protocols. 

Diffusive wave spectroscopy micro-rheology was also performed to measure the mean square 

displacements of microspheres embedded in thread-like fluids to obtain information about the 

relaxation mechanism of chains and establish the connection with the viscoelasticity properties. 

For these thread-like systems, this research has revealed a crucial insight that the structure of the 

polymer matrix directly influences the nonlinear rheological response. The Lissajous-Botwich 

curves serve as a fingerprint for each system. For living polymers, a significant discovery was the 

definition of the entanglement index, an essential mesoscopic parameter used for understanding 

the entanglement of the micellar network. This index is directly linked to the solution's elasticity 

from a dynamic fluid point of view. The study of large shear strain rheological behavior in 

biopolymer gels indirectly reveals the fractal dimension, which agrees with the dimension 

obtained directly from other experimental techniques. An important finding is that the Chambon 

& Winter criteria show a similar critical exponent (n ∼ 0.6) for all physical gels, indicating that the 

percolation threshold of the network is independent of gelation mechanisms. Finally, the mixture 

of alginate and chitosan forms microgels, which exhibit the same rheological signature as core-

shell synthetic microgels, possibly due to the gel preparation method.  
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Resumen  
Este proyecto doctoral estudia la relación entre la estructura mesoscópica y el 

comportamiento reológico lineal y no lineal de sistemas filamentosos, principalmente polímeros 

vivientes y geles biopoliméricos. El estudio se realizó con un enfoque experimental utilizando la 

reometría y la dispersión múltiple de luz como principales técnicas. La tesis doctoral se divide en 

5 capítulos: Capítulo 1, "Introducción", Capítulo 2, "Teoría", Capítulo 3, "Técnicas experimentales", 

Capítulo 4 (sección principal), "Resultados", y Capítulo 5, "Conclusiones generales y perspectivas". 

Los polímeros vivos y los geles de biopolímeros sufren interesantes transiciones de fase por 

modificación del entorno. Estos sistemas se han estudiado en diferentes etapas donde pueden 

relajar como líquidos o sólidos, dependiendo del protocolo de medición o el entorno fisicoquímico. 

El capítulo principal muestra los resultados experimentales y su discusión dividida en tres 

subsecciones, tomando soluciones de micelas en forma de gusano como modelo de polímero vivo, 

soluciones de gelatina como polímero flexible, y quitosano y alginato como polímeros flexibles 

cargados. Las mediciones reológicas se realizaron mediante SAOS y LAOS. La microrreología se 

realizó usando espectroscopia de onda difusiva para medir los desplazamientos cuadráticos 

medios de microesferas incrustadas en la matriz filamentosa, y así obtener información sobre el 

mecanismo de relajación de las cadenas y establecer una conexión con la viscoelasticidad. Para 

estos sistemas, esta investigación muestra que la estructura de la matriz filamentosa influye 

directamente en la respuesta reológica no lineal. Las curvas de Lissajous-Botwich sirven como 

huella digital para cada sistema. En el caso de los polímeros vivientes, la definición del índice de 

entrelazamiento, un parámetro mesoscópico, es esencial para comprender el enredamiento de la 

red. Este índice está directamente relacionado con la elasticidad de la solución desde el punto de 

vista de la dinámica de fluidos. El comportamiento reológico no lineal de los geles revela 

indirectamente la dimensión fractal, que concuerda con la dimensión obtenida por otras técnicas 

experimentales. Un hallazgo importante es que el criterio de Chambon y Winter muestra un 

exponente crítico similar (n ∼ 0,6) para todos los geles físicos, lo que indica que el umbral de 

percolación de la red es independiente de los mecanismos de gelificación. Finalmente, la mezcla 

de alginato y quitosano forma microgeles, los cuales presentan la misma firma reológica que los 

microgeles sintéticos de núcleo-capa, posiblemente debido al método de preparación del gel. 
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1. Introduction 
The term soft matter was popularized in 1991 by Nobel laureate Pierre Gilles de Gennes to 

refer to materials that exhibit large deformations in response to moderate forces. In soft matter 

systems, the characteristic activation energy per particle is of the order of room-temperature 

energy (∼	kBT; kB is the Boltzmann constant, and T is the absolute temperature with T	∼	300 K), 

and under this definition, the range of materials is almost limitless. A long list begins with 

polymers, liquid crystals, colloids, emulsions, foams, pastes, and fluids formed by water mixtures 

with surfactants or amphiphiles. Still, it also includes ferrofluids, granular materials, biological 

materials, active fluids, and many more [1]. One way to visualize the soft matter materials is by 

the “soft matter triangle” (see Fig. 1.1), which shows a continuum of molecules and materials that 

fills the space between spherical colloids, flexible polymers, and amphiphiles [2]. 

 
Figure 1.1 Soft matter triangle. Image from [2]. 

 

On the right-hand side of the soft matter triangle, from amphiphiles to flexible polymers, 

it is possible to see a large variety of materials that share a common characteristic: elongation. 

Due to electrostatic forces (van der Waals forces) and entropic interaction, the self-assembly of 

several amphiphile molecules can form macromolecular complex structures at a mesoscopic scale 

(from hundreds of nanometers to a few micrometers). On the other hand, polymers are chains 

formed by many monomers linked through covalent crosslinks; in both cases, it is possible to see 
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the mesoscopic structure as a thread-like structure like spaghetti. These complex structures result 

in dynamics usually described in multiple characteristic lengths and time scales and are described 

as complex fluids due to the complexity of its flow. If the microscopic structure of a complex fluid 

is perturbed from its equilibrium state, its behavior can be viscoelastic; the mechanical response 

involves a solid behavior due to the recovery of the mesoscopic elements to their initial condition 

and a liquid behavior when the mesoscopic elements flow after recovery [3].  

Usually, the viscoelastic properties of complex fluids can be determined by measuring the 

response due to one stimulus. Inherently, the viscoelasticity response rises from mesoscopic 

structure, which is the soft matter paradigm. The connection between mesoscopic structure and 

viscoelasticity is known in some detail when the response is linear, e.g., using the Small Amplitude 

Oscillatory Shear protocol (SAOS), where the shear stress is measured due to the small oscillatory 

shear strain applied. However, the relationship between mesoscopic structure and nonlinear 

viscoelasticity is unclear. This represent a recent soft matter problem due to recent technological 

developments, e.g., a refinement in the rheometric measurements; the best example is to perform 

the Large amplitude Oscillatory Shear (LAOS) protocol [4]. The possibility of modifying the 

viscoelastic properties by controlling the physicochemical environment of thread-like materials 

has been of special interest in the soft matter community. The correlation between the thread-

like structures in the linear and nonlinear viscoelasticity of these systems is far from being fully 

understood, and their compression is of particular interest to the Complex Fluids Group at the 

Institute of Physics at UNAM. The principal aim of this work is the study of the effect of thread-like 

structures, taking living polymers and biopolymer gels as models in their linear and nonlinear 

viscoelasticity. Below is a brief introduction to living polymers and polymer gels.  

1.1 Living polymers  

Several theories have been proposed to connect the macroscopic and rheological behavior 

of complex fluids with the microscopic properties of entangled polymers. Among the most 

successful ones are the reptation, tube theories, and their extensions [5]. One of the strongest 

assumptions of these theories is that polymer chains do not change their architecture, length, or 

topology within experimental timescales; if the systems do not obey the last constraint, they are 

called “living polymers.” Living polymers are different from their non-living counterparts as 
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random architectural changes such as breakage, fusion, and reconnections alter the architecture 

and topology of the polymers on timescales similar to their relaxation times [6].  

Wormlike micelles (WLMs) are examples of living polymers. These systems are elongated, 

flexible cylindrical aggregates in aqueous solutions formed by the self-organization of amphiphiles. 

WLMs have contour lengths of a few micrometers (1 – 20 μm) and a cross-section of a few 

nanometers (1 – 12 nm), where the persistent length is lower than the contour length [7]. Above 

a threshold concentration, their entanglement into a transient network provide remarkable 

viscoelastic properties reminiscent of polymer solutions or gels, distinguishing two new lengths: 

entanglement length and mesh size. According to the reptation–reaction model, an average chain 

length dominates relaxation if the micellar breaking and reformation processes are faster than 

their reptation; if a shear strain is applied, the shear stress relaxes as in the Maxwell model, G(t) = 

G0exp(-t/τR) at long times, or equivalent, low and intermediate frequencies (ω) in its related 

complex modulus G*(ω) = iωF  {G(t)} = G'(ω) + iG''(ω). The elastic modulus, G0, and the relaxation 

time, τR, can be obtained from the linear viscoelastic spectrum from the crossing between the 

G'(ω) (elastic modulus) and G’’(ω) (viscous modulus) curves [8]. 

When WLMs solution is subject to a stationary flow, band formation may occur, i.e., the 

transition from a homogeneous to an inhomogeneous flow state. Macroscopically, bands with 

different shear rates coexist in the fluid, and their formation occurs in the direction of the velocity 

gradient. Shear banding is similar to a nonequilibrium phase coexistence between an isotropic and 

strongly aligned phase (paranematic), which has a lower viscosity than the quiescent phase [9,10]. 

In a simple shear banding scenario, the fluid is divided into two macroscopic regions separated by 

a thin, steady interface of finite width. Many WLMs solutions present this simple scenario 

phenomena [9,11]; however, other WLMs present inhomogeneous flow and cannot be classified 

as a simple scenario of shear banding, e.g., CTAB/NaSal system (R = [NaSal]⁄([CTAB] = 2), [CTAB] = 

100 mM) present multiple shear banding [12].  

The viscoelastic spectrum given by SAOS has been extensively studied to quantify micellar 

systems’ viscoelasticity properties. However, interesting nonlinear effects occur if the strain 

amplitude is increased, e.g., using the LAOS protocol [4]. An appealing feature of LAOS in 

Maxwellian fluids is that the hardness of the flow’s time dependence, relative to the fluid’s intrinsic 
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relaxation timescale, can be tuned by varying w in the applied oscillation without sudden jumps in 

the strain input, as in step experiments [13]. LAOS experiments can explore the full range between 

steady-state and strongly time-dependent behaviors by investigating the effect of two 

characteristic dynamic variables, the Deborah number, De, and the Weissenberg number, Wi [4] 

In addition, in LAOS, shear banding has been experimentally observed [14]. Some models have 

been capable of predicting shear banding in the LAOS protocol, such as those using the partial-

extending convected equation [15] or the VCM model (Vasquez-Cook-McKinley) [16]. However, to 

study shear banding theoretically in different experimental protocols, the model must include 

nonhomogeneous flow, and a criterion for the onset constitutive curve of stress as a function of 

strain rate is nonmonotonic [17]. 

In simple fluids (called Newtonian fluids) in steady shear flow, the flow tends to become 

unstable and eventually turbulent because of inertia when the Reynolds number, 𝑅𝑒 = 𝜏!𝛾̇, 

significantly increases; 𝛾̇ is a characteristic deformation rate; τi = ρd2/η is the viscous diffusion time, 

where d is a characteristic length in the velocity gradient direction, η is the viscosity, and ρ is the 

mass density [18]. In non-Newtonian fluids, as in WLMs solutions, the stress relaxation brings up 

an additional timescale τR. Here, another route to instabilities exists, which does not involve inertia 

and is referred to as purely elastic. If Re ≪	 1, the Wi number takes the role of the control 

parameter that can lead to the emergence of secondary flows and eventually to elastic turbulence. 

If both Re and Wi are large, flow instabilities are referred to as inertio-elastic. One form to 

characterize the inertio-elastic instabilities is by measuring the Taylor number should be written 

as Ta = Λ1/2f(Re,Wi), with Λ is the curvature of the streamlines. When f goes to Re when 𝐸𝑙 → 0, 

and f goes to Wi when 𝐸𝑙 → ∞; here, El = Wi⁄Re = τR⁄τi is the elasticity number, which is the ratio 

of elastic forces to inertial forces within a fluid [16,19]. Re and Wi numbers are rates between 

different forces involved in the flow dynamics of a fluid. However, from a different perspective, 

they do not measure any intrinsic property related to the micelle network, which is responsible 

for the elastic forces in the fluid when it is deformed during the flow.  

In the semi-dilute region, micro-rheology using Diffusion Wave Spectroscopy (DWS) has 

provided estimations for the relevant scales of the micellar network [20–22]. The general principle 

behind micro-rheology is to minimize the mechanical probe that deforms the medium, such as a 
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colloidal microsphere. So, the material's properties can be extracted by tracing the motion of the 

thermally fluctuating probes in some way. Diffusing Wave Spectroscopy (DWS) microrheology 

allows the measurement of the mean square displacement of the tracers; the rheological material 

properties at high frequencies can be obtained from it, through the micro-rheology equations [23]. 

If the flow process is very slow, one could expect that the micellar network slowly disentangles, 

contributing to some extent to the elastic forces involved in the flow. However, if the micellar 

network is deformed fast, not allowing enough time for the tubular micelles to disentangle due to 

the speed of the imposed strain, the network’s contribution to the elastic forces involved in the 

flow would increase. One quantity that somehow measures the relative entanglement of a micellar 

network would be the ratio of the total contour length of the micelles in the network to their 

entanglement length, which can now be experimentally estimated.  

1.2 Polymer gels  

The flexible polymers share a similar structure to WLMs. Above a threshold concentration, 

it is possible to see the same structural lengths as WLMs; however, relaxation dynamics are more 

complex, with several relaxation times; e.g., the viscoelasticity behavior might be described as a 

sum of several Maxwell forms’ contributions [5,24]. These complexities in the structure and 

dynamics confer the possibility of seeing several phenomena as inertio-elastic instabilities [25] and 

classical effects such as Weissenber, Barus, and Fano phenomena [24]. Beyond the viscoelasticity 

properties of polymer solutions, one interesting property of polymers is the capacity to form gels 

(gel state); gels are disordered solids from forming a 3D infinity network by physical or chemical 

bonding of the constituent chains of the precursor solution (sol state). 

A gel is an infinite polymeric network formed by molecules linked together, creating 

tridimensional branched structures similar to disordered lattices. According to the nature of the 

linking molecules, gels are commonly classified as chemical or physical gels. In physical gels, bonds 

are reversible when thermodynamic parameters such as pH, ionic strength, or temperature are 

modified. Physical junctions are constantly created and destroyed at very low rates, and the 

network seems to be permanently connected if the observation time is shorter than the bond's 

lifetime [26]. On the other hand, chemical reactions form chemical gels, where permanent 

covalent bonds are created, and as a consequence, gelation is irreversible. Furthermore, it is 
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feasible to form hybrid gelatin gels by mixing crosslinking processes, i.e., physical or chemical, 

producing the so-called physicochemical gels, which present some partial reversibility; they are 

not entirely thermoreversible.  

The gel transition can be described using the percolation model, where monomers occupy 

all possible sites in a lattice with functionality equal to the number of closest neighbors. Bonds are 

formed randomly with a probability, p. When p < pc, only small clusters are formed (sol state); 

conversely, if p > pc, an infinite cluster appears (gel state). Depending on the connectivity 

mechanism, the gel point hallmarks the transition from a liquid to a solid due to gelation; a polymer 

at its gel point is commonly called a critical gel to distinguish it from the various materials named 

gels [26]. A critical gel is far beyond from equilibrium due to the diverging internal length scales, 

which cause very slow structural rearrangements. A large number of rheological experimental 

studies for a large variety of physical or chemical gelling materials in the linear regimen indicate 

that the complex shear modulus follows a power law in the angular frequency [27,28], i.e., G’(ω) 

= Gc’ωn and G’’(ω) = G’’cωn; n is a critical exponent, Gc’ and G’’c  are constants, and the loss angle 

δ = tan-1[G''(ω)⁄G'(ω)] = nπ⁄2. These formulas are helpful for the gel point detection because G’(ω) 

and G’’(ω) must be parallel to each other, which consequence is the frequency independent of 

tan(δ) to be frequency independent. At the critical gel, the rich rheological diversity of a material 

converges to a universal dynamical state of less rheological complexity, exhibiting a simple self-

similar relaxation behavior, G(t) = F  {G(t)/iω} = St-n, where G(t) is the relaxation modulus, and S 

and n are two fitting material parameters characterizing the gel [27,28]. The nature of the links 

and their quantity impact the network structure of a gel, and consequently, its deformation and 

elasticity properties could change dramatically from linear to nonlinear regimes; the differences 

and similarities are not fully understood in the nonlinear viscoelasticity regime. Similar to the 

WLMs solution, the persistence length of the unstructured, non-bonded flexible polymer sections 

and the network's mesh size decreases due to linking formation and could be measured using the 

DWS-microrheology technique.  

In nature, there is a wide variety of polymers that may form a gel; if monomers are amino 

acids, the polymer is called a protein; if the monomers are sugars, the polymer is called a 

polysaccharide; in both cases, the term polymer change to biopolymer. Inherently, the self-
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assembly of biopolymers depends on the nature of the monomers and the interaction between 

them, raising a large variety of complex structures embedded in the medium. Gelatin is an 

excellent system for studying physical or chemical gelation and the competition among physical 

and chemical mechanisms to form hybrid gels with flexible polymers. One advantage is the well-

known detailed self-assembly transition from single-strand to triple-helix chains and chemical 

gelation crosslinking mechanisms with glutaraldehyde [29–31]. Depending on the sample 

preparation, temperature lowering, adding glutaraldehyde, or doing both things simultaneously, 

physical, chemical, or hybrid gels can be obtained. This flexibility to form different gels from a 

single molecule makes gelatin ideal for studying critical and post-gel states in flexible biopolymers 

with different crosslinking mechanisms. Comprehension of the competition between physical and 

chemical mechanisms could probably be exploited to understand the evolution of mechanical 

properties and mesoscopic scales of chemical gelatins formed with different chemical crosslinkers 

such as genipin [32], glyceraldehyde [33], bisvinylsulfonomethyl [34], as well as those using an 

enzymatic route [35,36], or in biopolymers undergoing natural gelation processes, where 

secondary structures are formed from single polymer molecules in a sol state, such as 

polysaccharides, alginate, pectin, and carrageenans [37]. 

If the polymers are polyelectrolytes, i.e., their monomers are negatively or positively 

charged, electrostatic interactions between the chains can trigger the appearance of soluble and 

insoluble complexes and the formation of coacervates (a dense liquid phase); these structures are 

called PECs (polyelectrolyte complex). The formation of PECs gives rise to anisotropies, and their 

formation can be controlled by the variation of physicochemical parameters [38]; however, it is 

possible to form uniform gels under certain thermodynamic conditions. The formation of gels and 

membranes with mixtures of polyelectrolytes has been reported, e.g., chitosan/alginate mixture 

[39–42]. These two natural polyelectrolytes are of great interest due to their natural availability 

and biocompatibility for many biomedical applications [38]. From a fundamental question, it is 

unknown if the physical and chemical gels share the same critical exponent [27]; here, the 

polyelectrolytes form a gel by physical mechanism differently from the physical gelatin gel. So thus, 

a the question arises on the possibility of keeping the critical exponent is the same for all types of 

gels independently of crosslinking mechanisms. Additionally, no in situ work has been reported on 
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the formation of PECs during gelation and their impact on viscoelastic properties has been studied. 

DWS-microrheology is a good experimental technique to study the structural evolution of the 

network, and describes how are the different relaxation modes at high-frequency regimens. 
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1.3 General and specific goals  

In general term 

The study of the effect of thread-like structures in the linear and nonlinear viscoelasticity of 

solutions and gels in different physicochemical conditions using rheometric and multiple light 

scattering as principal experimental techniques.  

 

In specific terms 

v To obtain the linear and nonlinear viscoelasticity behavior of Wormlike Micelles (WLMs) 

solution made with different amphiphiles and to correlate the mechanical response with the 

elasticity forces. Using Diffusive Wave Spectroscopy (DWS) micro-rheology, to measure the 

mean square displacement of microspheres embedded in the micellar fluids to obtain the high-

frequency viscoelasticity spectrum and, subsequently, the mesoscopic characteristic lengths 

of the WLMs. Using the information on characteristic lengths, rheological response, and 

elasticity, to find the relationship between elasticity and a mesoscopic length parameter to 

understand the origin of the contribution of elastic forces from a molecular point of view in 

the dynamics of WLMs solutions. 

v To obtain the linear and nonlinear viscoelasticity behavior of gelatin gels like flexible polymer 

model in different situations, depending on the process of forming their links: physical, 

chemical, or hybrid. The viscoelasticity properties correspond to the gel point and mature 

estate. DWS microrheology technique is used for kinetic description regarding the relaxation 

of chains and their mesoscopic lengths at different times before starting the gelation process. 

With these characterizations, it is possible to obtain the connection between the mesoscopic 

evolution of the network with the viscoelasticity properties and some network parameters, 

such as a critical exponent (n) in the gel point and the fractal dimension (df) in the mature gel. 

v In the same way as gelatin gels, obtain the linear and nonlinear viscoelasticity behavior of 

chitosan, alginate, and their mixture are obtained using a flexible charged polymer model in 

different situations; the linking process is physical. Using DWS microrheology results, to 

establish a connection between the mesoscopic evolution of the network with the 

viscoelasticity properties and some network parameters such as n and df parameters. 
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2. Theory 
2.1 Theory of polymers  

The term polymer defines a molecules formed by many elementary units, called monomers 

connected by covalent bonds. Generally, these macromolecules are made up of between 20 to 10 

million monomers. Polymers formed by less than ten monomers are called oligomers. In addition, 

if the polymeric chain is made up of monomers of the same type, it is called a homopolymer. On 

the contrary, if the monomers are of different types, they are called heteropolymers. Other side, 

many shapes may that polymeric chains can adopt. In particular, there are two simple cases: 1) 

Flexible polymers where, for a sufficiently large scale, the polymer adopts a shape like spaghetti, 

and ii) as a rigid rod. Both cases are shown in Fig. 2.1. [5]. The above cases are extreme, and 

intermediate cases, e.g., semi-flexible polymers, can be found.  

 
Figure 2.1. a) Flexible polymer, b) rigid rod polymer, c) and d) their concentrated solutions, respectively. 
Image from [5]. 
 

Polymer solutions are obtained by dissolving a polymer in a solvent. They are classified 

based on the volume fraction ϕ = c/ρ, where c represents the polymer mass concentration and ρ 

denotes the density. If ϕ is less than the overlap volume fraction ϕ* (the concentration at which 

there is no crosslinking of the chains), the polymer solution is categorized as dilute. Conversely, 

when ϕ > ϕ*, the solution is considered semi-dilute, indicating the presence of overlap [43]. 

2.1.1 Flexible polymers 

A polymer chain can be characterized by a specific stiffness, and qualitatively can be 

described by the ratio of two characteristic lengths: The contour length, Lc, and the persistence 

length, lp. The contour length is the length of the entire polymeric chain, and the persistence 
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length is understood as the rigid section of the chain. It is related to the elastic modulus of 

curvature κ as lp ≈ κ⁄(kBT). Considering the extreme cases, when Lc ≫	lp, we are dealing with flexible 

polymers, and, on the contrary, if Lc ≪ lp, we speak of rigid bar-type polymers. The persistence 

and contour lengths are similar in semiflexible polymers, i.e., Lc ≈ lp. 

For flexible polymers, the relationship between the scale’s lengths is such that the polymer 

is simulated as a random walker with a step length, b (∼	lp) smaller than the polymer’s total length. 

Under these conditions, at room temperature, it is possible to study the polymer with a Langevin 

approximation in which the polymer constituents are constantly subjected to random forces given 

the beating of the solvent molecules with the polymer chain.  

The Rouse model. The dynamic of polymer solutions can be described by a set of beads 

connected along the chain, under the assumption that their dynamic is Brownian. This model was 

proposed by Rouse [69] and has been the basis for the dynamics of dilute polymeric solutions. The 

following discussion can be seen in detail in the textbook The Theory of Polymer Dynamics by M. 

Doi & S. F. Edwards [5]. If {Rn} ≡ (R1, R2, ...,RN) are the positions of the beads, the equation of motion 

describing the polymeric chain is: 

𝜕
𝜕𝑡 𝑹"

(𝑡) =5𝑯𝒏𝒎 ⋅ 8−
𝜕𝑈
𝜕𝑹%

+ 𝒇%(𝑡)= +
1
2𝑘&𝑇5

𝜕
𝜕𝑹%

⋅ 𝑯"%
%%

, 
(2.1) 

where fm(t) is the stochastic force, and Hnm is the mobility tensor. The last relationship is referred 

to Langevin equation. It is important to note that it is not considered the inertia of the polymer 

chain, so the second derivative concerning time disappears. 

The Rouse model considers a harmonic potential and does not take into account the 

excluded volume interaction (interaction between two segments of the same chain) and 

hydrodynamic interactions considering that the chain is surrounded by vacuum. The mobility 

tensor and the interaction potential can be written as: 

𝑯%" =
𝑰
𝜁 𝛿"%, 

(2.2) 

𝑈 = '
(
∑ (𝑹" − 𝑹")*)(+
",(  with 𝑘 = -'!.

/"
 (2.3) 

where b is the link length between two beads, and ζ the mobility. In this model, the Eq. 2.1 

becomes a linear equation for Rn. For internal beads (n = 2, 3, …, N-1),  
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𝜁
𝑑𝑹"
𝑑𝑡 = −𝑘(2𝑹" − 𝑹"0* − 𝑹")*) + 𝒇". 

(2.4) 

And, for end beads (n = 1, and N): 

𝜁
𝑑𝑹*
𝑑𝑡 = −𝑘(𝑹* − 𝑹() + 𝒇*			&			𝜁

𝑑𝑹+
𝑑𝑡 = −𝑘(2𝑹" − 𝑹"0* − 𝑹")*) + 𝒇". 

(2.5) 

The distribution of fn(t) is Gaussian, characterized by the first and second moment as: 

〈𝑓"(𝑡)〉 = 0			&			〈𝑓"1(𝑡)𝑓%23 (𝑡3)〉 = 2𝜁𝑘&𝑇𝛿"%𝛿12𝛿(𝑡 − 𝑡3). (2.6) 

The suffix n in the Rouse model can be regarded as a continuous variable. In the continuous limit, 

the Eq. 2.4 is written as: 

𝜁
𝜕𝑹"
𝑑𝑡 = 𝑘

𝜕(𝑹"
𝜕𝑛( + 𝒇". 

(2.7) 

The Eq. 2.5 is included in the last equation if the hypothetical beads R0 and RN+1 are defined as R0 

= R1 and RN+1 = RN, respectively, which become in the continuous limit as: 

𝜕𝑹"
𝜕𝑛 N",4

= 0			&			
𝜕𝑹"
𝜕𝑛 N",+

= 0. (2.8) 

Also, the moments of the random forces are now given as: 

〈𝑓"(𝑡)〉 = 0			&			〈𝑓"1(𝑡)𝑓%23 (𝑡3)〉 = 2𝜁𝑘&𝑇𝛿(𝑛 − 𝑚)𝛿12𝛿(𝑡 − 𝑡3). (2.9) 

Equations 2.7, 2.8, and 2.9 defined the continuous Rouse model. The Rouse model displays the 

general features of any model that assumes local interaction. The Rouse model represents the 

long-time-scale behavior of the local jump model one in the same way as the Gaussian chain 

represents the large large-scale properties of a polymer with only short-range interaction.  

 Eq. 2.7 represents a Brownian motion motion of a couple of oscillators. A standard way of 

training such a system is to find the normal independent coordinates. In terms of the coordinates 

Xp, defined by,  

𝑿5 ≡
*
+ ∫ 𝑑𝑛+

4 cos V56"
+
W𝑹"(𝑡)with 𝑝 = 0, 1, 2, …, (2.10) 

equation 2.4 can be rewritten as  

𝜁5
7
78
𝑿5 = −𝑘5𝑿5 + 𝒇5, (2.11) 

where,  

𝜁4 = 𝑁𝜁			&			𝜁5 = 2𝑁𝜁 for 𝑝 = 1, 2, …, (2.12) 
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𝑘5 =
(6"'5"

+
= 96"'!.

+/"
𝑝(  for 𝑝 = 0, 1, 2, …, (2.13) 

and the fp's are the random forces which satisfy  

〈𝑓12〉 = 0, 〈𝑓51(𝑡)𝑓:23 (𝑡3)〉 = 2𝛿5:𝛿12𝜁5𝑘&𝑇𝛿(𝑡 − 𝑡3). (2.14) 

Since, the random forces are independent of each other, the motions of the Xp’s are also 

independent. Thus the motion of the polymer is decomposed into independent modes. The 

normal coordinate Xp with p > 0 represents the internal conformation of the polymer. Consider for 

example the end-to-end vector, P(t) ≡ RN(t) - R0(t), which is expressed by Xp as,  

𝑷(𝑡) = −4 5 𝑿5(𝑡)
5:<==	!"8?@?A

. (2.15) 

One may calculate the time correlation function as: 

〈𝑷(𝑡) ⋅ 𝑷(0)〉 = 𝑁𝑏(∑ B
5"6"

exp(− 85"

C#
)5,*,-,…  with 𝜏* =

F#
'#
= F+"/"

-6"'!.
. (2.16) 

The last equation indicates that the first mode X1, mainly governs the movement of the end-to-

end vector. In general, Xp represents the local motion of the chain, which includes N/p segments 

and corresponds to the motion with the length scale of the order [Nb2)⁄p]1/2.  

 The rotational relaxation time τr of a polymer can be defined by the longest relaxation time 

of the correlation function 〈𝑷(𝑡) ⋅ 𝑷(0)〉: 

〈𝑷(𝑡) ⋅ 𝑷(0)〉 ∝ exp(− 8
C$
) for 𝑡 ≳ 𝜏A . (2.17) 

Since N is proportional to the molecular weight M, it is possible to indicate the molecular weight 

dependence for τr and self-diffusion constant of the center of mass, DG as: 

𝐷G =
'!.
+F

∝ 𝑀)*   &   𝜏A =
F+"/"

-6"'!.
∝ 𝑀(. (2.18) 

Here, DG is defined as 𝐷G = lim
8→I

*
98
〈h𝑹G(𝑡) − 𝑹G(0)i

(〉, where 𝑹G ≡
*
+ ∫ 𝑑𝑛+

4 𝑹" = 𝑿4 (X0 

represents the position of the center of mass). The Rouse model is conceptually quite important; 

nevertheless, it is inappropriate for dilute polymer solutions because it neglects the 

hydrodynamics interactions. However, it has also turned to be a useful model for the dynamics of 

polymers in melts. 

 The Zimm model in Θ conditions. To describe the dynamics of linear chain with Gaussian 

chain statistics in dilute solutions, taking into account the average hydrodynamics interactions one 

may express: 
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𝑯"% = *
B6J%|𝒓&'|

[𝒓l"%𝒓l"% + 𝐼] for 𝑛 ≠ 𝑚 (2.19) 

where rnm ≡ Rn - Rm and 𝒓l"% is the unit vector in the direction of rnm. Considering the Eq. 2.19, the 

Langevin equation (see Eq. 2.1) change to,  

7
78
𝑹" = ∑ 𝑯"% ⋅ V− 7M

7𝑹'
+ 𝒇%(𝑡)W% , (2.20) 

Transforming the last equation in the continuous limit and into normal coordinates, the Eq. 2.20 

change to,  

𝜁5
𝜕
𝜕𝑡 𝑋5

(𝑡) = −𝑘5𝑋5 + 𝑓5(𝑡) 
(2.21) 

where,  

𝜁5 = (12𝜋-)*/(𝜂P(𝑁𝑏(𝑝)*/(			&			𝜁4 =
-
B
(6𝜋-)*/(𝜂P𝑏√𝑁 for 𝑝 = 1, 2, … (2.22) 

𝑘5 =
96"'!.
+/"

𝑝( for 𝑝 = 0, 1, 2, … (2.23) 

Given 𝜁5 and 𝑘5, the diffusion constant and the relaxation time are obtained as 

𝐷G = 0.196 '!.
J%QR

, (2.24) 

𝜏5 = 𝜏*𝑝)-/( with 𝜏* = 𝜏A = 0.325 J%Q
R(

'!.
 (2.25) 

where 𝑅x = √𝑁𝑏. Equations 2.24 and 2.25 predict the molecular weight dependence of DG and τr 

as: 

𝐷G ∝ 𝑀)*/(   &   𝜏A ∝ 𝑀-/( (2.26) 

which agrees with experimental results [5]. This model describe a chain immersed in a poor 

solvent, sometimes called Θ solvent condicion, where to cancel the effects of exclude volume. 

Zimm model in a good solvent. So far, we have been considering the Θ conditions; the excluded 

volume interactions are taken into account if we add a potential, 

𝑈* =
1
2𝑣𝑘&𝑇5 𝛿(𝑹" − 𝑹𝒎)

",%
, (2.27) 

where v is the excluded volume. If such potential is introduced, the Langevin equation becomes 

nonlinear; however, it is possible to treat the problem in a simple way by assuming the linear 

behavior,  

𝜁5
𝜕
𝜕𝑡 𝑿5

(𝑡) = −𝑘5𝑿5 + 𝒇5(𝑡) 
(2.28) 
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and include the excluded volume effect in the parameters ζp and kp. The resolution of Eq. 2.28 is 

quite difficult and may be seen in detail in [5]. The parameters DG and τr for this model are: 

𝐷G ≈
'!.
J%+)/

   &   𝜏A ≈
J%+()/(

'!.
 (2.29) 

where 𝜈 is a parameter that senses the interaction between two segments in the polymer chain. 

Using 𝑅@ ≈ 𝑁S𝑏, Eq. 2.29 can be written in the same form as Eq. 2.26,  

𝐷G ≈
'!.
J%Q*

   &   𝜏A ≈
J%
'!.

𝑅@-. (2.30) 

These results are the same as for rigid spheres [5]: the characteristic behavior of the dilute solution 

is quite similar to the suspension of spheres of radius Rg. This model represents a chain in which 

the interaction between the polymer segments and the solvent molecules is energetically 

favorable, which will cause the polymer chain to expand. This condition is sometimes referred to 

as good solvent condition. 

 Equations 2.18, 2.26, and 2.30 represent the mesoscopic parameters, DG and τr, for 

different models assuming different hypotheses concerning the interaction between polymer 

chains and the medium. At the mesoscopic level, the interaction between chains and the medium 

is intimately related to viscoelasticity parameters, e.g., intrinsic viscosity [η] and complex modulus 

G*(ω) = G’(ω) + iG’’(ω); in the next section will mentioned in detail about G*(ω). For example, the 

intrinsic viscosity can be evaluated as: 

[𝜂] = ++'!.
TJ%

∑ F,
(',

I
5,* . (2.31) 

The sum is evaluated for various models:  

i) The Rouse model:  

[𝜂] = ++
TJ%

+"/"F
96"

∑ *
5"
= ++

TJ%

+"/"F
-9

I
5,* . (2.32) 

ii) The Zimm model for Θ solvent: 

[𝜂] = ++
T

U√+/W
(

√*(6
∑ 𝑝)*.Y = ++

T
0.425h√𝑁𝑏i

-I
5,* . 

(2.33) 

iii) The Zimm model for good solvent: 

[𝜂] = ++
T
𝑁-S ∑ 𝑝)-S𝑏- = ++

T
𝑁-S𝑏-I

5,* . (2.34) 

Writing the molecular weight dependence of [η], [𝜂] ∝ 𝑀S-, as: 
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𝜈J = |
1																														𝑅𝑜𝑢𝑠𝑒	𝑚𝑜𝑑𝑒𝑙	(𝑖𝑑𝑒𝑎𝑙	𝑐ℎ𝑎𝑖𝑛	𝑖𝑛	𝑣𝑎𝑐𝑢𝑢𝑚),

0.5																										𝑍𝑖𝑚𝑚	𝑚𝑜𝑑𝑒𝑙	(Θ	𝑠𝑜𝑙𝑣𝑒𝑛𝑡),
3𝜈 − 1 = 0.8														𝑍𝑖𝑚𝑚	𝑚𝑜𝑑𝑒𝑙	(𝑔𝑜𝑜𝑑	𝑠𝑜𝑙𝑣𝑒𝑛𝑡).

 
(2.35) 

The viscoelasticity moduli can be calculated in the same way as the intrinsic viscosity; its functional 

forms are: 

𝐺3(𝜔) = ∫ 𝑑𝑡𝜔 sin(𝜔𝑡)∑ exp �− 8
C,
� = ∑ UZC,W

"

*0UZC,W
"

I
5,*5

I
4 , 

(2.36) 

𝐺33(𝜔) = ∫ 𝑑𝑡𝜔 cos(𝜔𝑡)∑ exp �− 8
C,
� = ∑ UZC,W

*0UZC,W
"

I
5,*5

I
4 . (2.37) 

Where the relaxation time τp can be written as: 

𝜏5 =
F,
(',

= 𝜏*𝑝)[, where 

𝜇 = |
2																															𝑅𝑜𝑢𝑠𝑒	𝑚𝑜𝑑𝑒𝑙	(𝑖𝑑𝑒𝑎𝑙	𝑐ℎ𝑎𝑖𝑛	𝑖𝑛	𝑣𝑎𝑐𝑢𝑢𝑚),

3/2																											𝑍𝑖𝑚𝑚	𝑚𝑜𝑑𝑒𝑙	(Θ	𝑠𝑜𝑙𝑣𝑒𝑛𝑡),
3𝜈																							𝑍𝑖𝑚𝑚	𝑚𝑜𝑑𝑒𝑙	(𝑔𝑜𝑜𝑑	𝑠𝑜𝑙𝑣𝑒𝑛𝑡).

 

(2.38) 

The expressions for viscoelasticity moduli are simplified in two cases. 

i) ωτ1 ≪	1: In this case, G'(ω) and G''(ω) are approximated as 

𝐺3(𝜔) = (𝜔𝜏*)(5𝑝)([
I

5,*

, 
(2.39) 

𝐺33(𝜔) = 𝜔𝜏*5𝑝)[
I

5,*

. 
(2.40) 

Hence, G'(ω) and G''(ω) are proportional to ω2 and ω, respectively.  

ii) ωτ1 ≫	1: In this case, the sum over p can be replaced by an integral so that: 

𝐺3(𝜔) = (𝜔𝜏*)*/[
𝜋

2𝜇 sin(𝜋/2𝜇), 
(2.41) 

𝐺33(𝜔) = (𝜔𝜏*)*/[
𝜋

2𝜇 cos(𝜋/2𝜇). 
(2.42) 

For different cases, can be shown that: 

Rouse model (μ = 2): 

𝐺3(𝜔) = 1.11(𝜔𝜏*)*/(			&			𝐺′′(𝜔) = 1.11(𝜔𝜏*)*/(. 

(2.43) 

Zimm model in Θ solvent (μ = 3/2): 

𝐺3(𝜔) = 1.21(𝜔𝜏*)(/-			&			𝐺′′(𝜔) = 2.09(𝜔𝜏*)(/- 

(2.44) 
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Zimm model in Θ solvent (μ = 9/5): 

𝐺3(𝜔) = 1.14(𝜔𝜏*)Y/\			&			𝐺′′(𝜔) = 1.38(𝜔𝜏*)Y/\ 

(2.45) 

The last three equations may be interpreted as a bridge between rheological behavior and the 

relaxation dynamics of polymeric chains. For example, if the complex modulus scale as |G* (ω)| 

∼	ω5/9 at high frequency, the dynamic of polymer chains corresponds to Zimm modes in Θ solvent. 

In this work, Zimm modes in Θ solvent are sometimes called Rouse-Zimm modes because the 

model captures the hypotheses of both models. 

 At higher polymer concentrations, the presence of other chains will affect its dynamics. To 

explain chain relaxation, Doi and Edwards developed the reptation model proposed by de Gennes 

[44]. Relaxation gradually uncouplies each chain that diffuses along its contour, simulating a tube. 

The tube is formed with neighboring chains representing a set of obstacles normal to the contour 

of the chain. Finally, each chain repels out of its original tube, and a new tube is created at 

equilibrium where there is no more stress. In the following sections, we show a diagram to explain 

the reptation model (see Fig. 2.4). The reptation of the chain through its tube modifies the 

viscoelasticity of the system, i.e., the Rouse dynamics is stopped by the tube constrictions, and the 

relaxation modulus is proportional to the fraction ψ(t) of the polymer that is confined in the tube, 

then: 

𝐺(𝑡) = 𝐺4𝜓(𝑡) = 𝐺4 5
8

𝑝(𝜋( exp	 �
−𝑝(𝑡

𝜏Q� �
5;!%5^A

, (2.46) 

where 𝜏Q  is the relaxation time. At high frequencies, the polymer dynamics follows the Rouse 

model, and at short frequencies, the reptation dynamics is manifested. Furthermore, Cates [60] 

found that the relaxation modulus can be approximated as 𝐺(𝑡)~ exp V− 8
C.
W
*/_

, with 𝜏Q  a 

relaxation time with the contribution of multiple times. 

2.1.2 Semi-flexible polymers 

Morse proposed a model to predict the viscoelastic properties of semi-flexible polymers 

[45–47]. He considers a “tightly–entangled” solution in which the mesh size is shorter than the 

persistence length (ξ ≪	lp), and each polymer is confined to a diameter tube shorter than lp. The 

dynamic of the polymer chain is described by the reptation model analogous to the Doi-Edwars 
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model [5], where: i) Each polymer is confined to a weakly-curvature tube, ii) tangential motion of 

the polymer relative to the tube is resisted only by viscous forces, and iii) the tube deforms affinely. 

Under last consideration, the intermolecular stress can be discretized in three terms: 

- i) The curvature stress, which contains both purely mechanical bending energy, and entropic 

contributions arising from the orientational entropy of the links. It can be proven that any 

bending joint exactly vanishes when the curvature in that joint is locally equilibrated.  

- ii) The orientational entropy, which is a residual contribution of the link orientational entropy 

from the two end links.  

- iii) The tensorial stress that arises from the link tension.  

The model predicts that the relaxation of individual polymer chains controls entirely the shear 

modulus at high frequencies. When a polymer network is shared, the thermal modulation of the 

stifness polymer section is either compressed or stretched, depending on their orientation 

concerning the shear direction. Since the filaments are practically inextensible along their contour, 

the chain conformations rethermalize by a redistribution of their bending modes, leading to a 

characteristic scaling of the polymer contribution to the shear modulus as G*(ω) ∝	ω3⁄4: 

𝐺∗(𝜔) ≈
1
15𝜌𝜅𝑙5

(−2𝑖𝜁 𝜅⁄ )- _⁄ 𝜔- _⁄ − 𝑖𝜔𝜂, (2.47) 

where ρ is the density, κ is the bending stiffness (κ = lp/(kBT)), and ζ is the lateral drag coefficient 

per unit length [48]. 

 

2.2 Living polymers: Wormlike micelles solutions 

The last section discussed the dynamic of polymer systems and different assumptions 

about the relaxation process, e.g., in Rouse-Zimm modes, and bending modes. One of the most 

important hypotheses is that the polymer chains do not change their structure, length, or topology 

within experimental timescales; here, the polymer chain is the same. However, when the polymer 

chain does not obey the last constraints, the system formed for these polymer chains is called 

“living polymer.” Living polymers are different from their non-living counterparts as random 

architectural changes such as break, fusion, and recombination alter the initial architecture of 

polymers on timescales similar to their relaxation time [6]. The following will discuss the structure 

and dynamics of wormlike micelles solutions (WLMs) as an example of a living polymer; WLMs 
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share the same mesoscopic scales and relaxation mechanisms of polymer chains, in addition to 

the process of breakage and recombination.  

 

2.2.1 Structure and Relaxation Dynamics  

Surfactants are amphiphilic molecules consisting of a non-polar hydrophobic portion 

attached to a polar or ionic portion (hydrophilic part). The hydrophilic portion may be nonionic, 

ionic, or zwitterionic, and in the latter two cases, accompanied by the counterion. In aqueous 

media, the hydrocarbon chain interacts weakly with water molecules. In contrast, the polar head 

interacts strongly with water through ion-dipole interactions, adopting most possible 

conformations and maximizing entropy. The balance between the hydrophobic and hydrophilic 

parts in the amphiphile confers exciting properties, e.g., accumulation in the interface or their 

association with forming aggregates called micelles [49]. At low surfactant concentrations, many 

dissolution properties are similar to electrolyte solutions except for lowering surface tension, 

which decreases with increasing concentration. However, as the concentration increases, the 

solution properties change for a particular critical micelle concentration (CMC). Above the CMC, 

the amphiphilic molecules associated in micelles with the former aggregates are generally 

spherical, and the surface tension remains constant with increasing concentration [49]. 

For micelles embedded in a polar solvent, the hydrophobic groups are directed towards 

the interior of the aggregate and the polar groups towards the solvent, thus reducing the contact 

between the hydrocarbon chain and the water and decreasing the system’s free energy. The 

morphology of these aggregates can vary in shape and size, and their final structure depends on 

different parameters such as geometric constraints imposed by the surfactant, concentration, 

ionic strength of the solution, temperature, etc. [7]. The forces that determine the association of 

surfactants in defined structures, and hence their curvature, are hydrophobic effects (when chains 

are brought together) and repulsion between polar groups (of electrostatic origin for ionic groups 

and steric for non-ionic groups) resulting in geometrical parameters. These considerations are 

represented by the geometrical parameter p:  

𝑝 =
𝑉
𝑎4𝑙b

, (2.48) 
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where 𝑉 is the volume of the hydrophobic chain, lc is the effective chain length, and a0 is the 

surface area of the polar head. Figure 2.2a shows these characteristic lengths and interactions 

between surfactant molecules. a0 is the most significant factor determining the competition 

between the interaction between hydrophilic and hydrophobic parts of the amphiphilic. 

Israelachvili [50]showed that spherical micelles are obtained with p < 1/3; for 1/3 < p < 1/2 

obtained non-spherical micelles may be obtained (e.g., cylindrical micelles); for 1/2 < p < 1 a flat 

micellar system is achieved, and with p > 1 inverse micelles (e.g., water in oil). One intriguing aspect 

of surfactant behavior is its adaptability. For instance, the curvature of micelles can be altered by 

modifying the molecular structure, which in turn changes the value of a0. For example, increasing 

the ionic concentration reduces the electrostatic repulsion between the charged groups by 

shielding, so, a0 decreases, promoting the transition from spherical to cylindrical micelles [51].  

  
Figure 2.2. a) Micelle formation according to the geometric model from [51]; the amphiphilic lengths show 
in the imagen. b) WLMs formation according to amphiphilic concentration from [52]; here, can be 
appreciated different regimens concentration. 
 

Wormlike micelles (WLMs) formation occurs when spherical micelles fuse to form a 

cylindrical, elongated, and uniform aggregate, thus conferring two very important characteristics: 

an elongated cylindrical shape and flexibility [7]. One way to induce the transition to WLMs is by 

increasing the surfactant concentration above the CMC, promoting the uniaxial growth of the 

micelles to cylindrical [53]; Figure 2.2.b shows WLM formation with increasing amphiphilic 

concentration. The packing of amphiphiles into elongated cylindrical micelles is determined by the 

entropy/energy balance. Energy is minimized when the curvature is uniform throughout the 

formation of infinitely long linear structures. However, the system’s entropy introduces a degree 
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of randomness through the bending of the cylinders and by topological defects in the form of end 

caps or chain attachment points. If the scission energy of a WLM (the energy required for creating 

two end caps from an infinite cylinder) is sufficiently large, then the semi-flexible linear micelles 

may become very long and entangled. On the other hand, end caps increase entropy by increasing 

the number of micelles in the system.  As a result, although the occurrence of topological defects 

is due to entropy, the spontaneous curvature of the amphiphile establishes the type of defect that 

determines the system’s structure. Also, branch junction points increase the number of possible 

configurations and entropy, enable percolation, and form extended micellar networks, leading to 

a multi-connected rather than an entangled network of WLMs. 

As with flexible polymers, three important lengths relate to the flexibility and mobility of 

these systems: cross-section radius rc, persistence length lp, and the contour length LC, which are 

shown in Figure 2.3. If amphiphilic concentration increases, a network distinguishes two new 

lengths: the mesh size ξ, and entanglement length le. The cross-section radius is associated with 

the amphiphilic chain length of amphiphilic; rc is independent of concentration and order of a few 

nanometers [55]. The contour length is determined by the surfactant structure, with values from 

hundreds of nanometers to micrometers [55]; contrary to rc, LC depends on the fraction volume 

of surfactant volume, φ. When micelles are strongly screened or neutral, it can be shown, with a 

mean-field approach, that the variation of LC with φ obeys a power law 𝐿c ≈ 𝜑* (⁄ exp(𝐸b/2𝑘&𝑇), 

with Ec energy incision of chain. The persistence length lp is related to the elastic modulus of 

curvature κ as lp ≈ κ/(kBT); it may understood as the rigid section of the cylindrical body, and usually 

with values of a few tens of nanometers [55]. Also, lp depends on the local environment, such as 

charged surfactant groups, the hydrocarbon chain length, and the dependence on control 

parameters, e.g., ionic strength, temperature, etc. [7]. Figure 2.3 shows the mesoscopic 

characteristic lengths of WLM in a semidilute regimen.  
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Figure 2.3. Mesoscopic structure of wormlike micelles. Image from [56]. 

 

With respect to the dynamic relaxation processes of WLMs, after applying shear strain to 

a micellar solution, the stress accumulated in the network must be released through a relaxation 

mechanism, breaking and recombination process, and the reptation of micellar chains. The 

reptation model for polymers was proposed by Doi and Edwards [5]. The reptation process 

consists of a gradual uncoupling of some chains, diffusing along its own contour, which is a tube 

simulation. This tube is formed with neighboring chains, representing a set of obstacles normal to 

the contour of the chain. Eventually, each chain scapes from its original tube, and a new tube is 

created at equilibrium, with no more stress [8,57]. Cates in the late 80's [8,57] proposed a 

relaxation model for living polymers (Figure 1.3) that describes the viscoelastic behavior (in a linear 

regime), including in the reptation model the breaking-recombination mechanism. Here, 

distinguishing two times, reptation time τrep, and the breaking-recombination time τb with τb ≪	

τrep; the chains break and recombine frequently before the chain disengages from its tube by 

reptation. Initially, a tube of length x is considered, and away from the tube boundaries, the chain 

breaks within a distance, traversed by reptation, of λ along x. This new segment diffuses and 

combines with a new chain recombining, creating a new tube that, at equilibrium, is stressless. 
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Figure 2.4. In the left-hand reptation Doi-Edwards’s model, and on the right-hand Cates’ reptation model. 
For reptation model: a) the chain is inside its tube, b) and c) the chain diffuses and d) the chain is completely 
unhooked from its tube. In the Cates model: a) The chain has crawled a length λ, b) chain breakage occurs, 
c) the chain diffuses through the tube and c) the chain recombines. Image from [8]. 

 

Considering the Cates relaxation model, it is obtained that the stress decays exponentially 

and can be described by a simple exponential function: 

𝜎(𝑡, 𝛾̇) = 𝜎4(𝛾̇) exp �−
𝑡
𝜏Q
� , (2.49) 

where τR is the relaxation time and equal to the geometric mean of τrep and τb, i.e., 𝜏 = �𝜏/ ⋅ 𝜏A?5. 

Mono exponential decay motives the description of the linear viscoelasticity of WLMs solutions by 

two parameters: the elastic modulus G0 and the relaxation time defined as τR = η0/G0; both 

quantities can be extracted from the linear viscoelasticity spectra [8].  

 Inherently, there is a relationship between mesoscopic structure and relaxation dynamics 

of micellar chains; this relationship may help obtain mesoscopic length values of micellar 

networks. As a summary: At time scales shorter than WLM breaking-recombination time, 

corresponding to high frequencies, the Maxwellian stress relaxation processes are fundamentally 

frozen; here, the WLM chain behaves like flexible polymer chains. So, the stress relaxes according 

to flexible polymer, first dominated by the Rouse-Zimm modes and at higher frequencies by 

internal relaxation of Kuhn segments. As mentioned above, G*(ω) exhibits a power-law behavior, 

|G*| ∼	ων in both regimens; for the Rouse-Zimm regime with an exponent ν ∼	5/9, which shifts 

to ν ∼	3/4, where the internal bending modes of Kuhn segments dominate. That change occurs at 

a frequency ω0, which is related to the persistence lengths as [58]:  
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𝜔4 ≈
𝑘&𝑇
8𝜂P𝑙5-

, (2.50) 

where ηs is the solvent viscosity. De Gennes [59]proposed the relationship with scaling arguments; 

here, the elastic blob ξ is a characteristic size of elastically effective chains where G0 is written as 

the product of the number density of elastic blobs ρel, as G0 = ρelkBT with the size of an elastic blob 

(the mesh size) is 𝜉 = 𝜌?d
)*/-. However, this model does not consider the reptation model which 

has included a recent correction by Zou & Larson [16]: 

𝜉 ≅ V𝐴 ⋅ '!.
G/
W
*/-

 with 𝐴 = 9.75 (2.51) 

In the same way, le can be calculated using a relationships proposed Grenek & Cates [60]:  

𝑙? =
e0/(

d,
"/( . (2.52) 

Finally, the contour length can be estimated by incorporating breathing and high-frequency Rouse 

modes. The exponent in this equation is a correction given by Granek [61]: 

𝐺%!"33

𝐺4
≅ �

𝑙?
𝐿c
�
4.B

, 
(2.53) 

where G’’min is a local minimum of G’’(ω) after the first crossing between G'(ω) and G’’(ω). The 

following section shows a summary methodology for obtaining G0, G’’(ω), and ω0, experimentally 

and, consequently, the characteristic mesoscopic lengths. 

2.2.2 Shear banding phenomena and inertia-elastic instabilities 

As the concentration of amphiphilic increases above c*, a transition similar to the first 

order transition occurs, from an isotropic disordered phase to an oriented nematic phase, which 

is typical of liquid crystals [62]. The phase diagram depends on the surfactant, salt concentration, 

and temperature. Figure 2.5 shows the phase diagram showing the isotropic and nematic 

transition.  
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Figure 2.5. Phase diagram corresponding to a CPCl-Hex WLMs solution. The quantity 〈𝑑〉 refers to the 
average distance between neighborhoods micelles and q* the scattering vector in a light scattering 
experiment. Image from [62].  
 

A similar transition from isotropic to nematic state can be seen when a shear strain is 

applied to a WLMs solution; an intrinsic tendency to align the chains with each other can be 

enhanced by disturbing the equilibrium between the micelles’ isotropic to nematic phase 

transition [63]. Above a shear strain, the homogeneous flow becomes unstable because of the 

alignment of the chains. Then, the sample separates into macroscopic bands that coexist with 

different viscosities and structures [64]. This phenomenon is called shear banding and has been 

widely studied [9–13,17,62–65]; the separation occurs along the velocity gradient. The typical flow 

curve of a system exhibiting shear banding is shown in Figure 2.5.c. When	𝑑𝜎/𝑑𝛾̇ < 0, the flow is 

homogeneous and unsteady [65]; this triggers the formation of bands that coexist between two 

shear velocities and at constant stress. The isotropic-nematic transition obeys the lever rule, with 

𝛾̇* < 𝛾̇ < 𝛾̇(: 

𝛾̇ = 𝛾̇*(1 − 𝛼) + 𝛾̇(𝛼, (2.54) 

where α is the volume fraction corresponding to the induced phase shear strain. The last equation 

is valid in a simple scenario where only two single bands coexist: the isotropic and nematic bands. 
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Figure 2.5. Isotropic - nematic transition for a TC geometry. a) Homogeneous flow, b) inhomogeneous flow 
where isotropic and nematic phases coexist between them, and c) typical flow curve. Image from [66]. 
 
 For a weak flow, the measurement geometry defines the velocity profile of the flow, where 

flow symmetry breaks when the flow is strong enough to eventually become turbulent. The 

understanding of instabilities is primarily attributed to the compression of the Concentric Cylinder 

system, often called Taylor-Cuette (TC geometry) [18]. In the case of Newtonian fluids, such as 

water, the original study by Reynolds in 1883 takes inertia as the parameter that determines 

instabilities. The Reynolds number, a crucial factor in fluid dynamics, controls this parameter. The 

Reynolds number, defined as Re ≡ (dU)⁄ν, where d is a characteristic length along the velocity 

gradient, U is a characteristic velocity, and ν the kinematic viscosity defined by ν = η⁄ρ with ρ 

denoting the density. Re number is frequently interpreted as the ratio of inertial destabilizing 

forces to viscous stabilizing forces.  

Due to inertia in a Newtonian fluid, the Reynolds number can be rewritten in terms of a 

characteristic time (called sometimes viscous diffusive time) τi as 𝑅𝑒 = 𝜏!𝛾̇ where τi = d2/ν. In 

viscoelastic fluids, the relaxation upon perturbation brings an additional characteristic time τR due 

to the material's internal structure [18]. For example, in polymeric or micellar solutions, the 

internal structure can be altered by the imposition of a flow, and such structural change, in turn, 

can modify the flow [19]. It has been known since 1990 that flow instabilities can occur in complex 

fluids at low Reynolds [15,67]. For example, with experiments on polymer solutions and linear 

stability analysis of viscoelastic models, Learson [67] showed the existence of a purely elastic 

instability mechanism for a Cuette flow.  

In the small gap limit, instabilities are driven by the Weisenberg number, defined as 𝑊𝑖 =

𝜏Q𝛾̇	with τR a viscoelastic relaxation time. This relaxation time, a key parameter in viscoelastic fluid 

dynamics, is crucial in driving instabilities. The quantity driving the instabilities is the Taylor 

number, Ta = Λ1/2Wi. In polymeric fluids, τR can be the Rauss-Zimm time or reptation relaxation 
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time, depending on the cross-linking of the chains [19]. Learson concluded that vortex flow 

emerges when Ta > Tac, e.g., for a viscoelastic fluid described by the upper convective Maxwell 

model, one has a Tac ≈ 6 [67]. When the Reynolds and Weisenberg numbers are large, the 

instabilities are called elastic-inertial instabilities. Dimensional analysis suggests that the Taylor 

number regarding Re and Wi can be written as Ta = Λ1/2f(Re,Wi). The function f(Re,Wi) satisfies 

that lim
fd→4

𝑓(𝑅𝑒,𝑊𝑖) = 𝑅𝑒, and lim
fd→I	

𝑓(𝑅𝑒,𝑊𝑖) = 𝑊𝑖 where El is the elastic number defined as: 

𝐸𝑙 ≡
𝑊𝑖
𝑅𝑒 =

𝜏Q
𝜏!
, (2.55) 

here, El number drives the inertio-elastic instabilities. Figure 2.6 shows the elastic-inertial 

transitions for a WLMs solution without shear banding as a function of shear rate. For El ∼	1, 

micellar fluid undergoes a viscoelasticity transition called Elastically Dominated Turbulence (EDT), 

which is modified by the system's elasticity concerning a Newtonian fluid; this is an example of 

elastic-inertia instabilities in complex fluids which phenomenology is not yet fully understood [25]. 

 
Figure 2.6. Transition of inertio-elastic instabilities in a TC geometry of WLMs solution ([CTAB] = 0.1 M and 
[NaNO3] = 0.3 M at 30 oC). The nomenclature is: SV = Standing Vortex, DRSW = Disordered Rotating 
Standing Wave, EDT =Elastically Dominated Turbulence. Imagen from [19], which construction can be seen 
graphically in the supplementary material.  
 

2.3 Polymer gels 

A gel can be obtained from the covalent or attractive bonding between polymeric chains 

in solution, as exemplified in Figure 2.7. In solution, called a sol, the bonding of adjacent polymeric 

chains (junction points) can occur, forming progressively larger branched polymers. If the 
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crosslinking continues, larger branched polymers will still be obtained, and the molecule appears 

to encompass the entire system. If the crosslinking process continues, an infinite polymer is 

formed, forming a structure called a gel. The transition from a system that contains finite chains 

to a system containing infinite chains is called the sol-gel transition, and the critical point where 

the gel first appears is called the gel point [43]. Figure 2.7 shows a vignette of the formation of an 

infinite gel network.  

 

Figure 2.7. Linking points formation between flexible polymeric chains: a) four linking points, b) eight linking 
points, c) 10 linking points. Larger branched polymers are highlighted, and the tenth crosslinking point (in 
black) forms a single gel. Imagen from [43]. 
 

During the gelation process, crosslinking can occur by changing thermodynamic conditions 

such as temperature, pH, polymer concentration, or adding salts. The networks are held together 

in these gels by electrostatic interactions, hydrophobic or van der Waals interactions, or 

combinations of these, categorized as physical gels. There are also gels cross-linked by chemical 

bonds, such as e.g., disulfide bonds or reactions mediated by a catalytic agent, as in the case of 

rubbers, resulting in non-reversible gels categorized as chemical gels [26,68]. Additionally, a 

combination of these two crosslinking routes, by physical and chemical interaction, makes it 

possible to form physical-chemical gels. 

2.3.1 Gelation percolation model 

The following discussion can be seen in detail in the textbook Polymer Physics by M. 

Rubinstein & Colby, R. H. [43]. A bond percolation model can describe the sol-gel transition. In a 

simple bond percolation model, all lattice sites are assumed to be occupied by monomers. The 

chemical reaction between monomers is modeled by randomly connecting monomers on 

neighboring sites by bonds. The fraction of all possible bonds formed at any point in the response 
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is called the extent of reaction, p, which increases from zero to unity as the reaction proceeds. In 

this model, a polymer is represented by a cluster of monomers (sites) connected by bonds. When 

all possible bonds are formed, the reaction is completed (p = 1), and the polymers are a fully 

developed network. 

The system undergoes a connectivity transition at the percolation threshold or gel point 

pc. Slightly below the gel point, the system is a polymer-dispersed mixture of branched polymers 

(see Fig. 2.8a). Slightly beyond the gel point, the system is still mainly a polydisperse mixture of 

branched polymers, but one structure percolates through the entire system (see Fig. 2.8b). This 

structure is called the incipient gel, a weak structure quite different from the fully developed 

network above the pc. This connectivity transition from a sol below pc to a gel permeated with sol 

above pc is known as the gelation transition. 

At any specified extent of reaction p, the dimensionless number density of molecules with 

N monomers is n(p, N), defined as the number of N-monomers divided by the total number of 

monomers. This number density is proportional to the probability that a randomly selected 

polymer has N monomers, the number fraction of N-monomers nN(p). The sol fraction is defined 

as the fraction of all monomers that are either unreacted or belong to finite-size polymers (the 

sol): 

𝑃P<d(𝑝) = 5𝑁𝑛(𝑝,𝑁) = 5𝑤(𝑝,𝑁)
I

+,*

I

+,*

. 
(2.56) 

The last sum is only made over the finite-size species, meaning that above the gel point, the gel is 

excluded. Eq. 2.56 employs the definition of the dimensionless weight density of N-monomers, 

w(p, N). The weight density w(p, N) is the probability that a randomly chosen monomer is part of 

a polymer with N monomers and is equal to the weight fraction wN(p, N) times the sol fraction 

Psol(p). The gel fraction is defined as the fraction of all monomers belonging to the gel. Every 

monomer must be either part of the sol or part of the gel, so the sum of the sol and gel fractions 

is unity:  

𝑃@?d(𝑝) + 𝑃P<d(𝑝) = 1. (2.57) 

Below the gel point, all monomers are either unreacted or belong to finite-size polymers, and 

therefore, the sol fraction is unity, and the gel fraction is zero: 
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𝑃P<d(𝑝) = 1,     𝑃@?d(𝑝) = 0	    for 𝑝 ≤ 𝑝b; (2.58) 

above the gel point, the gel fraction is non-zero, and the sol fraction is less than unity. 

𝑃P<d(𝑝) < 1,     𝑃@?d(𝑝) > 0	    for 𝑝 > 𝑝b; (2.59) 

 
Figure 2.8. a) and b) Gelation is a bond percolation transition; the percolation cluster is indicated by 
darker shading. c) Mean-field prediction of sol and gel fraction for functionality f = 3. Imagen from [43]. 

 

The gel fraction is the probability that a randomly selected monomer belongs to the gel. 

The gel fraction is the order parameter for gelation similar to critical phenomena; here, the order 

parameter is continuous through the transition, which means that gelation is analogous to a 

continuous phase transition. The growth of the gel fraction is accompanied by a simultaneous 

decay of the sol fraction beyond the gel point, pc. Figure 2.8c shows a prediction for pc according 

consider to mean-field theory as well as the Psol and Pgel fractions.  

Once the idea of the percolation model has been clarified, a convenient way to discuss the 

sol-gel transition is to a bond percolation model on a Bethe lattice; here, one assumes that all 

lattice sites are occupied by monomers and the possible bonds between neighboring monomers 

are either formed with probability p or left unreacted with probability 1-p. In the simple version, 

called the random bond percolation model, the probability p of forming each bond is assumed to 

be independent of any other bonds in the system. The average number of bonds between the 

sites is p(f - 1); here, f is the functionality (number of neighboring sites capable of doing a link). If 

this average number of bonds p(f - 1) is less than unity (p < 1/(f - 1)), the structure of the lattice 

does not survive for long. If this average number of bonds p(f - 1) is greater than unity (p > 1/(f - 

1)), the structure of the linking lattice multiplies indefinitely, forming an infinite genealogical 

branched family tree. 

The transition between these two cases is the gel point: 
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𝑝b =
1

𝑓 − 1 
(2.60) 

Below the gel point (for p < pc) there are only finite-size branched polymers, while above the gel 

point (for p > pc) there is also at least one infinity polymer (the gel) in addition to many finite-size 

branched polymers. The distribution of polymer sizes changes with the fraction of formed bonds 

p. For small extends of reaction p ≪	pc there are only small polymers, while near the gel point 

some large branched polymers are present. A unique feature of percolation on a Bethe lattice is 

that there are many infinite polymers present in the same system above the gel point; at p = 1, is 

present a single infinite network polymer on a fully reacted Bethe lattice.  

2.3.2 Chambon & Winter criteria 

 The gel point marks a transition between liquid-like behavior (sol state) and solid-like behavior 

(gel state) from viscoelasticity. Returning to part of what was mentioned above during the initial 

stages of the cross-linking process, branched molecules of a wide distribution of sizes and of 

several architectures are formed. Their average molecular weight increases with increasing extent 

of the crosslinking reaction. The system reaches its gel point at a critical p = pc at which either the 

weight-average molecular weight diverges to infinity or a first macromolecular cluster extends 

across the entire sample. Consequently, the system loses solubility, the shear zero viscosity, η0, 

diverges to infinity, and the relaxation modulus, G(t), rises to a finite value. The newly formed 

macroscopic network structure starts to coexist with the remaining branched molecules, which 

are not yet attached. Beyond the gel point, the network stiffness increases steadily with increasing 

crosslink density until the system completes the crosslinking reaction.  

 Winter & Chambon [28] investigated the end-linking reaction of polydimethylsiloxane 

(PDMS) chains. Divinyl-terminated PDMS was linked with a tetrasilane (f = 4) moiety, and the 

molecular mass of the prepolymer was below the entanglement limit. Using the time-temperature 

superposition procedure, they could reconstruct the mechanical spectra over an extensive range 

of frequencies far from the glass transition temperature. They also stopped the chemical reaction 

at intermediate times of conversion. They observed that the spectra of viscoelasticity moduli 

exhibit, at some stage of the conversion, a power-law behavior in the entire measurable radial 

frequency domain.  
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Figure 2.9. Shows the experimental data from Chambon & Winter’s work [28] on the 

gelation process for PDMS, in which the reactions have been stopped at intermediate states of 

conversions. Figure 2.9. shows a critical time tc, or gel point, where the viscoelastic moduli are 

parallel, i.e., G’’ (ω, t) ∼ G’’(ω, t). Before the crossing of the viscoelastic moduli, the behavior is 

that of a viscous liquid where G’’(ω, t) > G’(ω, t). After the crossing, in the gel state, the behavior 

is that of an elastic solid with G’’(ω, t) < G’(ω, t).  

 They proposed to define the gel point by the following properties:  

𝐺3(𝜔) ∝ 𝜔"     for     0 < 𝜔 < ∞ (2.61) 

𝐺′′(𝜔) ∝ 𝜔%     for     0 < 𝜔 < ∞ (2.62) 

The Kramers-Kronig relation requires the two exponents n and m to be equal, so the viscoelasticity 

moduli are then given by: 

𝐺!(𝜔) = 𝐺!! cot(𝑛𝜋/2) =
𝜋𝑆

2Γ(𝑛) sin(𝑛𝜋/2)
𝜔", (2.63) 

where S is related to the gel strength, n (0 < n < 1) exponent reflects the nature and size distribution 

at the mesoscopic level, and Γ(n) is the Euler gamma function of n. One way to observe the sol - 

gel transition is by the tan δ function, which is written as tan δ = G''⁄G' =tan (nπ⁄2) [34]. In the sol 

state, tan δ decreases with frequency, while tan δ increases with frequency in the gel state. At the 

gel critical point, tan δ becomes independent of frequency. In this model, the relaxation modulus 

has the form G(t) = F -   -1{(G*(ω)/iω} = St-n. Chambon & Winter’s work investigated three cases: 

𝑛 < 1/2     𝐺33(𝜔) < 𝐺′(𝜔) 

𝑛 > 1/2     𝐺33(𝜔) > 𝐺′(𝜔) 

𝑛 = 1/2     𝐺33(𝜔) = 𝐺′(𝜔) 

(2.64) 

 The Winter & Chambon criteria are based first of all, on the experimental observations 

these authors made by following an end-linking reaction of primary chains in the absence of any 

physical association (crystallization, phase separation, etc.), where the precursor polymers were 

non- entangled. At one particular moment in the reaction, viscoelasticity moduli measured in the 

linear regime exhibit power-law dependence on the frequency. This indicates that an infinite 

viscosity at zero frequency is also expected from the percolation model; the authors suggest that 

both approaches, percolation and mechanical spectrum, lead to the same determination.  
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Figure 2.9. Frequency dependence of G’(ω, ti) and G’’(ω, ti) at different times during ti gelation. The 
constants A, aT, and bT normalize the frequency and viscoelastic moduli. Imagen from [28]. 
 

In the pre-gel state, two important quantities diverge, η0 and the dominant relaxation time 

τ(max, S) of the polymer chains undergoing crosslinking. Both quantities diverge as: 

𝜂# ∼ Δ𝑝−𝑠; 			𝜏𝑚𝑎𝑥,𝑆 ∼ Δ𝑝−𝜈𝑠 , (2.65) 
where Δp = (p – pc)/pc. In the post-gel state, the relaxation modulus grows as the degree of 

crosslinking increases and, therefore, the ratio time associated with the finite ratio modes (whose 

number decreases as the crosslinking progresses) evolve as follows: 

𝐺 ∼ Δ𝑝𝑧; 			𝜏𝑚𝑎𝑥,𝐺 ∼ Δ𝑝−𝜈𝐺 . (2.66) 
The critical scaling exponents α, s, z, νs, and νG are positive constants specific to the system 

undergoing gelation. The critical exponents fulfill relations with each other, e.g., νS = s⁄(1-n) and 

νG = z⁄n for the pre-gel and post-gel states, respectively [27]. De Gennes [59] developed a scaling 

relation between the scaling coefficients where the dimension of the d-space is included as z = 1 

+ (d - 2)α. That there are relations between critical exponents is an argument in favor of the 

universality of the gelation process. 

2.3.3 Fractal dimension of gel 

Beyond the gel point, its fractal dimension can characterize the formed gel network. A fractal is a 

self-similar object characterized by a non-integer dimension called sometimes fractal dimension, 

df. Intuitively, a fractal is a geometric object that is “enormously complicated”; no matter how 

much it is magnified, it will never “zoom out” to resemble a Euclidian space. The various notions 
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of fractal dimensions attempt to quantify this complexity, and they can be seen everywhere in 

nature, for example, in trees, ferns, the bronchial tree, etc. Fractal curves exhibit an exciting 

property known as self-similarity. Mathematical examples of self-similarity began with Bolzano’s 

1830 nowhere differentiable function. They continued through the late 19th and early 20th 

centuries with the Carnot set, the von Koch curve, and the Sierpinsky gasket [43,69].  

 Fractals can be divided into two main types: deterministic and statistical (or random) ones. 

The most important property of deterministic fractals is that their fractal dimension is precisely 

known. In contrast, statistical fractals are constructed by random processes; the best example of 

such a fractal is the path of a random walker [69]. An example of a deterministic fractal 

construction is a Koch curve (see Figure 2.10). It starts from a straight-line section and is divided 

into three equal subsections. On the top of the middle subsection, an equilateral triangle is drawn 

erasing its bottom side. Thus, up with four segments of equal length instead of the three original 

ones (stage 1; the generator), repeating the last procedure for these four segments, it is divided 

into three equal subsections and the middle subsections with the two opposite sides of equilateral 

triangles (stage 2). At the end of the second step, a line is obtained with each of the four sections 

consisting of four smaller subsections; this process can continue along several stages (random 

generator orientation).   

 To calculate the dependence of the mass of the triadic Koch curve on the length scale, led 

is draw circles of diameter 2r equal to the lengths of the segments of two consecutive generations. 

By circles comparison, drawing around the segments of the consecutive generation of the curve, 

the radius of the circles changes by the factor of 3 (r1 = 3r2), while the mass m of the section of the 

curve inside these circles changes by a factor of 4 (m1 = 4m2). The fractal dimension is defined as: 

𝑚 ∼ 𝑟$!  (2.67) 
The fractal dimensions for a triadic Koch curve can be determined from the different ways to 

calculate m1 in terms of r2,  

𝑚% = 𝐴𝑟%
$! = 𝐴(3𝑟&)$!  

𝑚% = 4𝑚& = 4𝐴𝑟&
$!  

(2.68) 

where A is the proportionality constant. The last equations require that: 

(3𝑟&)$! = 4𝑟&
$! 	⟹ 𝑑' =

log(4)
log(3)

≅ 1.26.	 (2.69) 
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Figure 2.10. The first stage is constructing the von Koch curve and a random version of the curve for higher 
stages. Images modified from [43,70]. 
 
 Polymers are random fractals, which are examples of regular fractals. For a single 

conformation of an ideal chain, the mean-square end-to-end distance of an ideal chain is 

proportional to its degree of polymerization, 𝑁 ∼ 〈𝑅(〉.  A similar relation holds for any subsection 

of the ideal chain with g monomers and size r, 𝑔 ∼ 〈𝑟(〉. Therefore, the fractal dimension of an 

ideal chain is df = 2. Polymer fractals are self-similar on a finite, though quite large, range of length 

scales. There is a natural cutoff of self-similarity on small-length scales, the length l of the bond, 

and on large scales, the size R of the polymer. The fractal dimension of any polymer is defined 

through the relation between the number of monomers g in any section of this polymer and the 

root-mean-square size, �〈𝑟(〉 of this section: 

𝑔 ∼ FG〈𝑟2〉H
$!
. (2.70) 
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The correlation length ξ for percolation (and gelation) is the size of the characteristic branched 

polymer with N* monomers. So, in agreement with Eq. 2.67, the size R and the number of 

monomers N in a polymer are related by the df as 𝑁 ∼ 𝑅=4. The same relation is valid for the 

characteristic branched polymer (network polymer gel): 

𝑁∗ ∼ 𝜉$! . (2.71) 
In the gel point, the correlation length must diverge as: 

𝜉 ∼ (𝑁∗)% $!⁄  (2.72) 
Fractal analysis has been used to study of the microstructure of biomacromolecules, such 

as proteins, carbohydrate polysaccharides, and DNA [70,71].  Several methods have been used to 

study the fractal structure and determine its dimension. These methods can generally be classified 

as direct methods, such as confocal scanning laser microscopy, dynamic light scattering, small 

angle X-ray scattering, and small angle neutron scattering. The following section will discuss an 

indirect method for estimating this quantity. 
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3. Experimental techniques 
3.1 Rheology 

Complex fluids have rheological behavior between simple liquids and ordinary solids. So, it 

is necessary to include the viscosity, η, and the elastic modulus, G0, to describe the mechanical 

behavior through a constitutive equation (relationship between shear stress, σ, and strain, γ). One 

way to exemplify the mechanical behavior of any material is by a relaxation experiment (see Fig. 

3.1); the material is subjected to constant strain for some time, and then the time evolution of the 

stress is observed once the deformation is released. If the material is a Hooke’s solid, the stress 

remains constant, and the constitutive equation is σ(t) = G0γ. On the contrary, if the stress is 

released instantaneously, it is a Newtonian fluid whose constitutive equation is 𝜎(𝑡) = 𝜂𝛾̇ ̇, where 

the shear rate is 𝛾̇ = 𝑑𝛾 𝑑𝑡⁄ . In an intermediate behavior, the stress is released between a Hooke’s 

solid and a Newtonian fluid, which is said to be viscoelastic behavior [72]. 

 
Figure 3.1. Mechanical behavior of a material in a relaxation experiment. 

 

One way to describe the viscoelastic behavior is to consider the history of the material, i.e., 

the dependence of the stress (or strain) at time t caused by the imposition of a strain (or stress) at 

a previous time t’. The memory kernel that relates the stress due to a strain is the relaxation 

modulus for a relaxation experiment, G(t). Additionally, the strain associated with stress is related 

to compliance for a creep experiment, J(t). In the linear regime, under any small strain (or stress), 

the response in the stress (or strain) is written according to the superposition principle [73]: 

𝜎(𝑡) = ∫ 𝐺(𝑡 − 𝑡3)8
)I V=q

=85
W 𝑑𝑡3 for relaxation experiment, 

𝛾(𝑡) = ∫ 𝐽(𝑡 − 𝑡3)8
)I V=r

=85
W 𝑑𝑡3 for creep experiment. 

(3.1) 

(3.2) 



 46 

At higher strain (or stress), the stress (or strain) does not depend linearly with γ (or σ), and in this 

case, equations 3.1 and 3.2 are not valid, being called nonlinear viscoelasticity. The following will 

discuss linear and nonlinear viscoelasticity in more detail. 

3.1.1 Linear viscoelasticity 

The linear viscoelasticity spectrum can be obtained from a dynamic approach by measuring 

the response due to a non-constant signal. The most common measurement protocol is small 

amplitude oscillatory shear (SAOS); in this case, the signal is a small sinusoidal shear strain, γ(t) = 

γ0 sin(ωt) (γ0 is de amplitude, and ω is the angular frequency), and, as a response, the shear stress. 

According to the superposition principle for a relaxation experiment (Eq. 3.1), inserting the shear 

strain and their derivate 𝛾̇(𝑡) = 𝜔𝛾4 cos(𝜔𝑡), and considering a variable s = t-t', we can follows 

that: 

𝜎(𝑡) = ª 𝐺(𝑠)𝜔𝛾4 cos[𝜔(𝑡 − 𝑠)]𝑑𝑠
I

4

= 𝛾4 «𝜔ª 𝐺(𝑠) sin(𝜔𝑠)𝑑𝑠
I

4
¬ sin(𝜔𝑡) +𝛾4 «𝜔ª 𝐺(𝑠) cos(𝜔𝑠)𝑑𝑠

I

4
¬ cos(𝜔𝑡)

= 𝛾4[𝐺3(𝜔) sin(𝜔𝑡) + 𝐺33 cos(𝜔𝑡)]. 

In the last results, G'(ω) and G''(ω) are defined as: 

𝐺3(𝜔) = 𝜔ª 𝐺(𝑠) sin(𝜔𝑠)𝑑𝑠 ,
I

4
 

𝐺33(𝜔) = 𝜔ª 𝐺(𝑠) cos(𝜔𝑠)𝑑𝑠
I

4
. 

(3.3) 

 

(3.4) 

Here, G'(ω) is the component in-phase called storage modulus, or elastic modulus, which is related 

to the recovery energy of the material after deformation. The variable G''(ω) is the component 

out-phase called loss modulus, or viscous modulus, which is associated with the energy dissipated 

by the flow of the material.  

Another way to introduce the viscoelasticity moduli is thinking the response (shear stress) 

is equal to the signal (shear strain) with a shift phase, δ. So, the shear stress can be written as: 

𝜎(𝑡) = 𝜎4 sin(𝜔𝑡 + 𝛿)

= 𝜎4 cos(𝛿) sin(𝜔𝑡)

+ 𝜎4 sin(𝛿) cos(𝜔𝑡) = 𝛾4[𝐺3(𝜔) sin(𝜔𝑡) + 𝐺33(𝜔) cos(𝜔𝑡)]	, 
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here, σ0 is the amplitude of shear stress. The viscoelasticity moduli are defined as: 

𝐺3(𝜔) =
𝜎4
𝛾4
cos(𝛿), 

𝐺33(𝜔) =
𝜎4
𝛾4
sin(𝛿). 

(3.5) 

 

(3.6) 

If the shift phase is δ = 0, the mechanical behavior corresponds to Hooke’s solid. On the contrary, 

if δ = π⁄2, the response corresponds to Newtonian fluid. In a viscoelastic material, the shift phase 

is 0 < δ < π⁄2, i.e., the mechanical behavior is between a solid and an ideal fluid [72].  

 Considering the viscoelasticity moduli, the complex modulus, G*(ω) can be defined as: 

𝐺∗(𝜔) = 𝐺3(𝜔) + 𝑖𝐺33(𝜔), (3.7) 

where 𝑖( = √−1. The modulus of G'(ω) is |G'(ω)| = σ0⁄γ0 and the shift phase can be correlated 

with the viscoelasticity moduli as tan(δ) = G''(ω)⁄G'(ω). Substituting the equations 3.3 and 3.4 in 

the complex modulus definition (Eq. 3.7) following that: 

𝐺∗(𝜔) = 𝜔 ­ª 𝐺(𝑠) [sin(𝜔𝑠) + 𝑖 cos(𝜔𝑠)] 𝑑𝑠
I

4
® = 𝜔ª 𝐺(𝑠)𝑒!ZP𝑑𝑠

I

4
= 𝑖𝜔ℑs{𝐺(𝑠)}. 

(3.8) 

The Eq. 3.8 shows that the complex modulus is equal to the unilateral Fourier transform of the 

relaxation modulus, i.e., knowing the relaxation modulus of any material is possible to obtain the 

mechanical behavior of the system. For example, it is possible for Maxwellian fluids to obtain an 

analytical expression for viscoelastic moduli. Remember that relaxation modulus decays 

exponentially with a time of relaxation (see Eq. 2.49); the equations 3.3 and 3.4 can be solved with 

the respect to time as: 

𝐺3(𝜔) = ª h𝜔 sin(𝜔𝑡)𝐺4𝑒)8/C.i𝑑𝑡
I

4
= 𝐺4

(𝜔𝜏Q)(

1 + (𝜔𝜏Q)(	
, 

𝐺33(𝜔) = ª h𝜔 cos(𝜔𝑡)𝐺4𝑒)8/C.i𝑑𝑡
I

4
= 𝐺4

𝜔𝜏Q
1 + (𝜔𝜏Q)(	

. 

(3.5) 

 

(3.6) 

Interestingly, the complex modulus can be defined into Laplace space through Eq. 3.8 as: 

𝐺∗(𝜔) = 𝑠𝐺²(𝑠) using an analytical continuation 𝑠 → 𝑖𝜔,	 (3.9) 

where, 𝑋²(𝑠) ≡ ∫ 𝑋(𝑡)𝑒)P8𝑑𝑡I
4  is the Laplace transform. Getting the unilateral Laplace transform 

of Eq. 3.1 can be followed that 𝜎³(𝑠) = 𝑠𝐺²(𝑠)𝛾³(𝑠) [73], where the shear strain applies have a form 

γ(ωt) = γ0eiωt, i.e., a periodic shear strain. Alternatively, for an experiment where the signal is the 

shear stress in a periodic form σ(ωt) = σ0eiωt, called dynamic compliance protocol, can follow that 
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𝛾³(𝑠) = 𝐽(𝑠)𝜎³(𝑠) in the Laplace space (see Eq. 3.2) [73]. Taking the latter expressions, it follows 

easily that: 

𝐺²(𝑠)𝐽(𝑠) = 1 𝑠� .  (3.9) 

The last equation helps obtain compliance by knowing the relaxation modulus or vice versa. By 

analytical continuation, if 𝑠 → 𝑖𝜔 the equation 3.9 change to 𝐺∗(𝜔) = 1 𝑖𝜔𝐽(𝜔)⁄  where 𝐽∗(𝜔) =

𝑖𝜔𝐽(𝜔) is sometimes called the dynamic compliance [73].  

3.1.2 Nonlinear viscoelasticity 

In the linear viscoelasticity region, the viscoelasticity moduli as a function of shear strain 

are constant (at ω = cte); this region is called the Linear Viscoelasticity Region (LVR) as shown in 

Fig. 3.2. where viscoelasticity spectra are the same for all shear strain values. When the shear 

strain increases, the viscoelasticity moduli are not constant and depend on the shear strain. Fig. 

3.2 shows the region of nonlinear viscoelasticity in which the viscoelastic moduli decrease with 

shear strain; this behavior corresponds to the yield process for microgels [74,75]. However, the 

decrease of viscoelastic moduli with strain is not universal and depends on the mesoscopic 

structure and how it is structured at high deformations in the material [4]. Contrary to the SAOS 

protocol, as the shear strain increases, the sinusoidal response to shear stress is distorted (see Fig. 

3.2). In this case, the experiment is referred to as LAOS protocol (Large Amplitude Oscillatory 

Shear). 
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Figure 3.2. Schematic representation of linear and nonlinear viscoelasticity regions for sinusoidal shear 
strain applied. The distorted stress (upper-right curve) corresponds to 𝜎 𝜎#⁄ = sin(𝑡) + 0.1 sin(3𝑡)	at a 
fixed angular frequency (ω = 1 s-1) where σ0 correspond to the maximum shear stress. Image modified from 
[4]. 
 

A number of different analysis frameworks have been used to characterize LAOS 

deformation. These mainly fall into three categories: 1) methods that extend the liner regimen 

Fourier analysis to higher harmonics [76–78], 2) methods that geometrically decompose the LAOS 

response into contributions depending on strain and strain rate [79–81], and derivate-based 

methods which use the trajectory of the response to define time-resolved moduli [14,82,83]. The 

stress is typically independent of the strain direction for the first category. Under this hypothesis, 

the shear stress is considered an odd function concerning the shear direction, which 

mathematically can be written as 𝜎[−𝛾(𝑡), −𝛾̇(𝑡)] = −𝜎[𝛾(𝑡), 𝛾̇(𝑡)]. Under this symmetry 

consideration, it is possible to calculate the nonlinear stress as a combination of linear shear stress 

characterized by different amplitudes and shift phases, i.e., 

𝜎(𝑡) = 5 𝜎" sin(𝑛𝜔𝑡 + 𝛿") ,
",*,<==

 (3.10) 

where the amplitudes σn and shift phases δn depends of the shear strain and the frequency [4,76–

78]. The form and how the shear stress change due of higher contribution can be visually 

quantified trough Lissajous-Botwich (LB) curves.  
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The LB curves are closed curves for an intracycle shear strain applied: 1) 3D LB curves 

(𝜎 𝜎4⁄ 	𝑣𝑠. 𝛾 𝛾4⁄  and 𝛾̇4 𝛾̇4⁄ ), 2) elastic representation (projection in the plane σ⁄σ0 vs. γ⁄γ0), and 3) 

viscous representation (projection in the plane 𝜎 𝜎4⁄ 	𝑣𝑠. 	𝛾̇4 𝛾̇4⁄ . Here, σ0, γ0, and 𝛾̇4 are the 

maximum shear stress, maximum shear strain, and maximum shear rate in an oscillation cycle, 

respectively, and thus scale the axes. In the elastic representation in the LVR, if there is no shift 

phase between shear stress and shear strain, the loci is a line (called solid-like behavior); if the 

shift phase is equal to π⁄2, the loci is a circle (called fluid-like behavior), and if the shift phase is 

π⁄4 < δ < π⁄2 the loci is ellipsoidal which correspond to viscoelastic behavior. Fig. 3.3 shows the 

construction of LB curves from the shear stress response for elastic, viscous, and viscoelastic 

behavior. In the viscous representation, the shape of the LB curves changes; for a solid-like 

behavior, the loci change to a circle; for fluid-like behavior, the loci change to a line; and for 

viscoelastic behavior, the loci remain unchanged. The change of loci curves between both 

representations is due to the shift phase of the response (σ⁄σ0 = sin(ωt+δ)) is relative to elastic 

representation (γ⁄γ0 = sin(ωt): δ = 0 for solid-like behavior, δ = π⁄2 for fluids-like behavior), and 

viscous representation (	𝛾̇4 𝛾̇4⁄ = cos(𝜔𝑡) where 𝛾̇4 = 𝜔𝛾4: δ = π⁄2 for solid-like behavior, δ = 0 

for fluids-behavior). 

 
Figure 3.3. Viscoelasticity response in the LVR region: a) Normalized stress as a function of the time for 
different rheological responses, and b) Lissajous-Botwich curves construction for different rheological 
responses in the elastic representation. The shear strain applied is a sinusoidal function.  
 

In equation 3.10, the contributions for harmonics higher than third harmonic decay could 

be rapidly and can be neglected in the expansion for n > 5, 7, 9, …. In the work of Neidhöfer et al. 

[84], they supposed the contribution of the 3rd harmonic equal to 10 %, which can follow that: 
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𝜎(𝑡)
𝜎*� = sin(𝜔𝑡 + 𝛿*) + 0.1 sin(3𝜔𝑡 + 𝛿-). (3.11) 

In the upper-right curve of Fig. 3.2 shows the sinusoidal shear stress distorted (rectangular-like 

shape) for δ3 = 0; here, sinusoidal shear stress is distorder for δ1 = 0 (solid-like behavior). In the 

Fig. 3.4a can be see the LB curves for δ3 = 0 for three different rheological behavior, i. e., how are 

the distorted LB curves in the elastic representation from the linear rheological response (Fig. 3.3b 

shows the LB curves for linear response). Fig. 3b – Fig. 3d shows the LB curves for different values 

𝛿- which is the results of the deformation of sinusoidal shear stress: if δ3 = 90o, the shear stress 

signal distorted to a backward tilted shoulder, if δ3 = 180o, the shear stress distorted to a triangular-

like shape, and if δ3 = 270o, the shear stress signal distorted to foreword tilted shoulder [4]. In 

summary, the distortion in the linear shear stress can be visualized as distortion in the LB curves 

from the linear response.  

The harmonic-based techniques do capture all of the non-linearity of the LAOS data, but 

aside from the third harmonic, no specific meaning has been successfully assigned to each of these 

values, making comparisons challenging at large amplitudes [85]; for example, to describe a 

butterfly-like shape of LB curves [86]. Also, the molecular origin of the distortion of shear stress 

response for high strain values is unclear. Maybe the most simplistic model is the one proposed 

by Hyun et al. [87]; they investigated a possible mechanism of LAOS behavior using a network 

model composed of segments and junctions. A segment is part of a macromolecular chain, and 

junctions are where intermolecular interactions are located. Segments are lost and created during 

flow, and their dynamics can be characterized by a creation rate f(t) and a loss rate g(t). This 

approximation is too simplistic; however, it qualitatively predicts various behaviors observed in 

LAOS data and thus rationalizes the viscoelastic modulus responses in terms of the model 

parameters.  
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Figure 3.4. Normalized LB curves in the elastic representation at different third phase angles: a) δ3 = 0o, b) 
δ3 = 90o, c) δ3 = 180o, and d) δ3 = 270o at a fixed angular frequency (ω = 1 s-1). The first shift phase 
corresponds to three different rheological behaviors: δ1 = 0o (elastic), δ1 = 45o (viscoelastic), and δ1 = 90o  
(viscous). Image from [4]. 
 
   

LAOS experiments can explore the full range between steady-state and strongly time-

dependent behaviors by investigating the effect of two characteristic dynamic variables, the 

Deborah number, De, and the Weissenberg number, Wi. Deborah number, De = τR⁄T, is defined as 

the ratio of a characteristic time scale of a material, τR, and a characteristic time scale of 

observation of the deformation process, Td, which is the inverse of angular frequency T = 1⁄ω in 

oscillatory flow. The latter, Wi = τR⁄Td, characterizes the ratio of elastic to viscous forces, i.e., the 

ratio of τR and a characteristic time of the deformation process Td. For steady shear, Td is the 

inverse of the instantaneous shear rate 𝑇= = 1 ⁄ 𝛾̇ , whereas for oscillatory shear, 𝑇= = 1 ⁄ 𝛾̇4 =

1 ⁄ (𝜔𝛾4) [4]. An appealing feature of LAOS in Maxwellian fluids is that the harshness of the flow’s 
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time dependence, relative to the fluid’s intrinsic relaxation timescale, can be tuned by varying 𝜔 

in the applied oscillation without sudden jumps in the strain input, as in step experiments [13].  

LB curve for Maxwellian fluids in the LVR can be tuned by imposing ω and γ0 where both 

quantities have a relationship with Deborah and Weissenberg numbers: De = τRω, and Wi0 = τR 

(ωγ0) is the amplitude Weissenberg number. For viscoelastic moduli form Maxwellian fluids (Eq. 

3.5 and 3.6), G' and G'' can be written in terms of De as: 

𝐺3 = 𝐺4
𝐷𝑒(

1 + 𝐷𝑒(	, 

𝐺33 = 𝐺4
𝐷𝑒

1 + 𝐷𝑒(	. 

(3.12) 

 

(3.13) 

On the other hand, manipulating the expression for shear stress in terms of viscoelastic moduli 

(𝜎 = 𝛾4[𝐺3 sin(𝜔𝑡) + 𝐺33 cos(𝜔𝑡)]), has the following: 

[𝜎 − 𝛾4𝐺3 sin(𝜔𝑡)]( = [𝛾4𝐺33 cos(𝜔𝑡)](, 

𝜎( − 2𝜎𝛾4𝐺3 sin(𝜔𝑡)+γ4(G3(sin((𝜔𝑡) = 𝛾4(𝐺33([1 − sin((𝜔𝑡)]. 

For a sinusoidal shear deformation γ = γ0sin(ωt), and substituting in the last equation, it follows 

that: 

𝜎( − 2𝜎𝛾𝐺′ + 𝛾((𝐺3( + 𝐺33() = �𝐺33
𝑊𝑖4
𝐷𝑒 �

(

. 
(3.14) 

Eq. 3.14 allows us to describe the LB curves according to the previous mentions: for a solid-like 

behavior (𝐺3 ≠ 0 and 𝐺33 = 0 ), a straight line, for a fluid-like behavior (𝐺3 = 0 and 𝐺33 ≠ 0), a 

circle, and an ellipsoid for a viscoelastic behavior (𝐺3 ≠ 0 and 𝐺33 ≠ 0). For all cases, the maximum 

stress always occurs in the first quadrant (all positive variables). For Maxwellian fluids, the 

oscillatory shear strain is probed by selecting 𝛾4.  LAOS protocol is not limited to small values, 

producing deviations from linear behavior, e.g., the maximum shear strain deviation from the first 

quadrant to the second quadrant. 

 For solid-like materials, e.g., gels, the nonlinear stress-strain curve is directly related to the 

recovery energy of the material and, in the background, to its structure and how it changes while 

it deforms until it breaks. To describe LAOS experiments, phenomenological network models that 

are based on a continuum approach are often used. Blatz, Sharda, and Tschoegl proposed a BST 
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model involving non-Hookean relation between deformation energy and deformation [88]. For an 

applied shear stress, the relationship to the shear stress is: 

𝜎 =
2𝐺4
𝑛&t.

𝜆"!67 − 𝜆)"!67
𝜆 − 𝜆)* , (3.15) 

where 𝜆	 = 	½	𝛾 + (1 + 	¼	𝛾()*/( (or 𝛾	 = 	𝜆 −	𝜆)*), G0 is the elasticity modulus, and nBST is a 

nonlinear fitting exponent. Interestingly, for nBST = 2, the last equation to reduce the ideal rubber 

elasticity case is 𝜎	 = 	𝐺𝛾.  

To understand the nonlinearity parameter nBST through a molecular interpretation, a 

scaling model (based on the fractal structure of the polymers), a FENE model (based on the finite 

extensibility of the polymers), and a rod and coil model (based on the biochemical microstructure 

of gelatin) were developed by Groot et al. [89]. It was found that the scaling model, the fractal 

dimension df could better quantitatively describe the stress-strain curve. The nonlinear exponent 

can be related to the fractal dimension of the network and swelling exponent as: 

𝑛&t. ≈
𝑑u

𝑑u − 1
=

1
1 − 𝜈	. 

(3.16) 

Throughout the text, the equations 3.15 and 3.16 refer to the BST scaling model 

3.2 Rheometry  

Determining the rheological properties of any material when subjected to flow involves 

measuring stress and strain. A rheometer is an instrument that can determine these quantities 

from the torque, angular velocity, and characteristic dimensions of the geometries used. The cone-

plate geometry was used in this work, and in the following paragraphs, how to determine stress 

and shear rate will be discussed. The discussion is based on the textbook Rheology principles: 

Measurements and Applications by Macosko, C. W. [90]. 

The conservation equations of mass, momentum, and energy describe the motion of any 

material body. For their derivation, a control volume element dV is used. In the mass balance, a 

flow of matter through the control volume is considered, where the rate of mass change ρdV will 

be equal to the mass flow through its surface, mathematically expressed as: 

𝑑
𝑑𝑡ª𝑑𝑉𝜌v

= −ª𝑑𝑆(
t

𝒏¼𝜌 ∙ 𝐯). (3.17) 
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Using a divergence theorem over the right side (Ec. 3.17), the surface integral can be written in 

terms of integral over the volume. Also, the time derivate can be included in the integral, and since 

it is an arbitrary volume, a differential expression can be obtained as: 

ª 𝑑𝑉 �
𝜕𝜌
𝜕𝑡 + ∇ ⋅ 𝜌𝐯�v

= 0	 ⟹	
𝜕𝜌
𝜕𝑡 = −∇ ⋅ 𝜌𝐯. (3.18) 

The last equation is called the continuity equation. We can write Eq. 3.18 in terms of the material 

derivative, D Dt� = ∂
∂t� + ∇ ⋅ 𝐯, which describes the time rate of change of some physical quantity 

of a material element embedded into a macroscopic velocity field. Eq. 3.18 in terms of material 

derivative is: 

𝐷𝜌
𝐷𝑡 = −𝜌∇ ⋅ 𝐯. (3.19) 

Thus, the continuity equation is in the Lagrangian representation, and it can be seen that if the 

fluid is incompressible (ρ = cte), the velocity divergence is zero.  

Performing the momentum balance, the change of momentum in the volume is equal to 

three contributions: the first is determined by the momentum flux on the surface −(𝐧¼ ⋅ 𝐯)𝑑𝑆 per 

unit volume 𝜌𝐯, the second is the effect of the stresses acting on the surface 𝜎"𝑑𝑆 = 𝐧¼ ⋅ 𝝈Æ𝑑𝑆 (𝜎" 

denote the stress over the surface, and 𝝈Æ the stress as a tensor quantity), and the third 

corresponds to the change of momentum due to the gravitational field ρgdV. In mathematical 

terms, the last balance is: 

𝑑
𝑑𝑡ª𝑑𝑉𝜌𝐯v

= −ª𝑑𝑆(𝐧¼ ⋅ 𝐯)𝜌𝐯
t

+ª𝑑𝑆(𝐧¼ ⋅ 𝝈Æ)
t

+ª𝑑𝑉𝜌𝒈
v

. (3.20) 

Using the divergent theorem and including the time derivative in the integral, the differential 

equation for momentum balance is: 

ª �
𝜕𝜌
𝜕𝑡 + ∇ ⋅ 𝜌𝐯𝐯 − ∇ ⋅ 𝝈Æ − 𝜌𝒈� = 0	 ⟹	

𝜕𝜌
𝜕𝑡 = −∇ ⋅ ρ𝐯𝐯 + ∇ ⋅ 𝝈Æ + 𝜌𝒈

v
. (3.21) 

In terms of material derivative, the Eq. 3.21 can be written as:   

𝜌
𝐷𝐯
𝐷𝑡 = ∇ ⋅ 𝝈Æ + 𝜌𝒈. (3.22) 

Eqs. 3.19 and 3.22 are the expression that describes the motion of any material body, and their 

components depend on the coordinate system in which it works. 
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On the other hand, to know the flow's change of velocities, we consider two points 

immersed in the medium, P, and Q, separated by a distance dx. If the velocity within the fluid 

depends on position and time, the velocities differences between P and Q is: 

𝑑𝐯 =
𝜕𝐯
𝜕𝐱 ⋅ 𝑑𝐱 = 𝑳Ë ⋅ 𝑑𝐱, (3.23) 

where 𝑳Ë is a gradient tensor of velocities, which has two directions: 1) of the velocity, and 2) of its 

gradient. In terms of its components, the tensor has the form: 

∇𝐯 = 𝑳Ëw =55𝐱x¼𝐱l𝐣
z!

𝜕𝐯𝐣
𝜕𝐱𝐢

. 
(3.24) 

Equation 3.24 allows us to calculate the value of 𝑳Ë, explicitly. Additionally, the velocity tensor can 

be decomposed into its symmetric, 𝑺Æ, and antisymmetric, 𝑨Æ, parts as follows: 

𝑳Ë =
1
2 h𝑳
Ë + 𝑳Ë.i +

1
2 h𝑳
Ë − 𝑳Ë.i = 𝑺Æ + 𝑨Æ, (3.25) 

where 2𝑺Æ represents the strain rate and 2𝑨Æ the vorticity. In this way, we can know the velocity 

profile when, for example, when shear strain is applied. 

The Cone - Plate geometry is shown in Fig. 3.5; the geometry consists of a plate of radius 

R, a truncated cone of the same radius which forming an angle 𝛽 concerning the plate. The cone 

rotates with an angular velocity Ω, and the rod supporting the geometry measures torque M. 

Spherical coordinates are convenient for finding the associated shear stress and shear rate. It is 

important to consider that 𝛽 is small enough to neglect inertial effects. By symmetry, v| = vA =

0, and there is only dependence on v}(𝜃). In spherical coordinates, 𝑳Ë  is: 

 
Figure 3.5 Characteristic lengths of the Cone - Plate 
geometry where the angle β is exaggerated. Image 
from [90]. 

 

 

𝑳Ë =

⎣
⎢
⎢
⎢
⎢
⎡0 0 −

v}
𝑟

0 0 −
v}
𝑟 cot(𝜃)

0
1
𝑟
𝜕v}
𝜕𝜃 0 ⎦

⎥
⎥
⎥
⎥
⎤

. 

 

 

 

(3.26) 
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Calculating the strain rate with the definition of equation 3.24, and assuming a small angle 

(𝛽	 < 	0.10	𝑟𝑎𝑑	 ⟹ coth𝜋 2� − 0.1i < 0.1), the relationship for 2𝑺Æ can be approximated as 

follows: 

2𝑆}| =
1
𝑟
𝜕v}
𝜕𝜃 −

v}
𝑟 cot

(𝜃) ≈
1
𝑟
Δv}
Δ𝜃 ≈

1
𝑟
v} V

𝜙
2 − 𝛽W − v} V

𝜋
2W

𝛽 . 
(3.27) 

Of the no-slip condition, must be met that v}(𝜋 2⁄ ) = 0, and v}h𝜋 1� − 𝛽i = Ω𝑟 sinh𝜋 2� −
𝛽i ≃Ω𝑟, resulting that Eq. 3.27 change to:  

𝛾̇ = 2𝐷}| ≈
1
𝑟
Ω𝑟 − 0
𝛽 ≈

Ω
𝑟  

(3.28) 

Now, for to obtain a stress expression, taking the equation of motion (Eq. 3.22) in spherical 
coordinates, and in the absence of a gravitational field, we follow that: 

1
𝑟
𝜕𝜎}|
𝜕𝜃 +

2
𝑟 cot(𝜃) 𝜎}| = 0. 

(3.29) 

Integrating the last equation: 

𝜎}| =
𝑐𝑡𝑒

sin((𝜃) ≈ 𝑐𝑡𝑒3. (3.30) 

For a value of 𝛽	 < 	0.10	𝑟𝑎𝑑, the sin(h𝜋 2� − 𝛽i is bounded between 0.99 and 1, so that the 
value of 𝜎}| can be considered constant. From the balance of the torque in the geometry, we 
finally have an expression for the stress: 

𝑀 = ª ª 𝑑𝑟𝑑𝜃𝑟(
Q

4

(6

4
𝜎}| 	⟹ 	𝜎}| =

3𝑀
2𝜋𝑅- 

(3.31) 

Equations 3.28 and 3.31 allow for the calculation of the shear strain and shear stress, respectively, 

with the rheometer's torque and angular velocity measurement.  

3.2 Diffusion wave spectroscopy and microrheology  

An alternative to mechanical rheology (sometimes called macro rheology) is the 

microrheology technique. In microrheology, the principal characteristic is the size of the probe 

test; here, the length of the probe test is in micrometers, while in macro rheology, the length of 

the probe test is the rheological geometry size. Diffusion wave spectroscopy (DWS) is a passive 

microrheological technique that essentially measures the mean square displacement (MSD) of the 

Brownian motion of colloidal particles embedded in the material. The central premise for 

obtaining the medium’s viscoelastic properties is that the particles' Brownian motion is affected 
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by the structure of the medium. This way of obtaining the viscoelasticity of materials was proposed 

by Mason & Weitz in 1995 [91], whose technique was first reported in the early 1990s [92,93]. 

Since then, DWS has greatly improved the ability to display the viscoelasticity of complex fluids, 

concerning that obtained by mechanical rheology, by the ability to access shorter time scales 

𝑡~10)9 − 10(	𝑠 corresponding to higher frequencies 𝜔~10)( − 109	𝑠)*. 

The first works on micro-rheology in complex fluids by DWS were in the early 1990's by 

Mason et al. [94] and Mason & Weitz [91] for colloidal hard sphere solutions. In the end of 90's 

Xu, Palmer & Weitz [95] reported for the first time the micro-rheology of F-actin filament solutions 

as a model of semiflexible polymers, finding the dependence of the complex modulus|𝐺∗(𝜔)| ∝

𝜔4.~B±4.*4, according to the Morse model, which predicts a dependence on G*(ω) ∝	(iω)3⁄4 [96]. 

Since then, several works on micro-rheology in living polymers and biopolymers have been 

published, and nowadays, DWS remains a technique of special interest for the study of polymeric 

dissolutions, given the information that can be obtained. For example, in 2017, Krajina et al. [97] 

revealed the different modes of relaxation of DNA chains. In 2018, Gartin & Stradner [98] studied 

the interaction of tracer particles with protein in concentrated dissolutions, validating the micro-

rheology technique in this concentration regime. The following sections discuss DWS theory as a 

method for determining the MSD of particles embedded in the material and micro-rheology as to 

how viscoelasticity properties can be extracted from the MSD of these particles. 

3.2.1 Diffusion Wave Spectroscopy  

Theory of DWS. A light scattering experiment consists of an incident of a laser light beam 

(characterized by a wavevector k0) on a sample. The scattered light due to the dielectric constant 

difference between the particles and the solvent is collected in a detector placed at an angle 𝜃 in 

the direction of the wave vector ks. The scattered electric field depends on the position of the 

particles embedded in the fluid, which vary in time due to motion under thermal interactions. 

Fluctuations in the motion of the particles imply that the scattered light fluctuates in time and 

implicitly provides information on the structure and dynamics of the system [99]. If the particle 

concentration is sufficiently dilute, only a single scattering event will occur, and this experiment is 

known as Dynamic Light Scattering (DLS) [99]; if the particle concentration is high, it is a multiple 

light scattering experiment. The following discussion about the DWS theory is based on the text 
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Diffusing-Wave Spectroscopy in Dynamic Light Scattering: The Method and Some Applications by Weitz D. 

A., Pine D. J. (1993), edited by W. Brown [23]. 

In DLS, the electromagnetic wave induces a dipole moment that radiates in all directions. 

If the field scattered by a particle is 𝐸4, the total field 𝐸 is equal to the superposition of the fields 

scattered by 𝑁 particles: 

𝐸(𝑡) =Q𝐸# exp[𝑖𝒒 ⋅ 𝒓𝒊(𝑡)] ,
+

,-%

 
(3.32) 

where q = ks - k0  is the scattering wavevector whose magnitude is 𝑞 = 89&
: sin(;"), and 𝒓!(𝑡) is the 

position of the ith-particle. The exponential function represents the phase shift introduced by the 

differences in the optical path each wave will take after the scattering event. This change will 

introduce an interference pattern in the detection plane known as a speckle pattern, which is 

related to fluctuations in the light intensity, 𝐼, directly related to the motion of the particles. 

The temporal autocorrelation function can describe the fluctuations in the light scattering:  

𝑔(&)(𝑡) = 1 + 𝛽|𝑔(%)(𝑡)|&, (3.33) 

where 𝑔(() is a correlation function over the light intensity, g(1) is the correlation function over the 

electric field, and 𝛽 is a constantar determined primily by the collection optics of the experiment. 

Equation 3.33 is a relationship between g(1)  and g(2)  knowing as the Siegert relation. In general, 

g(1) is given by: 

𝑔(()(𝑡) =
∑ ∑ 〈expÜ𝑖𝒒 ⋅ [𝒓!(0) − 𝒓z(𝑡)]Þ〉+

z,*
+
!,*

∑ ∑ 〈expÜ𝑖𝒒 ⋅ [𝒓!(0) − 𝒓z(0)]Þ〉+
z,*

+
!,*

. 
(3.34) 

For the case of uncorrelated and non-interacting particles, the cross-terms vanish and g(1) changes 

to 𝑔(*) = 〈exp[−𝑖𝒒 ⋅ Δ𝒓(𝑡)]〉 (here, Δ𝒓(𝑡) ≡ 𝒓(𝑡) − 𝒓(0)). Now, if Δ𝒓(𝑡) is a Gaussian variable 

the last equation can be written as:  

𝑔(*)(𝑡) = exp «−𝑞(
〈Δ𝑟((𝑡)〉

6 ¬. 
(3.35) 

DWS is an extension of DLS where multiple scattering events occur. In multiple light 

scattering, two scales characterize the scattering and transport of light: 1) The mean free path 𝑙 

between two scattering events, and 2) the mean free path of transport, which is the distance 

where light propagation is randomized. The above quantities are given by: 
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𝑙 = *
�^

 for dilute suspensions, 

𝑙∗ =
𝑙

〈1 − 𝑐𝑜𝑠𝜃〉. 

(3.36) 

 

(3.37) 

Here, ρ is the number density of the particles, and a is the total scattering cross section for a single 

particle. Two things must be considered to obtain the autocorrelation function: i) Approximating 

the scattering light intensity along each photon path through the medium, and ii) averaging the 

scattering events instead of considering individual events.  

First, we consider a DWS measurement in a transmission experiment; light from a laser is 

incident on one side of a planar sample of thickness with L ≫	l*, and scattered light is collected 

from a small area on the opposite side (see Fig. 3.6). A simple photon passing through the sample 

undergoes n scattering events and emerges with a phase that depends on its total path length 𝑠 

such as shown in Fig. 3.6. The total path length for a single photon scattering N times is:  

𝑠 =5|𝒓!0* − 𝒓!| = 5�
𝒌!
|𝒌!|

� ⋅ (𝒓!0* − 𝒓!)
+

!,4

+

!,4

, 
(3.38) 

where 𝒌!  is the wavevectors of the light after 𝑖 scattering events, ri is the position of particle i for 

i ≪	1 ≪	n, r0 is the position of the laser, and rN+1 is the position of the photo multiple detector 

(PMT). Because the scattering process is quasi-elastic, all wavevectors have the same magnitude, 

|𝒌!| = 𝑘4. The total phase shift ϕ(t) of the photon after passing from the laser to the detector is 

𝜙(𝑡) = 𝑘4𝑠(𝑡) = ∑ 𝒌! ⋅ [𝒓!0*(𝑡) − 𝒓!(𝑡)]+
!,4 . So, the total field and the detector is the 

superposition of the fields from all light paths through the sample to the detector, and can be 

written as: 

𝐸(𝑡) =5𝐸5𝑒!},(8)
5

, (3.39) 

here, Σ5 represents the sum over paths, and Ep is the amplitude of the field from path p at the 

detector. Is interesting to note that Eq. 3.39 has the same form as its single-scattering counterpart 

(see Eq. 3.32). Equation 3.39 involves two sums, one over the light path and another over the 

particle in each path. Ep depends on the number of scattering events in a given path and the laser 

beam intensity; the determination of Ep adds some complexity to the multiple-scattering theory.  
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Figure 3.6. The upper-right hand shows a single path through a sample of multiple light-scattering events, 
and the lower-left hand shows a transmission geometry. In transmission geometry, the light incident at a 
point 𝒓," (laser) on the face of a slab of thickness L is collected from a point 𝑟012 (PMT) on the opposite 
face of a slab. 
 

The field autocorrelation function is obtained from Eq. 3.39, which is: 

𝑔(*)(𝑡) = á
〈𝐸(0)𝐸∗(𝑡)〉
〈|𝐸|(〉 â =

1
〈𝐼〉
〈ã5𝐸5𝑒!},(4)

5

äã5𝐸5∗𝑒)!},(8)
5

ä〉, 
(3.40) 

where 〈𝐼〉 is the total average scattered intensity at the detector. For independent particles, the 

fields from different paths are, to a very good approximation, uncorrelated. In the last equation, 

the terms with p ≠ p' do not contribute, and we obtained that:  

𝑔(*)(𝑡) = 〈5
å𝐸5å

(

〈𝐼〉
5

𝑒![},(4))},(8)]〉 =5
〈𝐼5〉
〈𝐼〉

〈𝑒![},(4))},(8)]〉
5

, 
(3.41) 

where 〈𝐼5〉 ≡ 〈å𝐸5å
(〉 is the average intensity from path p and the independence of the phase and 

field amplitude Ep at the detector is assumed.  

 The next step is obtaining an expression for the change in the phase of the scattered light 

resulting from particle motion. Is possible to obtain and expression for the phase which is: 

Δ𝜙5(𝑡) =5𝒒! ⋅ Δ𝒓!(𝑡)
+

!,*

, 
(3.42) 

where the magnitude of q is 𝑞 = 2𝑘4 sinh;"i. Taking the average over square of phase shift in the 

Eq. 3.42,  
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〈Δ𝜙5((𝑡)〉 =55〈[𝒒! ⋅ Δ𝒓!(𝑡)]æ𝒒z ⋅ Δ𝒓z(𝑡)ç〉
+

z,*

+

!,*

=5〈[𝒒! ⋅ Δ𝒓!(𝑡)](〉 =
1
3𝑁

〈𝑞(〉〈Δ𝑟((𝑡)〉.
+

z,*

 

(3.43) 

Here, we have assumed the independence of successive phase factors 𝒒! ⋅ Δ𝒓!(𝑡), and that the 

scattering and displacement vectors are independent. Also, the average over 𝑞( is weighted by 

the single-particle formfactor and can be expressed in terms of the mean free paths, i.e, 〈𝑞(〉 =

〈æ2𝑘4 sinh;"iç
(〉 = 2𝑘4(〈1 − cos(𝜃)〉 = 2𝑘4(

d
d∗

. Insert the last equation in Eq. 3.43 and considering 

that for 𝑁 ≫ 1 the total path lengt trough the sample is given by s = Nl*, can be follow that:  

〈Δ𝜙5((𝑡)〉 =
1
3
𝑠
𝑙 2𝑘4

( 𝑙
𝑙∗
〈Δ𝑟((𝑡)〉 =

2
3 𝑘4

(〈Δ𝑟((𝑡)〉
𝑠
𝑙∗. 

(3.44) 

Return to Eq. 3.41, if replaced the fraction of scattered in path 𝑝, 〈𝐼5〉/〈𝐼〉, with the fraction of the 

scattered intensity in paths of lengths s, P(s), and using the equation 3.44, it can be seen that: 

𝑔(*)(𝑡) =5𝑃(𝑠) exp �−
1
3𝑘4

(〈Δ𝑟((𝑡)〉
𝑠
𝑙∗�

P

. (3.45) 

In the last equation, we assume that, Δ𝜙5(𝑡) is a random Gaussian variable, and according to the 

central limit theorem, 〈𝑒)!�},(8)〉 = 𝑒)
〈>?,"(A)〉

" . Eq. 3.45 can be written in terms of diffusion 

coefficient, 𝐷. For example, for diffusing colloid particles 〈Δ𝑟((𝑡)〉 = 6𝐷𝑡 and the Eq. 3.45 is 

written as 𝑔(*)(𝑡) = ∑ 𝑃(𝑠) exp V−2𝑘4(𝐷𝑡
P
d∗
WP . Thus, the calculation of the autocorrelation 

function is reduced to determine the path-length distribution function P(s) through a sample.  

This calculation is greatly facilitated by passing to the continuum limit: 

𝑔(*)(𝑡) = ª 𝑑𝑠𝑃(𝑠) exp �−
1
3𝑘4

(〈Δ𝑟((𝑡)〉
𝑠
𝑙∗�

I

4
. 

(3.46) 

 To calculate 𝑃(𝑠), consider a simple thought experiment: An instantaneous pulse of 

light is incident over some sample area; light entering the sample is multiplied and scattered, and 

a random walk is performed until it scapes. Photons arriving at time 𝑡 after the incident pulse will 

have traveled a distance s = ct through the sample, where 𝑐 is the average speed of light within 

the medium. The flux 𝑱<s8(𝒓<s8 , 𝑡) of photons arriving at the point 𝒓<s8 will be directly 

proportional to the fraction of photons that travel a distance s = ct, that is, to P(s). For length scales 
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greater than the transport mean free path, the transport of light is accurately described by the 

diffusion equation: 

𝜕𝑈
𝜕𝑡 = 𝐷d∇(𝑈 

(3.47) 

where U is the energy density of light in the sample, and 𝐷d = 𝑐𝑙∗ 3⁄  is the diffusion coefficient of light. To 

calculate P(s), we consider an instantaneous light pulse propagating along the z-direction, which is 

incident at z = 0 on a planar sample of thickness L. Since the light is randomized within the sample 

over a distance comparable with l*, we describe the incident pulse as an instantaneous source of 

diffusing light, a distance z0	∼	l* inside the sample. Thus, the initial condition is: 

𝑈(𝑧, 𝑡 = 0) = 𝑈4𝛿(𝑧 − 𝑧4, 𝑡). (3.48) 

In addition to this initial condition, we must specify the diffusing light's boundary conditions. These 

are obtained by requiring that for t > 0, the net flux of diffusing light into the sample is zero [92]. 

The result is the boundary condition is: 

𝑈 +
2
3 𝑙

∗𝒏¼ ⋅ ∇𝑈 = 0 
(3.49) 

where 𝒏¼ is the unit normal vector directed out of the sample. Using the initial condition given in 

Eq. 3.48 and the boundary condition given in Eq. 3.49, we can solve the diffusion equation (see 

Eq. 3.47) for any particular experimental geometry and obtain a solution for U(r) valid for all points 

within the sample. From this solution, we can calculate the time-dependent flux of light emerging 

from the sample at the exit point 𝒓<s8, using Fick’s law. Since all light emerging from the sample 

at time t has traveled a distance s = ct, the fraction of light, P(s), that travels a distance 𝑠 trough 

the same is simply proportional to the flux emerging at time t. So, P(s) is given by 

𝑃(𝑠) ∝ |𝑱<s8(𝒓, 𝑡)|𝒓DEA = 𝐷d|𝒏¼ ⋅ ∇𝑈|𝒓DEA = �
𝑐𝑈
2 �𝒓DEA

. (3.50) 

On the other hand, the Laplace transform of diffusion equation (see Eq. 3.47) is: 

∇(𝑈ê −
3𝑝
𝑙∗ 𝑈
ê = −

3𝑝
𝑙∗ 𝑈44(𝒓)

 
(3.51) 

where, 𝑈ê ≡ 𝑈ê(𝒓, 𝑝) is the Laplace transform of 𝑈(𝒓, 𝑠), 𝑈ê(𝒓, 𝑝) ≡ ∫ 𝑑𝑠𝑒)5P𝑈(𝒓, 𝑠)I
4 , and 

𝑈44(𝒓) = lim
8→4

𝑈4𝛿(𝑧 − 𝑧4, 𝑡). In solving this equation, we must also use the Laplace transform of 

the boundary conditions (see Eq. 3.49), i.e., 𝑈ê + (
-
𝑙∗𝒏¼ ⋅ ∇𝑈ê = 0. These equations can then be 
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solved using Green’s function techniques to obtain 𝑈ê(𝒓, 𝑝), as discussed by Carslaw & Jaeger 

[100]. Taking the Laplace transform of Eq. 3.50, we can relate this solution, 𝑈ê(𝒓, 𝑝). So, the Laplace 

transform of P(s) is: 

𝑃²(𝑝) ≡ ª 𝑑𝑠𝑃(𝑠)𝑒)5P ∝ �
𝑐𝑈
2 �𝒓DEA

I

4
 

(3.52) 

For another hand, remember the equation for 𝑔(*)(𝑡) (see Eq. 3.46) is it possible to see that  

𝑔(*)(𝑡) = ª 𝑑𝑠𝑃(𝑠)𝑒)5P
I

4
= 𝑃²(𝑝), 

(3.53) 

where, 𝑝 = #
('/

"〈>$"(A)〉
F∗ . From equations 3.52 and 3.53 can be followed that: 

𝑔(*)(𝑡) =
𝑈ê(𝒓, 𝑝)𝒓DEA
𝑈ê(𝒓, 0)𝒓DEA

, 
(3.54) 

Here, 𝑈ê(𝑝) has been normalized so that 𝑔(*)(0) = 1.  

 The most used geometry in the laboratory is the transmission one, which is helpful for 

probing motion over length scales much shorter than λ. For the case of a sample with parallel plane faces 

and with uniform illumination of a plane-wave beam, the autocorrelation function can be written as a 

function of the MSD (sometimes written as 〈Δ𝑟((𝑡)〉). From the solution of the diffusion light equation 

𝑔(*) is: 

𝑔(*)(𝑡) =

𝐿
𝑙∗� + 4 3�
𝛼∗ + 2 3�

ë𝑠𝑒𝑛ℎ(𝛼∗𝑥) + 23 𝑥𝑐𝑜𝑠ℎ(𝛼
∗𝑥)í

V1 + 49 𝑥
(W 𝑠𝑒𝑛ℎ V𝐿𝑙∗ 𝑥W +

4
3 𝑥𝑐𝑜𝑠ℎ V

𝐿
𝑙∗ 𝑥W

, 

(3.55) 

with 𝑥 ≡ �𝑘4(〈Δ𝑟((𝑡)〉 and 𝛼∗ ≡	𝑧4/𝑙∗. The value 𝑧4⁓𝑙∗, although numerical values are insensitive to 

the exact choice of z0, since L ≫	z0.  A different choice of z0 would affect only the first few steps in a random 

walk that consists of many steps. Backscattering geometry can also be used, as seen in Weitz & Pine’s work 

[23]. One must guarantee that 9 ≤ L/l̂ * ≤ 25 [101,102], refers to the number of scattering events in the 

sample. If the relation L/l*is too small, diffusing light beams decreases; conversely, if L/l* is large, the 

possibility for colloidal particle interactions among them increases  [102,103]. 

Recently, a method was developed to circumvent absorption issues in DWS, deriving a correction 

to the theory [101]. They pointed out that absorption exponentially attenuates light paths according to 

their path length, cutting off the longest paths. Therefore, if P(s) is the path length distribution in the 
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absence of absorption, the path length distribution in the presence of absorption must be 𝑃(𝑠)𝑒)P/dG  as 

derived from first principles in [101]. Then, Eq. 3.53 can be rewritten as: 

𝑔(*)(𝑡) = ª 𝑑𝑠𝑃(𝑠) exp î�−
1
3𝑘4

(〈Δ𝑟((𝑡)〉
𝑙∗

𝑙^
�
𝑠
𝑙∗ï

I

4
. 

(3.55) 

 The absorption effect represents a time delay in the time axis by l*/la. As for the 

conventional DWS, a diffusion equation for the energy density is necessary to get an analytical expression 

for g(1). Therefore, an absorption term must be included to get the scattered photons' correct path 

distribution function. It is possible to derive a diffusion equation from the radiative transport equation with 

an absorption-independent diffusion coefficient [101]. The diffusion equation is written as: 

𝜕𝑈
𝜕𝑡 = 𝐷d∇(𝑈 −

𝑐
𝑙^
𝑈, (3.56) 

where is assuming that la ≫	l* [103,104]. For the transmission geometry, following Ref. [101], the equation 

for the field autocorrelation function is:  

𝑔(*)(𝑡) =

V1 + 49 𝜂
(W 𝑠𝑒𝑛ℎ V𝐿𝑙∗ 𝜂W +

4
3 𝜂𝑐𝑜𝑠ℎ V

𝐿
𝑙∗ 𝜂W

𝑠𝑒𝑛ℎ(𝛼∗𝜂) + 23 𝜂𝑐𝑜𝑠ℎ(𝛼
∗𝜂)

ë𝑠𝑒𝑛ℎ(𝛼∗𝑥^) +
2
3 𝑥^𝑐𝑜𝑠ℎ(𝛼

∗𝑥^)í

V1 + 49 𝑥^
(W 𝑠𝑒𝑛ℎ V𝐿𝑙∗ 𝑥^W +

4
3 𝑥^𝑐𝑜𝑠ℎ V

𝐿
𝑙∗ 𝑥^W

 

(3.57) 

where 𝜂 ≡ �3𝑙∗/𝑙^	and 𝑥^ ≡ �𝑘4( < Δ𝑟((𝑡) > +𝜂(. Interestingly, for 𝑙^ → ∞, we recover the Eq. 

3.55.  

 

 DWS experimental setup. The experimental setup was developed in the Fluids Complex Group at 

the Physics Institute at UNAM and was reported in a recent article review [105]. Fig. 3.7a. shows a diagram 

of the experimental setup; a brief description is provided below. A 532 nm laser beam (1) (Genesis MS SLM, 

USA) passes through a spatial filter (2), where it is expanded, and subsequently, a large pupil eliminates the 

external part of the Gaussian beam to approximate the beam to a plane wave (4). The beam shines the 

sample in a thermally stabilized bath (5) and (6). The scattered light passes through an achromatic doublet 

(7) and a crossed polarizer (8) to increase the autocorrelation response. Next, the light is collected by an 

optical fiber (OZoptics Inc) (9) and detected by two photomultipliers (Thorn EMI) (10). The autocorrelation 

function is obtained by a Digital correlation (Flex 02-08D/C, USA) in cross-correlation mode, controlled with 

a computer (11). For determining the values of l* and la parameters necessary to perform the numerical 
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inversion of equations 3.55 and 3.57, a mirror (3) is set next to the spatial filter to make use of the branch 

framed by a red dashed square in Fig. 3.7b., where was used an integrating sphere (Oriel, Newport) (15). 

Between the mirror and the integrating sphere, set an optical filter and two diaphragms (13 and 14), 

separated at a fixed distance to obtain the input parameters for IAD: MR (total reflectance) and MT (total 

transmitance). The light signal is detected by a photomultiplier tube (Hamamatsu Photonics, Japan) (16) 

connected to a voltmeter (17). IAD method gives l* , la, and the anisotropy factor g [106,107]. Fig. 3.7c. 

shows a photograph of the experimental setup.  

 
Figure 3.7. (a) DWS experimental setup. The branch within the red dashed frame recovers the samples' optical 
parameters (𝑙∗, 𝑙3, and 𝑔). (b) Setup about the integrating sphere to obtain 𝑀4  (total reflectance), and 𝑀5  (total 
trnasmitation). (c) Experimental setup. Figures a) and b) modify from [105]. 
 
 Inverse Adding Doubling (IAD) method. In this method, a general numerical solution for a 

radiative transport equation is given through the following steps: a) An educated guess for a set of the 

optical parameters is given. b) The samples' reflection and transmission are estimated using the adding 

doubling method. c) Transmittance and reflectance are compared with the experimental measurements. 

d) If the match is not good enough, the set of optical parameters is modified using a minimization algorithm 

[106,107]. The process is iteratively followed until a match with the experimental measurements is 

reached. The experimental and computational algorithms described in the literature where followed, and 

used the available open-source code. Definition of total reflectance MR, and total transmittance MT of light, 

on and through the sample, respectively, are:  
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𝑀Q ≡ 𝑟P8=
𝑅h𝑟P=!A?b8 , 𝑟Pi − 𝑅(0, 0)
𝑅(𝑟P8= , 𝑟P8=) − 𝑅(0, 0)

, 

𝑀Q ≡
𝑇h𝑟P=!A?b8 , 𝑟Pi − 𝑇=^A'
𝑇(0, 0) − 𝑇=^A'

. 

(3.58) 

 

(3.59) 

Each term in these equations is measured independently, and the way to measure them is according to 

Fig. 3.7b. and Fig. 3.7c. For total reflectance, rstd is the reflectance value of the integrating sphere walls, 

𝑅(𝑟P8= , 𝑟P8=) is the reflection measurement for a standard sample, 𝑅h𝑟P=!A?b8 , 𝑟Pi is the reflection 

measurement for the sample, and 𝑅(0, 0) is the measurement of light intensity without a sample when 

light is allowed to go out of the sphere. For total transmittance, 𝑇(0, 0) is the measurement of light 

intensity when the light strikes inside the sphere without sample, 𝑇h𝑟P=!A?b8 , 𝑟Pi	is the transmission 

measurement through the sample, and 𝑇=^A' is the measurement of the intensity of light with the 

entrance port blocked. 

3.2.2 Miro-rheology  

As mentioned above, the DWS technique provides the MSD of microspheres embedded in the 

material where the viscoelasticity properties of the medium influence the dynamics. The microspheres are 

subject to Brownian motion, which dynamic is described by the generalized Langevin equation:  

𝑚
𝑑𝒗
𝑑𝑡 = 𝒇Q(𝑡) + ª 𝑑𝑡3𝜁(𝑡 − 𝑡3)𝐯(𝑡3),

8

4
 

(3.60) 

where 𝐯 is the velocity of the particle,and  𝑚 is the mass of the particle. fR(t) represent the random forces 

acting on the particle (forces between particles and stochastic forces), and ζ is the hydrodynamic 

resistance as a memory kernel, and satisfying the fluctuation-dissipation theorem, 〈𝒇Q(𝑡) ⋅

𝒇Q(𝑡3)〉 = 3𝑘&𝑇𝜁(𝑡 − 𝑡3). From equation 3.60, Mason et al. [108] developed a generalized Stokes-

Einstein equation. In the Laplace space, taking the Laplace transform of Eq. 3.60 and considering 

that ζ(t) is causal (ζ(t) = 0 for 𝑡 < 0 ⟹ ∫ 𝑑𝑡3𝜁(𝑡 − 𝑡3)𝐯(𝑡3) = ∫ 𝑑𝑡3𝜁(𝑡 − 𝑡′)𝐯(𝑡3)I
4

8
4 ), can be follow 

that: 

𝐯³(𝑠) =
𝒇²(𝑠) + 𝑚𝐯(0)
𝜁(𝑠) + 𝑠𝑚

 
(3.61) 

where 𝑋²(𝑠) ≡ ∫ 𝑑𝑡𝑋(𝑡)𝑒)P8I
4  denotes the Laplace transform. Multipliying by 𝐯(0) both sides of 

Eq. 3.61, and taking the average: 
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〈𝐯³(𝑠)𝐯(0)〉 =
〈𝒇²(𝑠)𝐯(0)〉 + 𝑚〈𝐯(0)𝐯(0)〉

𝜁(𝑠) + 𝑠𝑚
. 

(3.62) 

The term 〈𝒇²(𝑠)𝐯(0)〉 = 0 because both quantities are uncorrelated, and 𝑚〈𝐯(0)𝐯(0)〉 = 3𝑘&𝑇 by 

equipartition energy theorem. So, the last equation is reduced to: 

𝜁(𝑠) + 𝑠𝑚 =
3𝑘&𝑇

〈𝐯³(𝑠)𝐯(0)〉. 
(3.63) 

Using the relationship between the MSD and the velocities in the Laplace space, 〈Δ𝑟(ñ (𝑠)〉 = "
%"
〈𝐯�(P)𝐯(4)〉, 

the Eq. 3.63 is rewritten as: 

𝜁(𝑠) + 𝑠𝑚 =
6𝑘&𝑇

s(〈Δ𝑟(ñ (𝑠)〉
. (3.64) 

The most important assumption is the Stokes relation; here, the hydrodynamic resistance takes the same 

form for all frequencies, and., i.e.,  

𝜁(𝑠) = 6𝜋𝑎𝜂³(𝑠), (3.65) 

where 𝜂³(𝑠) is the complex viscosity, and 𝑎 is the de radius of the particle. This hypothesis considers that 

the complex fluid is treated as a continuum medium around the spherical particle; this argument is valid 

when the length scales of the structures giving rise to the elasticity are much smaller than the particle's 

radius. Finally, due to the relationship between the complex modulus and complex viscosity, 

𝐺²(𝑠) = 𝑠𝜂³(𝑠), substituting the Eq. 3.64 into 3.63 can follow that: 

𝐺²(𝑠) =
𝑠
6𝜋𝑎 «

6𝑘&𝑇
s(〈Δ𝑟(ñ (𝑠)〉

− 𝑚𝑠¬. 
(3.65) 

The first term of the right hand represents the thermal fluctuation-dissipation in the medium, and the 

second term represents the inertia of the colloid particle, which is only significant at high frequencies (ω > 

106 s-1) for latex particles of micron size. To obtain the generalized Stokes-Einstein equation in the frequency 

domain using analytical continuation, i.e., 𝑠 → 𝑖𝜔. Neglecting the inertia term in Eq. 3.64 can be 

seen that: 

𝐺²(𝑠) =
𝑘&𝑇

𝜋𝑎𝑠〈Δ𝑟(ñ (𝑠)〉
	
P→!Z
òóóô	𝐺∗(𝜔) =

𝑘&𝑇
𝜋𝑎(𝑖𝜔)ℑsÜ〈Δ𝑟(ñ (𝑠)〉Þ

. (3.66) 

Here, ℑs{𝑋(𝑡)} ≡ ∫ 𝑑𝑡𝑋(𝑡)𝑒)!Z8I
4  is the unilateral Fourier transform. The evaluation of Eq. 3.66 from 

MSD experimental data allows us to obtain the viscoelasticity properties of the medium where the 
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frequency of access is to the order of the fluctuation time of the particle. For example, for DWS 

measurements 10-6 s < t < 10 s are equivalent to 10-1 s-1 < ω < 106 s-1).  

Different authors have followed several procedures to determine the unilateral Fourier 

transform. Mason estimate Eq. 3.66 expanding the MSD the locally around the frequency of interest 

using a power law and evaluating the logarithmic derivative [109]. The viscoelasticity moduli can be 

computed as 𝐺′(𝜔) = |𝐺∗(𝜔)| cos(𝜋𝛼(𝜔)/2) and 𝐺33(𝜔) = |𝐺 ∗ (𝜔)| sin(𝜋𝛼(𝜔)/2), where the 

complex modulus is: 

|𝐺∗(𝜔)| ≈
𝑘&𝑇

𝜋𝑎〈Δ𝑟(h1 𝜔� i〉Γ(1 + |𝛼(𝜔)|)
, (3.67) 

where 𝛼(𝜔) ≡ V=��〈�A
"(8)〉

=���
W
8,*/Z

and Γ is the gamma funtion.  

Another procedure is related to the relation between the dynamic relaxation modulus (see Eq. 

3.9). Substituting the Eq. 3.9 into Eq. 3.66 in taking the inverse Laplace transform can be followed that: 

𝐽(𝑠) =
1

𝑠𝐺²(𝑠)
�
𝜋𝑎
𝑘&𝑇

� 〈Δ𝑟(ñ (𝑠)〉 	𝑜𝑟	𝐽(𝑡) = �
𝜋𝑎
𝑘&𝑇

� 〈Δ𝑟((𝑡)〉. (3.68) 

Thus, from the MSD data, numerically evaluated data points (ti, Ji) can be obtained, or J(t) can be 

obtained by fitting a model curve to the experimental values of MSD	vs.	t. For recovering G*(ω), Evans 

developed a numerical method by discretization of the partial derivatives; the following formula is used: 

𝑖𝜔
𝐺∗(𝜔)

= 𝑖𝜔𝐽# + `1 − 𝑒6,72"c
[𝐽% − 𝐽#]
𝑡%

+
𝑒6,72#
𝜂

+Qd
𝐽8 − 𝐽86%
𝑡8 − 𝑡86%

e (𝑒6,72$%" − 𝑒6,72$)
+

8-&

. 
(3.69) 

The term J0 corresponds to the compliance at 𝑡 → 0, and η corresponds to the viscosity at 𝑡 → ∞. Both 

quantities can be determined from extrapolation of the DCM curve at short and long times [110]. 

One different procedure is to employ 𝑠 → 𝑖𝜔 (analytic continuity) such as show in Eq. 3.68, to 

obtain the real and complex components of 𝐺∗(𝜔), where 〈Δ𝑟((𝑡)〉 could be obtained by fitting a model 

curve to the experimental MSD curve. For the case of particles immersed in WLM solutions, the 

experimental MSD curves can be best fitted to a model curve proposed by Bellour et al. [111]:  

〈∆𝑟(𝑡)(〉 = 6𝛿((1 − 𝑒�)
�/
�"8�

H5

)*/q3 �1 +
𝐷%
𝛿( 𝑡�. 

(3.70) 

Here, 6δ2 measures the plateau of 〈∆𝑟2(𝑡)〉	𝑣𝑠. 𝑡 curve, D0, and Dm are the diffusion coefficients for 

particles in the solvent at infinite dilution and at long times, respectively, and γ' is a parameter that accounts 

for the broad spectrum of relaxation times at the plateau. It is common for doing the fittings to leave δ, 
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Dm, D0 and γ' as free parameters. In this function, we observe three different motion regimes 

shared by all micellar solutions reported in the literature, regardless of concentration or the 

temperature. At short times, MSD is almost a linear function of time, i.e., a simple diffusion 

〈∆𝑟((𝑡)〉 	= 	6𝐷4𝑡. At intermediate times, the MSD remains constant for a given time interval (a 

plateau). Here, the model was built to describe the motion of Brownian particles harmonically 

bound around a stationary mean position, as a consequence 〈∆𝑟(𝑡)(〉 = 6𝛿((1 − exp[−(I/
J"
𝑡)]), 

where the particle's amplitude of the motion, the cage size δ, is related to the elastic modulus 𝐺4 

(𝛿( =	𝑘&𝑇/6𝜋𝑎𝐺4), which does not depend on 𝜔. At these intermediate times, particles are 

bound to their mean position, on time scales smaller than the micellar system's longest 

characteristic time. At the inflection point, 6𝛿(  is the value of the mean square displacement. In a 

WLMs fluid, the cage where particles are momentarily trapped fluctuates due to the 

breaking/reptation process. Then, at longer times, MSD is again a linear function of time, 

〈∆𝑟((𝑡)〉 	= 	6𝐷4𝑡 as a consequence, it was proposed 〈∆𝑟(𝑡)(〉 = 6𝛿((1 − exp[−(I/
J"
𝑡)]) V1 +

�'
�"
𝑡W. However, this last expression did not correctly describe the plateau onset time dynamics 

because the microspheres' dynamics exhibit a vast time relaxation spectrum. This led to the 

inclusion of the parameter 𝛾′. Recently, Palmero-Cruz et al. [112] described the smooth short-

intermediate transition of the MSD curve using random walker simulation. They found that the 

origin of the smooth transition is a wide distribution of confining cages, and the corresponding 

ensemble averaged 3D of MSD over all confined particles; the wider the cage distribution, the 

smoother the transition. 

 As an example of DWS – microrheology technique, the results of DWS – 

microrheology performance correspond to the system of WLMs of NaNO3/CTAB with [CTAB] = 0.1 

M, [NaNO3] = 0.3 M measured at 30 oC. In Chapter 4, the characteristics of this system, such as the 

experimental procedure, are presented in detail. Fig. 3.8a. shows the field correlation function, 

𝑔(*)(𝑡), obtained from the Siegert relation (Eq. 3.33) through the correlation function of the 

intensity 𝑔(()(𝑡), which was measured experimentally. The constant 𝛽 corresponds to the average 

of the first ten values of 𝑔(()(𝑡) minus one. Figure 3.8b. shows the MSD as a function of time, 

which is obtained by numerical immersion in equation 3.55. The parameters 𝑙∗ and 𝑙^ were 
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obtained by the IAD method with values of 0.176 mm and 33.98 mm, respectively. It is important 

to note the ratios l*⁄L = 0.073 and l*/la = 0.005; the l*⁄L ratio shows that the light diffusion 

condition (L ≤ 0.1 [23,91,94]) is met and that l*⁄la	≪	1 indicates that the sample is transparent as 

observed experimentally. The MSD of the system exhibits a simple diffusive behavior at short times 

(∼ 10)9 − 10)_	𝑠), a slightly curved plateau at intermediate times (∼ 10)_ − 10)*	𝑠), and a 

newly diffusive region at long times (∼ 10)* − 1.4	𝑠). This behavior of the DCM is typical of 

colloidal particles embedded in living polymeric systems [20–22,86,113]. The parameters obtained 

from the best fit are inserting into Fig. 3.8b. 

 
Figure 3.8. a) Correlation function of the field, and b) MSD from numerical inversion of equation 3.55 for 
NaNO3/CTAB WLMs system with [NaNO3] = 0.3 M, [CTAB] = 0.1 M at 30 °C; the continuous line corresponds 
to best fit with Bellour equation (Eq. 3.70), and their free parameters are inserted in the figure. 
 
 The viscoelastic spectrum of WLMs was obtained from the MSD data. The first 

technique uses the logarithmic derivative (Eq. 3.67; Fig. 3.9a.), and the second one uses the 

compliance approach (Eq. 3.69; Fig. 3.9b.). Both ways of obtaining G'(ω) and G’’(ω) have a good 

agreement with mechanical rheometry, being a way to corroborate the validity of the results. 

However, both forms present fluctuations in G'(ω) and G’’(ω) at high frequencies (ω ≳	105 s-1), 

which is associated with experimental MSD noise at short times (t ≲	10-5 s). Additionally, the 

curves G'(ω) and G’’(ω) via the compliance present noise at intermediate frequencies, around ω 

∼	10 - 101 s-1, capturing the experimental little of the MSD around t ∼	1 s. With the mention above, 

it was concluded that for both techniques, the experimental noise of the MSD at short times 

impacts noise in the viscoelastic spectrum at high frequencies and that the technique via the 
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complication is more sensitive to experimental noise. The third technique consists of obtaining 

G'(ω) and G’’(ω) through equation (3.67) where the unilateral Fourier transform of the best fit 

according to the Bellour model (Eq. 3.70; Fig. 3.8b.) was evaluated. Fig. 3.9c. shows G'(ω) and 

G’’(ω) in good agreement with mechanical rheometry and the techniques mentioned below. In 

this case, no fluctuations are observed in G'(ω) and G’’(ω), providing an advantage of obtaining 

characteristic lengths, as will be discussed in the next chapter.  

  
Figure 3.9. Linear viscoelasticity spectra obtained by DWS-microrheology for three different methods: a) 
Logarithmic derivative, b) compliance approach, and c) fitting of MSD experimental data using Bellour 
equation and subsequently unilateral Fourier transform of it. The system is NaNO3/CTAB with [NaNO3] = 
0.3 M, [CTAB] = 0.1 M at 30 °C. 
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4. Results 
4.1 Linear and nonlinear viscoelasticity of living polymers made of worm-like micelles 

G R A P H I C A L    A B S T R A C T 

 
The entanglement index, 𝜅, is a valuable tool for understanding the origin of the contribution of the elastic 
forces from a molecular point of view to the rheological behavior of wormlike micelle solutions. Image from 
[86].  

4.1.1 Abstract  

The elastic contribution to the fluid dynamics of wormlike micellar solutions makes these 

fluids unique due to the distinctive self-assembled micellar network formed by tubular giant 

structures. The mesoscopic scales of the micellar network related to the degree of entanglement 

can give guidelines for understanding the origin of elastic forces and their effect on rheological 

response. To establish a relationship between the elastic contribution to rheological response and 

mesoscopic structure, different rheological measurements were carried out: 1) SAOS protocol to 

obtain the relaxation time, τR, and elastic modulus, G0, 2) flow curves, rotating the internal or 

external cylinder in a Couette geometry for different measurements times, 3) linear shear banding 

observation, and 4) LAOS protocol for obtain the nonlinear rheological response. All of them to 

determine how elastic forces modify the rheological behavior in systems made of different ratios 

of hexadecyltrimethylammonium bromide (CTAB)/sodium salicylate (NaSal) and different ratios of 

CTAB/NaNO3. DWS-microrheology was also performed to measure the mean square 

displacements of microspheres embedded in the micellar fluids to obtain their high-frequency 
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viscoelastic spectra. With this information, the entanglement index, κ as the ratio of the total 

contour of the micelles to the entanglement length, was estimated and correlated with the 

rheological behavior. This work discusses the relationship between the entanglement ratio and 

the rheological response; a proportionality relationship between both parameters is found; high 

values of κ are associated with a high entanglement of the network and, with it, interesting 

phenomena such as multiple shear banding and hysteresis in the flow curves. For low values of 𝜅 

associated with low entanglement of the network, shear banding and hysteresis in the flow curves 

are not observed.  

 In the results to be discussed below, the introduction to the system is omitted because it 

was already done in Chapter 2 (see section 2.2). The linear viscoelasticity spectra, flow curves 

under different conditions, and linear shear banding observations were made as part of my M.Sc.’s 

thesis project. The nonlinear rheological study and DWS-microrheology experiments were 

performed as part of my Ph.D. project. However, the results of the M.Sc. project are included in 

this Ph.D. thesis because they were part of the discussion of the Ph.D. project that concluded with 

a full paper publication [86]; the discussion that follows is found in this one. 

4.1.2. Experimental section  

Materials. Hexadecyltrimethylammonium bromide (CetylTrimethylAmmonium Bromide, 

CTAB, purity > 99 %, Sigma-Aldrich), sodium salicylate (NaSal, purity 99.5 %, Sigma-Aldrich), 

sodium nitrate (NaNO3, purity > 99 %, Sigma-Aldrich). Reagents were used as received. All samples 

were prepared with ultrapure deionized water (Nanopure, USA). The WLMs solutions where 

prepared dissolving the powders in deionized water under magnetic agitation overnight at room 

temperature.  

Rheological measurements. Rheological measurements were performed with an MCR-702 

TwinDrive rheometer (Anton Paar, Austria), in which two air-bearing supported electrically 

commuted motors sit opposite each other. Both motors are controlled by the same digital signal 

processor controller, allowing different testing modes. In the separate-motor-transducer mode, 

both motors are employed, although synchronized. One motor is kept at a fixed position and 

managed only as a torque transducer, while the other motor exclusively functions as a drive unit. 
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The linear and nonlinear viscoelasticity spectra were obtained using a Cone-Plate geometry (cone 

diameter of 49.948 mm, and an angle of 2.007 degrees), while flow curves were obtained using a 

Taylor-Couette geometry (Inner cylinder diameter of 19.996 mm, and outer cylinder diameter of 

22.000 mm).  

Linear viscoelasticity spectra (SASO protocol, G'(ω), G''(ω) vs. ω) were obtained in a wide 

frequency sweep, ω ≈ 1 – 102 s-1, at fixed shear strain γ ≈ 1% where the viscoelasticity moduli are 

independent of the strain. Nonlinear viscoelasticity spectra (LAOS protocol, G'(γ), G''(γ) vs. γ at a 

fixed frequency) were obtained in a wide shear strain sweep, γ ≈ 10-1 – 103 %. As mentioned before 

(see section 3.2), LAOS experiments can explore the full range between steady-state and strongly 

time-dependent behaviors through two dynamic variables, the Deborah number (De = τRω) and 

the amplitude Weissenberg number (Wi0 = τR(ωγ0)); the variables ω and γ0 were adjusted. For De 

∼	0.3, viscous behavior is explored, De ∼	1 a viscoelasticity behavior, and De ∼	3 a solid behavior; 

in all cases, wide values of Wi0 are adjusted. The flow curves were developed following a protocol 

for observing the consequences of rheometric measurements performed faster or lower than τR. 

In logarithmic mode, the rheometer spends a measuring time, tmeasuring, executing a measurement 

depending on the shear rate according to the equation tmeasuring = b⋅γm, where b and m are 

constants determined by the experimenter. First, select the number of required points to be 

measured in a whole shear flow experiment, then select the shear rate and time spent for the first 

and last measurements. The ratio trel = tmeasuring/τR  determines how long the measurement time is 

relative to the relaxation time; it is like the inverse of the Deborah number. In addition, the internal 

or external cylinder of the Couette geometry is rotated while another cylinder maintains static.  

Observation of shear banding phenomena.  Shear banding observations were performed 

using a homemade instrument developed in the Complex Fluids group at UNAM: a transparent 

Taylor-Couette geometry with two concentric quartz cylinders (50 mm in height). The external 

cylinder (I. D. 80 mm/O. D. 85 mm) rotates thanks to an electrically controlled motor, and the inner 

cylinder (I. D 70 mm/O. D. 75 mm) is fixed and filled with water coming from a thermal regulated 

circulatory bath for thermal control (see Fig. 4.1). The gap between cylinders is 2.5 mm wide. The 

fluid in the gap is visualized with the aid of a CCD camera (Hamamatsu Vidicon, Japan) and a zoom 
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lens focused on a sheet of light in the gradient-vorticity plane made with a Ne–He laser beam 

(Coherent Inc., USA) and a combination of spherical and cylindrical lenses. 

 

Figure 4.1. a) Experimental setup for shear banding observation (image extracted from [12]). b) Frontal 
image of Taylor Couette geometry design in Complex Fluids Group at Physics Institute, UNAM.  

 

Mesoscopic scales of the micellar network obtained by DWS micro-rheology. As mentioned above, 

the micellar network mesoscopic scales of interest in WLMSSs solutions that can determine their 

rheological behavior are the micelles' total contour length, LC, persistence, lp, and entanglement, 

le, lengths, as well as the mesh size of the entangled micellar network, ξ. The last chapter presented 

the experimental methodology (see sections 3.2 and 3.3). All measurements were realized using 

polystyrene microspheres (Diam. = 784 nm, ϕ ∼	0.03; Bangs Labs, USA), used as tracers, and 

dispersed in the WLMS solutions. Samples with dispersed particles were deposited in rectangular 

glass cells (Sterna Cells, USA) with an optical path length of ∼	2 mm and allowed to relax for two 

weeks before measurement. The particle weight concentration was obtained by 

thermogravimetry (TGA, TA Instruments, USA); here, the evaporation of the solvent in particle 

solution at a constant temperature was followed. 
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4.1.3. Results and Discussion 

SAOS and flow curves. As explained below (see section 3.3), G0 and τR parameters were 

extracted from viscoelastic spectra of micellar solutions at low and intermediate frequencies. For 

CTAB/NaSal solutions with R = 2 and at R = 4, ([CTAB] = 0.1 M, R = [NaSal]/[CTAB]), measurements 

were made at different temperatures (20 – 40 oC), and for CTAB/NaNO3 solutions at different 

surfactant concentrations at 30 oC ([CTAB] = 0.1, 0.2 and 0.3 M, [NaNO3] = 0.3 M). Although the 

elastic modulus does not change significantly for CTAB/NaSal solutions, it is not the case for τR, 

which is quite different in both systems at temperatures below 30 oC; above this temperature, the 

difference in τR is not significant, as observed in Fig. 4.2. The inset of Fig. 4.2 presents τR for the 

different micelle solutions of CTAB/NaNO3; in this case, G0 increases with surfactant concentration. 

Temperature or surfactant concentration controls the rheological response in WLMs, which is 

useful to obtain a wide range of relaxation time values.  

 

Figure 4.2. 𝜏4  vs. temperature for micellar solutions of CTAB/NaSal with R = 2 and R = 4 ([CTAB] = 0.1 M). 
Insert, 𝜏4  vs. CTAB concentration micelle solutions of CTAB/NaNO3, ([NaNO3] = 0.3 M) at 30 oC. In some 
cases, error bars are smaller than the symbols in the figures. Image from [86]. 
 
 As we will see, the relaxation time differences will make the micellar solutions of 

CTAB/NaSal with R = 2 and R = 4 behave quite differently below 40 oC. In particular, at R = 2, this 

solution presents gradient shear banding; this is not the case for R = 4 [12]. CTAB/NaNO3 solutions 

present linear shear banding at concentrations above 0.1 M in CTAB [19].  
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 Concerning to flow curves, Fig. 4.3 presents scaled flow curves, σ/G0 vs. 𝛾̇𝜏Q, for thixotropic 

loops where the shear rate is first ramped up (up-shear curve) to some maximum value, then 

ramped down (down-shear curve) at different temperatures, T= 20, 25, and 30 oC. Measurements 

were made by rotating the external or internal cylinders while maintaining the other cylinders' 

static. The time used to measure each point of the flow curve is different in these flow curves. 

When the symbols are open trel < 1, the measurements fluctuate significantly, and the flow curves 

present hysteresis. When the symbols are filled trel > 1, both fluctuations and hysteresis are pretty 

low. Flow curves are essentially the same when trel > 1, no matter what cylinder is moved, but 

when trel < 1, flow curves do not coincide. As temperature increases, τR is pretty small; therefore, 

it is not feasible to make rheological measurements with the trel < 1 condition, as it occurs at 35 oC 

(not shown). Here, all curves behave the same way as in the long-time measurements. As a 

corollary, thixotropic loops with low fluctuations and small hysteresis are obtained when times 

larger than 𝜏Q  are used during each measured point. The up-shear and down-shear curves coincide 

no matter what cylinder is rotating. 
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Figure 4.3. Flow curves for the CTAB/NaSal 
micellar solutions with R = 2 made in Couette 
geometry at different temperatures where 
the inner or external cylinders rotate while the 
other cylinder remains static. Up-shear curves 
(Up) are circles, and down-shear (Down) 
curves are squares: inner rotating cylinder red 
symbols, external rotating cylinder blue 
symbols. The time used to measure each point 
of the flow curve is different: Full symbols 
correspond to measurements where trel > 1. 
On the contrary, empty symbols correspond 
to trel < 1. Insets: These are the same 
measurements as in the main figure. Up-shear 
curves (Up) are circles, and down-shear 
(Down) curves are squares. Inner rotating 
cylinder black symbols, external rotating 
cylinder green symbols; for all the cases trel ≫	
10. Image from [86]. 

 
Fig. 4.4 presents scaled flow curves for up-shear and down-shear curves for CTAB/NaSal at 

R= 4, and in the inset for CTAB/NaNO3; in all the cases, trel > 1. These curves present neither 

fluctuation nor hysteresis, and the up and down-shear curves are almost identical; they do not 

depend on the rotating cylinder. The same behavior is observed in CTAB/NaSal at R= 4 as the 

temperature varies. Equivalent flow curves to those presented before for trel < 1, as mentioned 

above, are not feasible because the relaxation times are pretty low, 1.4, 0.59, and 0.28 s for 20, 

25, and 30 oC, respectively.  
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Figure 4.4. Flow curves for the micellar solutions performed at trel > 1: CTAB/NaSal ([CTAB] = 0.1), R = 4 
Inset: CTAB/NaNO3 at 30 oC. All of them are made using Couette cell geometry. Up-shear curves (Up) are 
circles, and down-shear (Down) curves are squares. In all curves, the internal cylinder is the rotating one. 
Image from [86]. 
 

 From a molecular point of view, for trel > 1, the system has enough time to relax, i.e., 

micelles have enough time to disentangle. Nevertheless, when there is less than one, there is not 

enough time for the tubular micelles to disentangle due to the speed of the imposed strain. The 

micellar network is deformed, so the contribution of elastic forces increases, modifying the flow 

curves. The more entangled the micellar network, the more significant the micellar 

disentanglement time. Also, it is possible to observe another feature in this case: when the ratio 

of elastic to viscous forces is small, i.e., Wi < 1 (𝑊𝑖 = 𝜏Q𝛾̇), do not observe differences in the flow 

curves for all the cases of the implemented protocol. For Wi > 1, the elastic contribution to the 

dynamic forces during the flow produces different flow curves, as observed in Fig. 4.3. 

 

Shear banding observation. The external cylinder is rotating in the experimental setup, and 

the internal one is fixed. It is well known that inertial Taylor instability does not occur when the 

outer cylinder is rotating for Newtonian fluids [18]. In contrast, instabilities do not depend on 

which cylinder is rotating in the purely elastic analog [114]; however, below for a critical value of 

dimensionless curvature of the streamlines (Λ = d/R), shear banding does not show secondary flow 

instabilities [115]. In this case, Λ = 0.066, which is smaller than the critical value of Λ. Therefore, 

we expected only to observe an instability because the WLMS solutions become inhomogeneous 
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close to Wi ∼	 1 and σ/G0 ∼	 1. Along the flow curve plateau, where the fluid becomes 

inhomogeneous, scattered light coming off a page of light in the gap of a Couette cell geometry 

(gradient-vorticity plane) made of two transparent concentric quartz cylinders allows the 

observation of gradient shear bands because of nematic phases scatter light much more than an 

isotropic phase.  

 Thixotropic loops were developed, giving long or short times for deformation to the fluid 

with respect to τR (𝑡A?d ≳ 1 or 𝑡A?d ≲ 1). Typical images of what is observed in the gap in the 

gradient-vorticity plane can be seen in Fig.5a-5b for WLMS solutions of CTAB/NaSal for R = 2 and 

25 oC. In all cases, a paranematic phase appears close to the moving cylinder (external one) in the 

up-shear curve at Wi ∼	1; as the shear rate increases, more bands are formed. Although curves 

are relatively more stable for 𝑡A?d ≳ 1, the paranematic phase is pretty dynamic, forming and 

reforming themselves in different positions along the gap, wriggling, and changing their shapes. 

After several experiments, there is no significant difference if trel is greater or lesser than one. The 

scattered intensity is constant on the average along the gap at a fixed shear rate; the average 

increases as the shear rate increases. As the Wi number increases, bands are thicker; most of the 

time, there is not just one band. The contrast between isotropic fluid and the paranematic fluid 

(dark and brighter regions) seems higher after a long time. However, it is certainly challenging to 

find clear trends or differences. The conclusion is that the position where bands are formed and 

their size are random.  

 Image processing provides spatiotemporal characteristics of the observed bands during 

the shear banding. In the central part of the gradient-vorticity plane, from video recordings of the 

bands, a light intensity distribution I(x) from a horizontal line along the gradient direction was 

sampled at regular time intervals to produce space-temporal diagrams I(x,t) of the flow pattern. 

These space-time plots are helpful for determining the onset and evolution of flow transitions and 

instabilities. Fig. 5c presents an example of a space-time plot for CTAB/NaSal WLMS solutions for 

R=2 and 25 oC, where some features are relatively straightforward. At 𝑡A?d ≳ 1, the contrast 

between paranematic bands and isotropic fluid is lower, revealing fewer fluctuations and more 

stable bands, although it is not common to observe just one band. At 𝑡A?d ≲ 1, there are also many 

bands, and light scattering is more intense in the paranematic and isotropic fluids. The flow is 
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suspected to be less stable due to the increase in fluctuation. Experiments with CTAB/NaSal for R 

= 4, do not show shear bands. For CTAB/NaNO3 with [CTAB] = 0.2 and 0.3 M, presents just one 

band close to the moving cylinder (not show) in good agreement with the literature [24]; this 

phenomenology is called simple shear banding scenario. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5. Gradient shear banding in CTAB/NaSal 
WLMS solutions for R=2 and 25 oC. Flow curves σ 
vs.  for thixotropic loops: a) for trel <1, and b) for 
trel >1. The fluid in the gap is observed with a page 
of light in the gradient-vorticity plane (the color is 
artificial). The images are observations 
approximately where the arrows are pointing out. 
c) Space-time plot grayscale images: Horizontal 
light intensity on a line of pixels along the gradient 
direction (vertical) vs. time (horizontal) for 
CTAB/NaSal WLMS solutions, for R = 2 during 
thixotropic loops. Bright regions correspond to 
the paranematic fluid. They correspond to the 
images in (a) and (b) at some particular time. The 
external cylinder is rotating (bottom of the space-
time graphs), and the inner cylinder is fixed (top of 
the space-time graphs). Image from [86]. 

 

Large Amplitude Oscillatory Strain. LAOS strain-imposed protocol was performed on the WLMS 

solutions under study, which follow the Maxwell model at low and intermediate frequencies when 

the applied strain is small 𝛾4 ≪ 1 (SAOS protocol). As mentioned above (see sections 2.3 and 3.3), 

g
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the shear stress in the Maxwell model for an oscillatory shear strain of amplitude γ0 = Wi0/De and 

angular frequency ω = De/τR, can be written as 𝜎(𝑡) 	= 	 (𝑊𝑖4/𝐷𝑒)[𝐺3 sin(𝐷𝑒 𝜏Q⁄ ) 𝑡 +

𝐺33 cos(𝐷𝑒 𝜏Q⁄ ) 𝑡], where 𝐺′ = 𝐺4[𝐷𝑒(/(1 + 𝐷𝑒()] and 𝐺′′ = 𝐺4[𝐷𝑒/(1 + 𝐷𝑒()]. The loci of 

𝜎(𝑡) vs. 𝛾(𝑡) for this model is an ellipsis given by 𝜎( − 2𝐺′𝜎𝛾 + (𝐺3( + 𝐺33()𝛾( = [𝐺33𝑊𝑖4/𝐷𝑒](	, 

where the stress maximum in a general linear viscoelastic material always occurs in the first 

quadrant (all variables positive) of a 𝜎 vs. 𝛾 graph (𝜎%^� = [(𝐺3( + 𝐺33()/𝐺′]𝛾). The response of 

WLMs solutions to oscillatory shearing strain is probed by selecting γ0, which in LAOS is not limited 

to small values, producing deviations from the linear behavior. For a fixed Wi0 value, when De ≫	

1, WLMSs solutions can display a nonlinear elastic response at frequencies whose periods are 

shorter than the time scale needed to form shear bands, particularly when Wi0/De > 1. Generally, 

when the ratio of relaxation time to the time scale of the deformation observation (De ≪	1) is 

quite small, a reconfiguration dynamic that keeps pace with the applied deformation is expected. 

This flow leads to a quasi-steady state response, in which the stress slowly sweeps up and down 

as the shear rate varies through a cycle. Time-resolved small-angle neutron scattering t-SANS in a 

WLMS solution [116], similar to those studied here, have identified different frequency regimes 

matching nearly perfectly the expectations of the linear viscoelastic Maxwell model.  

 In Figs. 4.6 – 4.8 shows Pipkin diagrams: 3D Lissajous-Bowditch curves 

(𝜎 𝜎4⁄ 	𝑣𝑠. 𝛾 𝛾4⁄ 	𝑣𝑠. 𝛾̇ 𝛾̇⁄ 4) and their projections (elastic representation: σ⁄σ0 vs. γ⁄γ0, and viscous 

representation: 𝜎 𝜎4⁄ 	𝑣𝑠. 𝛾̇ 𝛾̇⁄ 4 (= 𝛾̇ 𝜔𝛾4)⁄ ) at different values of De and Wi0. Here, γ0 and σ0 are 

the maximum shear rate and maximum shear stress in an oscillation cycle used to scale the shear 

stress and shear rate, respectively. In the mentioned figures, rows are arranged for different 𝐷𝑒(=

𝜏Q𝜔) values, i.e. varying the frequency of shear oscillation; then, in a row, we present on the left 

results for De ∼	0.3, in the center for De ∼	1, and on the right for De ∼	3. Relaxation time varies 

due to shifting the surfactant concentration (Fig. 4.6) or temperature (Figs. 4-7 and 4.8).  

The top rows correspond to large τR values, which decrease downward. The 3D Lissajous-

Bowditch curves and their projections are more or less similar for each system going down along 

a specific column because graphs are scaled variables. In contrast, more significant behavior 

changes are observed in all the systems going from left to right along a row. Here, moving 

rightward along a row in these figures, the system's relaxation dynamics cannot keep pace with 
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the applied deformation. In these graphs, the amplitude of shearing strain, γ0 = Wi0/De, varies, 

depending on the case, from a little less than one to γ0 ∼ 10 (curves with a different color). Fig. 4.6 

presents the CTAB/NaNO3 micellar solution, the 3D Lissajous-Bowditch curves, and their 

projections. As mentioned, this system presents shear banding in steady shear for the 

concentration above 0.1 M in CTAB (systems in the two upper rows of Fig. 4.6). For De ∼	0.3, for 

Wi0/De ≤ 1, linear viscoelasticity is observed since the shape of the 𝜎/𝜎4	𝑣𝑠. 𝛾/𝛾4 curves are 

ellipsoidal in the elastic representation; their maximum stress is also in the first quadrant of this 

representation. On the contrary, as Wi0/De > 1, the ellipsoidal shapes are lost, and the stress 

maxima move to the second quadrant in the elastic representation, i.e., their behavior is nonlinear. 

For De ⁓ 1, the behavior is the same as for Wi0/De ≤ 1, the σ vs. γ curves describe ellipses; but 

when Wi0/De > 1, the curves show a behavior more nonlinear than in the previous case, except 

for the case of the lower CTAB concentration (lower row, [CTAB] = 0.1). Here, the system's 

behavior seems viscoelastic since the σ vs. γ curves describe elliptical shapes in the elastic 

representation. For De ∼	3, the behavior is viscoelastic for most solutions. However, for the case 

of the solution with the largest CTAB concentration, as the Wi0/De increases over one, the curves 

in the elastic representation become less ellipsoidal, deviating from the Maxwell model to showing 

a clearer nonlinear behavior. For the lower CTAB concentration case ([CTAB] = 0.1), the behavior 

of the σ vs. γ curves correspond to a linear elastic response, as observed in the elastic (forming 

almost a diagonal line) and viscous representations (forming almost a circle). The elastic 

contribution makes the fluid behavior more nonlinear as more CTAB is added to the solution, 

which is also the direction of increase in τR.  

 From the mesoscopic point of view, as CTAB concentration increases, the total WLMS 

contour length increases, as well as the degree of entanglement of the micellar network, as we 

will show below. This is one of the underlying reasons for the increase of an elastic contribution 

on the forces involved in the flow and the nonlinear response. The behavior described for the 

CTAB/NaNO3 system is similar to that described by the Lissajous–Bowditch curves in LAOStrain 

given by the nRP model with a nonmonotonic constitutive behavior [16].  
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Figure 4.6. Normalized 3D Lissajous-Bowditch curves and their projections (elastic representation: 
𝜎 𝜎4⁄ 	𝑣𝑠. 𝛾 𝛾4⁄ , and viscous representation: 𝜎 𝜎4⁄ 	𝑣𝑠. 𝛾̇ 𝜔𝛾4⁄ ) for CTAB/NaNO3 micellar solutions at 
different 𝑊𝑖#(= 𝜏4𝜔𝛾#) and 𝐷𝑒(= 𝜏4𝜔). Surfactant concentration from the upper row to the lower one: 
[CTAB] = 0.3, 0.2, and 0.1 M, respectively; [NaNO3] = 0.3 M, and T = 30 oC. Image from [86]. 
 

Fig. 4.7 shows the 3D Lissajous-Bowditch curves and their projections for CTAB/NaSal for R 

= 4. In this WLMS solution, shear banding in steady shear is never observed when the temperature 

is varied [12]. Although the Lissajous–Bowditch curves and their projections are not equal to the 

case of CTAB/NaNO3, they are relatively similar. In all the cases with Wi0/De ≤ 1, the system follows 
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a viscoelastic linear flow because the σ/σ0 vs. γ/γ0 curves describe an ellipse, and the stress maxima 

are in the first quadrant in the elastic representation. However, when Wi0/De ≥ 1, WLMs solutions 

do not follow the ellipsoidal shape, revealing a nonlinear behavior. In De ∼	 3, although the 

behavior is nonlinear, the elastic contribution seems to be more important than in De ∼	0.3, 

because, in the elastic representation, the curves present relatively more elongated diagonal 

shapes and relatively more circular shapes in the viscous representation. This is particularly clear 

in the direction where τR decreases (higher temperatures), and entanglement decreases, as we 

will see below. In agreement with the LAOStrain results given by the nRP model with a monotonic 

constitutive curve [12,117], expect that shear banding could appear during the experimental 

development of the Lissajous-Bowditch curves at some specific shear deformations. 

In contrast with the cases presented in Fig. 4.6, and 4.7, Fig. 4.8 shows very different results 

for the CTAB/NaSal micellar solution for R = 2. This system presents gradient shear banding under 

steady flow, but as reported before [12], and discussed below, the bands do not show a simple 

scenario; several bands are observed. In general, in all the cases of this micellar system with 

Wi0/De ≤ 1, a viscoelastic linear flow is observed because the σ/σ0 vs. γ/γ0 curves describe elliptical 

shapes, and the stress maxima are in the first quadrant in the elastic representation. For Wi0/De > 

1, different behavior is followed going to the right in a row. At De ∼	0.3, the response of WLMs 

solutions to oscillatory shearing strain is nonlinear and going downward in the figure (higher 

temperatures and lower τR), there is a significant increase in the shear stress, which are stress 

overshoots. As the De number increases, these stress overshoots are not so prominent at 

particular τR; they almost disappear at De ∼	3. 
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Figure 4.7. Normalized 3D Lissajous-Bowditch curves and their projections (elastic representation: 
𝜎 𝜎#⁄ 	𝑣𝑠. 𝛾 𝛾#⁄ , and viscous representation: 𝜎 𝜎#⁄ 	𝑣𝑠. 𝛾̇ 𝜔𝛾#⁄ ) for CTAB/NaSal micellar solution for R = 4, 
at different 𝑊𝑖#(= 𝜏4𝜔𝛾#) and 𝐷𝑒(= 𝜏4𝜔). Temperature from the upper to the lower row T = 20, 25, and 
30 oC, respectively; [CTAB]= 0.1 M. Image from [86]. 
 
 At De ∼	0.3, the ratio of relaxation time to the time scale of deformation observation is 

relatively small, and we observe a quasi-steady response that must be in some way similar to what 

is observed in a steady flow, as described above. In the elastic or viscous representations, we 

observe significant oscillations. We suspect that the oscillations could be due to the formation of 

multiple bands when the system reaches that region of the cycle, as it occurs during steady shear 
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flow, as shown in the next section. As far as De ∼	1 with Wi0/De > 1, the nonlinear behavior is 

substantial, but there are no oscillations as in De ∼	0.3. However, at De ∼	3 with Wi0/De > 1, the 

system behaves nonlinearly in the upper rows (lower temperatures and larger 𝜏Q), but the system 

becomes relatively more viscoelastic in the lower ones. Here, τR is smaller, as well as 

entanglement.  

It is important to note the following fact after depicting the 3D Lissajous-Bowditch curves 

and their projections for three different WLMS solutions, which, due to the temperature or 

surfactant concentration, present different τR values. Despite being scaled Pipkin diagrams, 

systems for the same De and Wi0 numbers in a column do not reflect a scaled invariance; some 

curves corresponding to the same color are similar but quite different in other cases. It is 

suspected that is due to the degree of entanglement of the micellar network, which is responsible 

for elastic forces and different for each WLMs solution but not considered in the description yet. 

The micellar network needs to be disengaged during the LAOS protocol. In particular, at high 

frequencies, as in the case of De ∼	3 with Wi0/De > 1, systems with large τR cannot be disentangled 

efficiently; then, their degree of nonlinear behavior is relatively large. 
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Figure 4.8. Normalized 3D Lissajous-Bowditch curves and their projections (elastic representation: 
𝜎 𝜎#⁄ 	𝑣𝑠. 𝛾 𝛾#⁄ , and viscous representation: 𝜎 𝜎#⁄ 	𝑣𝑠. 𝛾̇ 𝜔𝛾#⁄ ) for CTAB/NaSal micellar solution for R = 2, 
at different 𝑊𝑖!(= 𝜏"𝜔𝛾!) and 𝐷𝑒(= 𝜏"𝜔).Temperature from the upper to the lower row T = 20, 25, 30, 
and 35 oC, respectively; [CTAB]= 0.1 M. Image from [86].  
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Relationship between mesoscopic parameters and dimensionless elasticity number. The 

main mesoscopic scales that characterize the micellar network were characterized according to 

section 3.3 (experimental procedure) and section 2.3 (theoretical framework), where the example 

shows there correspond to WLMs made with NaNO3/CTAB con [CTAB] = 0.1 M, [NaNO3] = 0.3 M 

at 30 oC. The results for different surfactant concentrations and temperatures of the solutions 

discussed here are in Table 1. These quantities change when the amount of surfactant, the ratio 

of salicylate to surfactant, temperature, or ionic strength of the media vary.  

 

Table 4.1. Microrheological parameters (𝜏4 	(𝑠), 𝐺#	(𝑃𝑎), and 𝐺9,"!! 	(𝑃𝑎)), and the mesoscopic scales that 
characterize the micellar solutions’ micellar network. 

Parameter τR (s) G0 (Pa) G’’min (Pa) ω0 (s-1) ξ (nm) lp (nm) le (nm) LC (nm) κ 
=LC⁄le  

[CTAB]  NaNO3/CTAB, [NaNO3] = 0.3 M a 30 °C 

0.1 M 0.19 24.2 4.9 14378 119.1 35.7 265.8 1974.4 7.4 

0.2 M 0.36 56.5 9.8 30313 89.7 27.9 195.6 1745.2 8.9 

0.3 M 0.26 66.4 10.1 55663 85.0 22.7 204.7 2159.3 10.5 

T (°C) NaSal/CTAB, [CTAB] = 0.1 M y R = 4 

20 1.91 45.3 4.2 32932 95.5 24.8 234.4 4611.2 19.7 

25 0.64 39.7 5.9 58825 100.4 21.4 281.3 3018.1 10.7 

30 0.57 30.7 5.1 146378 109.9 15.3 409.3 3845.4 9.4 

T (°C) NaSal/CTAB, [CTAB] = 0.1 M y R = 2 

20 4.85 34.3 2.00 103636 104.7 17.0 352.5 12416.3 35.2 

25 2.30 37.2 2.6 63322 102.5 20.1 303.8 8271.7 27.2 

30 0.58 36.3 4.5 45665 104.0 22.5 288.1 3921.6 13.6 

35 0.16 38.8 6.3 15620 102.3 36.2 204.6 1967.2 9.6 

 
 In WLMs solutions, the Wi number takes the role of a control parameter in steady shear 

flow, which compares elastic to viscous forces in the fluid, as shown in the scaled curves (σ/Go vs. 

𝛾̇τR) shown above (see Fig. 4.3 – 4.4). When Wi < 1, the fluid's elastic to viscous forces ratio is 

small. Apparently, the micellar network is under a slowly disentangling viscous flow since the 

deformation rate is slow. When Wi ⁓ 1, there is a regime change from linear to nonlinear. Below 

a scaled critical temperature in a master dynamic phase diagram, in which an isotropic and a 
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paranematic phase coexist [62], the fluid under shearing onsets the separation into two sectors, 

the fluid shear thins, and the 𝜎/𝐺4	𝑣𝑠. 𝛾̇𝜏Q  curve presents a stress plateau. As Wi grows up above 

one, elastic forces in the fluid are more significant than the viscous forces since viscosity decreases 

as 𝛾̇ increases along the coexistence region. Fig. 4.9a presents El vs. Wi for the micellar solutions 

studied here. As mentioned above (see section 3.3), the elasticity is defined as the ratio of 

viscoelasticity forces and inertial forces, i.e, El = Wi⁄Re, where Re is the Reynolds number which 

was calculated for a Taylor-Couette geometry (𝑅𝑒 = �="q̇
J

; ρ is the density of the solution, d is the 

geometry gap, and η the viscosity of the solution). At Wi < 1, inertial forces are negligible compared 

to those related to elastic deformations suffered by the micellar network. El is relatively constant 

here and can reach several orders of magnitude depending on the system. When Wi ⁓ 1, El starts 

to decay linearly following the instantaneous viscosity observed when Wi > 1, and El can decrease 

more than one order of magnitude in some systems (CTAB/NaSal), although their El values can still 

be pretty significant. The trend of El is similar to that followed by τR given for all systems in Fig. 4.2. 

The isotropic-paranematic transition is observed in CTAB/NaSal solutions with R = 2 at very high El 

values. The CTAB/NaSal solutions with R = 4 also have high El values; however, they are not as high 

as R = 2 but do not present that phase transition. For the case of CTAB/NaNO3, where EI values 

are orders of magnitudes below those of the CTAB/NaSal systems, the shear banding transition is 

present just for the larger elasticity values. Nevertheless, it does not appear for the lowest El value. 

More cases need to be studied to determine if there is a tendency to find shear banding when El 

grows.  

 The Re and Wi numbers are ratios between different forces involved in the flow of a fluid, 

which also depends on the flow conditions. However, they are not measuring directly any intrinsic 

property related to the elasticity of the micelle network that is perturbed when the fluid slowly 

flows. This is particularly obvious when Wi < 1, where inertial forces are negligible due to the low 

speed of the fluid flow, concerning those related to elastic deformations suffered by the micellar 

network, which is slowly disentangling during that deformation. Here, the mesoscopic scales LC 

and le could be of help. The ratio between LC and le can be evaluated as the number of 

entanglements that an average micelle has close to equilibrium by measuring the mesoscopic 

scales of a micellar network as presented above. It would be pretty reasonable that as there are 
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more entanglements per micelle, the micelle network could react more elastically to any slow 

deformation while trying to disentangle. Therefore, it is possible to define an entanglement index, 

κ = LC/le, for WLM solutions; this ratio explains in some micellar solutions the viscosity dependence 

on temperature because entanglement decreases with increasing temperature, which also 

explains why the elasticity number measured in Couette flow decreases when the temperature 

increases [22,113]. Recently, other authors have started to use this parameter to 𝐺4/𝐺%!"33  to 

measure the entanglement [118], which is close to 𝜅 definition. Fig. 4.9b shows that when κ 

increases, EI also increases nonlinearly; a big shoulder appears at κ ⁓ 10, apparently separating 

two regimes. One possible explanation as to why for κ > 10 the elasticity decreases is a shear 

thinning effect; as κ increases, the elasticity of the micellar network increases, and its 

disentanglement becomes more difficult, so chains must partially align to facilitate their flow 

under an imposed deformation, reducing their viscosity and thus their elasticity. However, the last 

surmise is a hypothesis, and from a molecular point of view, it is not clear whether these regimes 

could be related to a change of contribution between inertial and elastic forces to El; further 

theoretical development is needed to understand this feature. The large values in κ are the 

underlying reason for observing in some WLM solutions so large values of El at small values of Wi; 

this is the case of CTAB/NaSal solutions with a significant κ value, in contrast with those of 

CTAB/NaNO3 where κ is much lower.  

 
Figure 4.9. a) 𝐸𝑙	𝑣𝑠.𝑊𝑖(= 𝛾̇𝜏4) for the micellar solutions of CTAB/NaSal ([CTAB] = 0.1 M), for R=2 and R = 
4, at different temperatures, and of CTAB/NaNO3 ([CTAB] from 0.1 to 0.3 M, and [NaNO3] = 0.3 M), at 30 
ºC. b) El vs. κ for the WLM solutions, where El is calculated along the vertical red line showed in (a), for a 
Couette cell with d = 2.5 mm, Ri = 37.5 mm, Λ = 0.066. Image from [86]. 



 93 

 

Flow curves are essentially the same in thixotropic loops when trel > 1, as discussed above, 

no matter what protocol or cylinder of the Couette geometry is rotating. Although the flow strains 

the micellar network, there is enough time for a slow disentangling. Nevertheless, when trel < 1, 

flow curves do not coincide and present large fluctuations because there is no time for the micellar 

network to be disentangled, so the response to the strain of the micelle network in the fluid is 

quite elastic and nonlinear. Thixotropic loops that present multiple bands correspond to micellar 

solutions with a significant degree of entanglement, as is the case for CTAB/NaSal with R = 2. 

However, CTAB/NaSal with R = 4 does not show shear bands, where κ is lower than for R =2. In 

contrast, for CTAB/NaNO3 solutions, κ is relatively low, and when they present banding, it is just 

one band close to the moving cylinder (simple scenario). It is unclear why CTAB/NaSal with R = 4 

does not present shear banding with such a high entanglement. Probably, we are extrapolating to 

the concept of κ, which was measured in equilibrium, and there is another component related to 

the dynamics of the shear banding formation playing an important role. 

As mentioned above, in the Lissajous-Bowditch curves, a specific column, τR, is different 

going downwards. Pipkin diagrams in scaled variables for the same De and Wi0 numbers do not 

reflect scaled invariance. Just curves corresponding to the same color where Wi0 < 1 are almost 

superimposable. However, when γ0 = Wi0/De increases, the micellar network is highly deformed, 

which is harsher in LAOS at high frequencies because micelles do not have enough time to 

disentangle at the speed of the imposed strain. Then, the larger κ, the more nonlinear behavior 

will be expected. However, in LAOS experiments, we cannot evaluate κ along the deformation 

steps in the experiment in the present state of our knowledge because these experiments are 

developed far from equilibrium as the frequency increases. The index 𝜅 is obtained in equilibrium 

conditions, and it cannot be used as Wi or Wi0 notoriously increase because the micellar network 

is disentangling, and micelles start to align due to the flow. In such a case, the equilibrium κ index 

no longer represents the actual entanglement. However, κ can give us a clue of what is happening 

in the system by extrapolating what is occurring at low values of Wi. As mentioned above, we 

suspected the degree of entanglement of the micellar network, which is responsible for elastic 

forces, must be substantial. This seems to be correct from the data in Table 4.1. For the 
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CTAB/NaNO3 solutions, as the CTAB concentration increases, the micellar length does not vary so 

much, although it increases at a higher concentration. However, le slightly decreases as the CTAB 

concentration increases; therefore, the degree of entanglement, κ, increases. In the CTAB/NaSal 

solutions with R = 4, le decreases as temperature drops; LC first decreases with temperature but 

increases at 25 oC. Hence, the degree of entanglement given by κ increases as temperature 

decreases. Finally, in the case of CTAB/NaSal with R = 2 solutions, LC notoriously increases when 

the temperature decreases, and le also increases, but at a slow pace. Therefore, the entanglement 

notoriously increases. The micellar network can slowly be disengaged during the LAOS protocol at 

large γ0 and low frequencies but not at high frequencies (De ⁓ 3 with γ0 = Wi0⁄De > 1). Micellar 

solutions with large κ cannot be disentangled efficiently; their degree of nonlinear elastic behavior 

is relatively large. It is essential to mention that the physicochemical parameters of micellar 

solutions determine the mesoscopic scales; apparently, the other mesoscopic scales also change, 

but they do not clearly impact the rheological behavior as κ = LC/l_e. 

 Finally, it is essential to mention that the disentanglement mechanism is unknown. Several 

mechanisms are probably occurring at the same time. Micelles could slide or reptate to leave the 

entanglement through viscous flow, break and reform, or through the transient character of cross-

links, where when a micellar tread collides or contacts an entanglement, it forms a transient cross-

link that recombines on the other side of the encountered topological constraint (ghostlike 

crossing).  

4.1.4. Conclusions  

In this study, different experiments (flow curves, small and large oscillatory shear tests, 

linear shear banding observations) were done to determine how elastic forces modify the 

rheological behavior of Maxwellian fluids due to the contribution of elastic forces to the flow. Also, 

we made diffusive wave spectroscopy micro-rheology to obtain the mesoscopic length scales of 

the entangled micellar network in WLM solutions, which are determined by the solutions' 

physicochemical parameters (concentration of surfactants, hydrotropic salts, temperature, the 

ionic force of the media, etc.). Understanding the origin of how the elastic forces affect the 

rheological behavior of micellar fluids is not done by proposing a model and solving it for different 
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experimental protocols, as mainly made for LAOS experiments in Refs. [16,17]. The approach was 

to find a property that somehow measures entangling in the mesoscopic micellar network, giving 

rise to elastic forces opposing fluid deformation during flow. This property is the entanglement 

index, κ, which allows us to understand the consequences of the entanglement in the experiments 

we performed, explaining why different micellar systems are ordered in the way shown in the 

diagram El vs. Wi of Fig. 4.9a in terms of the characteristic length scales of the supramolecular 

structures, which self-assembles in the fluid. Mesoscopic simulation methods for predicting the 

rheology of WLMs [16,119] need to be done in the future to confirm the correlation between EI 

and κ, as observed in Fig. 4.9b, and to determine if the apparent two regimes observed in that 

figure have some physical insight. 
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4.2 Linear and nonlinear viscoelasticity of flexible biopolymer gels 

G R A P H I C A L    A B S T R A C T 

 
Depending on the gelation mechanism, biopolymer gelatin gels are commonly classified as physical, 
chemical, or hybrid; in hybrid gels, the physical and chemical crosslinking mechanisms occur 
simultaneously. The chemical and physical contribution in the network can weigh the fractal dimension. 
Image from [120]. 

4.2.1 Abstract  

Depending on how they form their linkings, biopolymer gelatin gels are commonly 

classified as physical, chemical, or physicochemical (in this work, sometimes called hybrid); in 

gelatin hybrid gels, the physical and chemical crosslinking mechanisms run simultaneously. This 

work explores how different gelation mechanisms affect the network structure through a 

rheological and microrheological approach using gelatin molecules as a model of flexible polymer. 

Chambon & Winter criteria was used, using SAOS protocol to determine the rheological behavior 

close to the gel point. The strain-hardening behavior of matured gels using the LAOS protocol was 

investigated to determine the fractal dimension, and the BST-scaling model was employed to 

interpret the results. Additionally, we obtained the Lissajous-Bowditch curves like a fingerprint 

that characterized the different types of gels. Hybrid gels' fractal dimension is between 1.46 and 

1.60, where the value depends on the dominant crosslinking process.  

The gelation kinetics process is followed by measuring the mean squared displacement of 

microspheres embedded in gelatin solutions using DWS, which in turn allows evaluating G'(ω) and 

G''(ω), the persistence length, and the mesh size as a function of time along the gelation process. 
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The MSD, as a function of the elapsed time from the starting gelation process, follows a behavior 

that depends on the gelation processes. As time elapses after gelation starts, the persistence 

length of the unstructured, non-bonded flexible polymer sections decreases due to the formation 

of bonds. In the hybrid case, it is not a mixture of both processes; they are not independent when 

running simultaneously. The time evolution of the gel network's mesh size roughly follows an 

exponential decay. The results will be discussed below; the introduction to the system is omitted 

because it was already done in Chapter 2 (see section 3.3). The discussion that follows was 

published as a full paper [120].  

4.2.2. Experimental section  

The rheological and microrheological measurements were performed for three different 

gels: physical, chemical, and hybrid. The network formation is achieved by resrtucturing from 

single-strand to triple-helix gelatin chains in physical gelatin gel. To form physical crosslinking, the 

temperature decreases below gelation temperature, Tg; the coils randomly transform into 

partially renatured intermingled ordered triple helices mainly held together by hydrogen-bond 

junctions. If the temperature increases again, the triple helix conformations return to the coiled 

state, and the gel reversibly melts into a solution [30,36]. For chemical gel, chemical reactions 

form the network where permanent covalent bonds are created. Consequently, gelation is 

irreversible; in this work, glutaraldehyde was used as a chemical crosslinker. Furthermore, it is 

feasible to form hybrid gelatin gels by mixing crosslinking processes, i.e., physical and chemical, 

producing the so-called physicochemical gel formed by adding a chemical cross-linker agent and 

decreasing the temperature below Tg. Fig. 4.10 shows a carton of these gels according to 

crosslinking processes. 
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Figure 4.10. Cartoon with three gelatin types: physical, chemical, and physicochemical gels with 
glutaraldehyde as the crosslinking agent. Tg is the gelation temperature. Image from SI of [120]. 
 

Materials. Gelatin from porcine skin (type A, gel strength 300 Bloom, Mol. Wt. 87,500 Da, Sigma-

Aldrich USA), glutaraldehyde solution (C5H8O2, Sigma-Aldrich Germany), sodium azide (NaN3, 

purity > 99 %, Sigma-Aldrich USA), and hydrochloric acid (HCl, Sigma-Aldrich USA). Solutions were 

prepared with ultrapure deionized water (Nanopure, USA). Chemical products were used as 

received. At low pH, glutaraldehyde molecules react through a hemiacetal bond with two 

hydroxyproline residues [121], which are linked to the gelatin chain through a covalent peptide 

bond. For describing the chemical and physicochemical gels, use the parameter R = 

[Glutaraldehyde]/2[Hydroyproline] to indicate the molar quantity of glutaraldehyde, which will be 

interlinked with an equivalent molar number of hydroxyproline residues in the gelatin strand; 

hydroxyproline concentration for gelatin type A is ~13.5 Wt % [121].  

To prepare gelatin solutions, gelatin powder was dissolved in ultrapure deionized water 

under magnetic agitation at 60 oC overnight. Before starting the gelation process, the pH of the 

gelatin solution was adjusted to pH = 4 with [HCl] = 0.1 N.  

Rheological measurements. All measurements for SAOS and LAOS were performed with a MCR-

702 Twin Drive rheometer (Anton Paar, Austria) using a cone-plate geometry (2o cone angle, Diam. 

= 40 mm) and temperature control (± 0.1 ºC). A solvent trap was used to avoid water evaporation.  
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Estimation of the gelation temperature. Viscoelastic spectra with SAOS protocol were 

obtained in a range of ω ≈ 0.1 – 350 s-1, with a constant strain of γ ∼ 0.8 %, for different gelatin 

solution concentrations, C (= 5 – 16 Wt %). Measurements started at high temperatures (𝑇 ∼ 50 

℃) where the rheological behavior of the solutions is liquid-like (G"(ω) > G'(ω)), with previous 

thermal equilibration (≳1 h). Then, the temperature was systematically lowered for subsequent 

SAOS measurements until G'(ω) ∼ G"(ω) over a wide frequency range to reach the gelation 

temperature (Tg). The rheological behavior for T < Tg is solid-like (G'(ω) > G"(ω)). 

Estimation to reach the gel-point time and viscoelastic spectra at the gel point. An 

estimation of the gelation time is given by the time needed to reach the gel point, i.e., the elapsed 

time to reach G'(t)	∼ G"(t) along an isothermal time sweep experiment with a constant frequency 

(ω = 0.5 s-1) and constant strain (γ = 0.8 %). The viscoelastic spectra are performed after a thermal 

quench, where the sweep is performed below the initial starting solution temperature (T = 35 oC). 

The measurement of G'(ω) and G"(ω) started after a specific elapsed time, close to the gelation 

time. For physical and physicochemical gels, using different quenches at T ≤ Tg, the viscoelastic 

spectra can be determined very close to the gel point, where G'(ω) and G"(ω) are parallel (at 

constant strain, γ = 0.8 %) in a wide range of frequencies. For chemical gels made by 

glutaraldehyde addition, there is no quenching. All measurements are made at T = 35 oC. The 

rheological measurements were performed at least two times.  

Linear and nonlinear viscoelastic spectra of mature gels. The viscoelastic spectra (SAOS) 

were obtained on matured gels after 4 h of starting the gelation at some T. Frequency sweep 

measurements were carried out in the range of ω = 0.1 – 100 s-1 at γ = 0.8 %. Afterward, for LAOS 

measurements, strain-sweep measurements were developed (γ = 0.1 – 5000 % at ω = 1 s-1). 

Lissajous-Bowditch curves were obtained for one imposed intra-cycle shear strain. The rheological 

measurements were performed at least two times. 

Microrheology and diffusive wave spectroscopy. The Mean Square Displacement is 

measured with DWS according to described in section 3.3. The experimental MSD curves were 

fitted using the Bellour model [111]. Polystyrene microspheres (dia. 500 nm and 784 nm; Bangs 

Labs, USA) were added to the solutions (vol. fraction ~ 0.025) at 35 oC, mixed, and placed in a 

rectangular optical glass cuvette (2 mm optical-path length, Sterna Cell, Inc.). Physical gels are 
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quenched in a thermal bath to T ≤ Tg. This quenching mark the starting point for the gelation 

process and the MSD measurements. The MSDs of probe microspheres are determined by 

collecting their scattered light from a speckle over 180 – 300 s, and the intensity auto-correlation 

functions are evaluated; measurements were taken along ~ 8 h for different waiting times after 

gelation started. Scattered light collected for 180 s is enough to consider local thermodynamic 

equilibrium with good statistics. Protocols for measuring the MSD for chemical and 

physicochemical gels are similar. An aliquot of glutaraldehyde is added to the gelatin mixture after 

mixing the microspheres into the gelatin solutions; we considered this moment the starting point 

of the gelation process for measuring the MSDs. Cuvettes were introduced into a thermal bath for 

chemical gels at T(> Tg) = 35 oC. For physicochemical gel, the thermal bath is at T ≤ Tg to start the 

physical bonding simultaneously.  

 From the MSD, the viscoelastic spectra (ω ≈ 102-106 s-1) can be evaluated up to high 

frequencies, and the observation of stress relaxation through Rouse-Zimm and bending modes of 

the polymer chains is affordable. At those frequencies, G*(ω) exhibits a power-law behavior, 

|𝐺∗(𝜔)|~𝜔[, with 𝜇~5/9 for Rouse-Zimm modes, which shifts to 𝜇~3/4 where the internal 

bending modes of Kuhn segments dominate. The change occurs at the frequency, 𝜔4, 

corresponding to the shortest relaxation time in the Rose-Zimm spectrum. From 𝜔4 coming from 

that change in |𝐺∗(𝜔)|, the persistence length, lp, can be evaluated using the relationship 𝜔4 ≈

k�T/8𝜂P𝑙5-, where 𝜂P is the solvent viscosity [58]. Additionally, it is possible to estimate the mesh 

size of the network, ξ; according to the flexible polymer theory, the relationship between the mesh 

size and de elastic modulus, G0, is 𝜉- = (𝑘&𝑇/𝐺4) [5,59]. Is important to note that the equation 

for calculating ξ is different from using for WLMs solutions; there, ξ considers the reptation of the 

chain that is included in the factor 𝐴; 𝜉 ≅ ë𝐴 ⋅ V𝑘&𝑇 𝐺4� Wí
#
(
 with A = 9.75) [16].  

4.2.3. Results and Discussion 

Gelation temperature for physical gels. An example of how Tg is obtained for gelatin 

solution at C = 16 Wt % is presented in Fig. 4.11. For temperatures ≥ 40 oC, G'(ω) is proportional 

to ω2 and G"(ω) to ω over a significant frequency domain, a behavior characteristic of polymer 

solutions [5]. As the temperature is lowered, both G'(ω) and G''(ω) get close and parallel, and 
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eventually, when the temperature is equal to Tg =	36.5 oC, both moduli are almost the same in 

almost four orders of magnitude of the frequency. A log-log plot of G'(ω) or G"(ω) vs. ω forms 

straight lines with the same slope; the system has reached the critical gel. For T < Tg, the 

viscoelastic behavior is solid-like. Also, at the gel point, tan(δ) is independent of frequency, tan(δ) 

= tan(nπ/2), as seen in the inset of Fig. 4.11.b for 36.5 ºC where the n value of Chambon & Winter 

criteria can be obtained, as well as the of stiffness, S. In this case, n = 0.62, equal to the results 

reported by Peyrelasse et al. [Peyrelasse] for a concentration range between 0.17-0.40 g/cm^3.  

 
Figure 4.11. a) Linear viscoelastic spectra (SAOS protocol) at different temperatures for a gelatin solution 
(16 Wt %) to obtain a physical gel. b) tan(δ) vs. ω at different temperatures; insert tan(δ) as a function of 
the temperature for different frequencies. Image from Supplementary Information of [120]. 
 

Fig. 4.12 presents Tg values vs. C, between 3 Wt % and 16 Wt %. Tg increases as the 

concentration increases, i.e., as more single chains are available, a higher temperature is needed 

for percolating. Along that concentration range, the average critical exponent is n ~ 0.61 (see inset 

of Fig. 4.12). Combining our data with that of Peyrelasse et al.[122], the power law behavior for 

gelatin critical physical gels is followed through a wide concentration range (3 Wt % to 40 Wt %). 

The inset of the inset of Fig. 4.12 also presents the stiffness factor as a function of gelatin 

concentration, which follows a power law, S = 0.016C1.68, as in polymers [123]. 
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Figure 4.12. Tg vs. gelatin concentration, the dotted line is a guide to the eye. Inset: n vs. C, and a log-log 
plot of S vs. C; the colored line is a linear fitting in the log-log plot ((regression coeficcient)2 = 0.95). Image 
from [120]. 
 

Linear viscoelastic spectra of critical gels. A concentration of gelatin was chosen to study 

physical critical gels by mechanical rheology, and the gelation process was slow enough to have 

time for accurate measurements. Also, the gel must be strong enough to get reliable stress 

measurements. For C = 5 Wt %, the gelation time is ~ 90 min at Tg = 30 oC. For higher 

concentrations, gelation time decreases, making it challenging to obtain precise measurements. 

For C = 3 Wt % or below, gelation time increases; however, G'(ω) and G''(ω) show instabilities, 

possibly because the formed network is weak and prone to breaking for the imposed strains. 

Therefore, the concentration of gelatin solutions was C = 5 Wt % to reach the critical gel. Adding 

glutaraldehyde to gelatin solutions produces a chemical gel. Fig. 4.13 shows the G'(t) and G"(t) vs. 

t (ω = 0.5 s-1 and γ = 0.8 %) for different R values at 35 oC. Gelation time where G'(t) ~ G"(t) decays 

as R increases (inset Fig. 13). For R < 0.15, gels are not formed because G'(t) always is below G"(t), 

but for R = 0.15, the gelation time is ~ 63 min. Therefore, we will use a relation of R = 0.15 to obtain 

the chemical and physicochemical critical gels, and only in a few experiments, R = 0.20.  
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Figure 4.13. Isothermal time sweep curves for a gelatin solution under chemical gelation at C =5 Wt % with 
different R values at 35 oC. Experiments were performed at ω = 0.5 s-1 and a strain of γ = 0.8 %. Insert: 
Gelation time as a function of R. Image from Supplementary Information of [120].  
 

Fig. 4.14 presents the linear viscoelastic behavior for physical, chemical, and 

physicochemical critical gels, where G'(ω) and G"(ω) are parallel in several orders of magnitude in 

frequency. In Fig. 4.14, measurements were delayed after gelation started until the system was 

relatively close to the critical point to avoid observing a polymer solution in the first steps of 

gelation. In some figure panels, different vertical scales (y-axis) were used to see all measurements 

in one figure, regardless of the quench extent. In Fig. 4.14a shows G'(ω) and G"(ω) for different 

temperature quenches from an initial temperature equal to 35 oC to a final Tf, (temperature 

quench with ΔTq = Tf – 35 oC). When the quench ends at Tg =	30 oC, G'(ω) and G"(ω) are parallel for 

more than three orders of magnitude in the frequency, i.e., the solution became a critical gel for 

C = 5 Wt %; the exponent of the power law is n = 0.64 ± 0.03. This figure also shows a quench 

below Tg~31 oC, where the systems are probably located in a post-critical gel state below the 

critical point. Here, two regions in the plots were found. In the first region, ω <1 s-1, the viscoelastic 

moduli have a slope > 1, decreasing as the temperature quench decreases. In a second region, ω 

≥ 1 s-1, the slope is ~ 0.6; at short times (high frequencies), the system relaxes like a critical state. 

The origin of two slopes of the viscoelastic moduli is probably related to the structure change that 

occurs when the temperature is lowered from Tg, according to the work of Gho et al. [30]. Points 

measured faster, ω ≥ 1 s-1, detect a different structure than those measured using longer times ω 

≥ 1 s-1. As far as the temperature quench is close to Tg, the slope difference between these two 

a
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regions is smaller until G'(ω) and G"(ω) are parallel. Fig. 4.14b presents two critical chemical gels 

for R = 0.15 and R = 0.20, developed at 35 oC; these gels are established by covalent bonding [121]. 

In both cases, G'(ω) and G"(ω) are parallel along more than three orders of magnitude in ω; the 

exponents of their power laws are n = 0.79 ± 0.02 and n = 0.70 ± 0.01 for R=0.15, and R = 0.20, 

respectively. In Fig. 4.14c, G'(ω) and G"(ω) are plotted for physicochemical gels with R = 0.15; 

gelation started when glutaraldehyde is added at 35 oC, and a temperature quench to a 

temperature T is applied immediately (ΔTq = T – 35 oC), i.e., two gelation mechanisms run 

simultaneously. The critical gel is found at ΔTq = -5 oC, where moduli are parallel and follow a power 

law for more than three orders of magnitude in 𝜔; n = 0.57 ± 0.01. However, in a post-critical gel 

state for quenches ending at T < Tg, i.e., the gels inherit the behavior found in physical gels below 

the gelation temperature. They are parallel in a small range of ω (ω < 1 s-1) and follow a power law 

with a large exponent. After that, frequency moduli are parallel and have a power law close to that 

of the critical gel.  
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Figure 4.14. Linear viscoelastic 
spectra for physical, chemical, 
and physicochemical critical 
gels for gelatin solutions with 
C = 5 Wt %; G'(ω) and G"(ω) 
are plotted in different vertical 
scales in color. a) Physical gels 
for different quenches, ΔTq = T 
– 35 oC: ΔTq= –10 oC (black), 
ΔTq= –8 oC (blue), ΔTq= –6 oC 
(red), and ΔTq= –5 oC (green). 
b) Critical chemical gels at 35 
oC for R = 0.15 (black) and R = 
0.20 (blue). c) Physicochemical 
gels for R = 0.15. Gelation 
started when added the 
glutaraldehyde at 35 oC, and 
immediately a temperature 
quench was applied, ΔTq = T – 
35 oC: ΔTq= –8 oC (black), ΔTq= 
–6 oC (blue), and ΔTq= –5 oC 
(red). Image modify from 
[120]. 

 
Fractal dimension and strain hardening of mature gels. The strain-hardening behavior of 

different matured gels was studied using the LAOS protocol. According to Yang et al. [31], a 

matured gel is a gel where the viscoelastic moduli essentially do not vary with time. Fig. 4.15 shows 

the viscoelastic moduli for a physical gel as a function of time at a fixed frequency and strain (ω = 

0.5 s-1 and γ = 0.8 %), obtained at 29 oC. Here, G'(t) > G''(t) by around an order of magnitude; for 
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times greater than 240 min, the viscoelastic moduli essentially do not change. For this gel, the 

gelation time is around ~ 55 min at 29 oC, the largest gelation time of the studied systems. From a 

practical point of view, is enough consider a gel aged four hours to be a matured one, whether 

physical, chemical, or physicochemical.  

 
Figure 4.15. Isothermal sweep curves for physical gelatin gels with 5 Wt % at T = 29 ºC. Experiments were 
performed at ω = 0.5 s-1 and strain of γ = 0.8 %. Image from Supplementary Information of [120].  
 

Fig. 4.16 shows the viscoelastic moduli vs. shear strain (γ = 0.1 – 5000 %) for a fixed 

frequency (ω = 1 s-1) for different matured gels. G'(γ) and G"(γ) in matured gels exhibit similar 

trends, which could be described with three regions. In the first region, known as a Linear 

Viscoelastic Region (LVR), G'(γ) and G"(γ) are essentially independent of strain. In the second 

region, G'(γ) and G"(γ) increase with a positive curvature strain, and a sudden overshoot produces 

a third region where G'(γ) and G"(γ) decrease as the strain increases, suggesting a gelatin network 

failure where it starts to break. This failure can be easily seen in the σ vs. γ curves presented in the 

insets of Fig. 3. As γ increases, G"(γ) > G'(γ), which is related to the flow of a broken gel. The 

overshoot in the viscoelastic moduli is typical strain-hardening behavior for physical and chemical 

gelatin gels [31,124], which physicochemical gels inherit. According to the inserts of Fig. 4.16, the 

overshoot in the viscoelasticity moduli corresponds to a shear thickening effect because the stress 

increases with the strain before the breaking point.  
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Figure 4.16. Elastic and loss modulus for 5 Wt % 
matured gelatin gels vs. 𝛾 at a constant frequency 
(ω = 1 s-1). a) Matured physical gels at T = 25 oC, 
27 oC, and 29 oC. b) Matured chemical gels at 35 
ºC for R = 0.15 and R = 0.20. c) Matured 
physicochemical gels with R = 0.15 at T = 25 oC, 27 
oC, 29 oC, and 30 oC. Insets, 𝜎	𝑣𝑠. 𝛾, and the 
fittings to the BST model (continuous line). Image 
from [120]. 

 

  According to discussed in section 3.3, to obtain information about the microstructure of 

the gel, was used the BST–scaling model to fit the nonlinear viscoelastic behavior of mature gels 
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to determine the fractal structure of the polymers in terms of the fractal dimension, df (see Eq. 

3.15 and Eq. 3.16). The fittings of 𝜎	𝑣𝑠. 𝛾 curves correspond to continuous lines in the insets of Fig. 

4.16 ((regression coefficient)2 > 0.98 for all cases). Table 4.2 presents all parameters for the BST–-

scaling model and breaking strains, γbreak, corresponding to strain where the shear stress is 

maximum. For γ > γbreak, the stress decreases due to the broken gel flow. 

Table 4.2. Parameters associated with BST scaling model and break deformation of matured gels. 
 G0 (Pa) nBST df γbreak  (%) 

Matured physical gels 

T = 25 oC 299.25 ± 5.08 3.36 ± 0.06 1.42 ± 0.01 200 
T = 27 oC 210.60 ± 0.61 3.07 ± 0.004 1.48 ± 0.001 267 

T = 29 oC 64.87 ± 11.45 3.18 ± 0.05 1.46 ± 0.001 297 ± 52 

Matured chemical gels 

R = 0.15 3.94 ± 0.99 2.62 ± 0.05 1.62 ± 0.02 861 

R = 0.20 55.07 ± 7.77 2.66 ± 0.04 1.60 ± 0.01 861 

Matured physicochemical gels 

T = 25 oC 464.00 ± 196.04 3.19 ± 0.16 1.46 ± 0.03 267 

T = 27 oC 327.34 ± 77.43 2.83 ± 0.08 1.55 ± 0.02 561 ± 115 

T = 29 oC 174.94 ± 5.84 2.73 ± 0.02 1.58 ± 0.01 643 

T = 30 oC 49.55 ± 12.20 2.74 ± 0.20 1.60 ± 0.04 480 

 

  According to the master curve of Joly-Duhamel et al. [125], the concentration of the triple 

helices is proportional to 𝐺4 = 𝑙𝑖𝑚
q→4

𝐺′(𝛾). From Table 4.2, for matured physical gels, G0 decreases 

as the temperature where it was maturated increases, and so does the triple helices 

concentration, which agrees with previous reports [30]. However, γbreak slightly increases with 

temperature; a gel formed at 25 oC requires a lower strain to break the structure than a gel at 29 
oC. One rupture mechanism unzips the triple helix junctions' zone [29–31]; the triple helices 

formed from the gelatin solution are shorter [30,126]when made at lower temperatures. On the 

other hand, G0 increases with the relative glutaraldehyde concentration, R, for matured chemical 

gels, but it is quite lower than in physical gels, and γbreak is larger than in physical gels. G0 for hybrid 

gels increases concerning physical gels at the same temperature; approximately, they are ~ 50 % 

larger from 25 oC to 27 oC and ~ 150 % at 29 oC. In this case, γbreak is higher than in physical gels 

due to the covalent crosslinking plus the physical crosslinking; however, γbreak is minor compared 
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to chemical gels. There is no clear trend with the temperature. Yan et al. [31] found a gel with C = 

3 Wt % of gelatin and 0.2 Wt % of glutaraldehyde where the chemical networks were developed 

first, and after a temperature quench to allow physical networking, a so-called chemical-physical 

gel, the value of G0 is additive (G0 = G0
physical+G0

chemical). In physicochemical gels, the G0 value is not 

additive. However, in promoting both routes of gelation at the same time, as presented here, G0 

increases more than in a chemical-physical gel, showing a technological advantage to promoting 

both gelation routes simultaneously.  

 For physicochemical gels, it depends on what crosslinking process dominates; at low 

temperatures, it is the physical crosslinking, and at higher temperatures, it is the chemical one. 

Nevertheless, the advance in one of them could modify the performance of the other: for instance, 

once a chemical bond occurs, the orientation of a section of the polymer could hamper a triple 

helix formation process. To support these statements, it is necessary to consider the following:  

a) In the case of physical gelation, Chen et al. [127] estimated the temperature dependence 

of the sol-gel conversion rate constant. In the range of 30 – 19 oC, the rate of transformation 

increases as the temperature decreases, following the Arrhenius law, 𝐴𝑒)fG/'!., with Ea =-130 

kJ/mol. For estimating the conversion rate above Tg for chemical gelation, the data given in Fig. 

4.18a was used, which also follows an Arrhenius equation with Ea = - 92 kJ/mol. Determining what 

process is going faster in the hybrid gel is more challenging as the temperature is ≤ 30 oC, because 

physical and chemical mechanisms work and interact simultaneously and cannot be separated to 

observe just one process alone. In both cases, the transformation rate increases as the 

temperature decreases. However, Ea is more negative in physical gels than in the chemical gel's 

Ea. Assuming that the Ea does not change too much below 30-31 oC, chemical bonding 

transformation is running slightly slower.  

b) da Silva et al. [128] studied the gelation evolution in gelatins using the fraction of triple 

helices (χ) by optical rotation and G' at a fixed frequency (γ = 1 %, G' ~ G0) for the case of the 

physical, chemical, and hybrid gels. The last two employ glutaraldehyde as a crosslinker at different 

temperatures below Tg. In physical gelation, the lower the temperature, the higher χ and G'. For a 

chemical gel, there are no triple helices above Tg, and G' is several times lower than in the physical 

gel, and its time evolution during gelation is slower because as the crosslinker is consumed and 
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the binding sites are occupied, the reaction will naturally slow down for hybrid gels. The value of 

G' increases as the temperature decreases, and they are larger than those of the physical gels at 

the same temperature. However, they reach saturation limits faster than in physical gels. χ are 

much lower than in physical gels at the same temperature, demonstrating that the formation of 

the chemical networks hinders the helical conformation change. There is a decoupling between χ 

and G'; not only triple-helix junctions contribute to G'. Increasing the temperature above Tg, the 

helix physical network is destroyed, leaving just the chemical scaffold with a G' much lower than 

in the physical gel. Also, G' was measured above Tg, and the same result was observed. Fig. 4.18c 

shows isothermal time sweep curves developed for a gelatin solution under hybrid gelation (5 Wt 

% and R = 0.15). The hybrid gel was formed at three different temperatures ≤ Tg. Subsequently, 

the gel was melted to destroy the triple helices melted at 35 oC, allowing the remaining G' due to 

the chemical scaffold. As the temperature of hybrid gel formation is lower than Tg, ΔG' is larger, 

showing a greater quantity of triple helices than at temperatures closer to Tg. So, chemical bonding 

at low temperatures and a synergy between physical and chemical networks exists. The chemical 

networks obtained in the presence of the triple-helices present substantially higher G' values than 

those obtained just by gelating the sol phase. 

 
Figure 4.18. a) Isothermal time sweep curves for a gelatin solution under chemical gelation at different 
temperatures with C = 5 Wt % and R = 0.15. Insert: Gelation time as a function of the temperature. b) 
Isothermal time sweep curves for a gelatin solution under hybrid gelation (5 Wt % and R = 0.15). The hybrid 
gel was formed at three different temperatures ≤ Tg, and subsequently, the gel was melted to destroy the 
triple helices melted at 35 oC (indicated by an arrow), showing the remaining G' due to the chemical 
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scaffold; 𝛥𝐺!(%) = :&'!()*+,	./	010236:&'*+4/562	2+4	./	78	(93

:&'!()*+,	./	01023
× 100. Image from Supplementary Information 

of [120]. 
 
 The self-similar network fractal dimensions [30,31,89,129,130] for the matured gels are 

displayed in Fig. 4.19. For physical gels, on average, df ∼ 1.45, which is similar to that obtained by 

Yang et al.[31] using the LAOS for physical gelatin gels with C = 3 Wt % at 20 oC (df = 1.40 ± 0.05), 

and by Pezron et al. [131] using SANS with C = 5 Wt % (df = 1.40 ± 0.02 for q = 0.20–1.66 nm-1 with 

q the scattering vector). For chemical gels, we obtained df ∼1.61 (average from R = 0.15 and R = 

0.2), which is lower than df = 1.48 ± 0.02 obtained by Yang et al. [31] These authors associated 

their value with the existence of rod-like structures, swollen coils, and small crosslinking 

aggregates within their network due to their high crosslinker concentration (~ 0.2 Wt % of 

glutaraldehyde in C = 3 Wt % of gelatin solution). In this case, the relative concentration of the 

crosslinker agent (~ 0.1 Wt % of glutaraldehyde in C = 5 Wt %) is lower than in Yang et al.[132] 

case. So, we expect that our network will have fewer crosslinking aggregates. The fractal 

dimension for chemical gels is close to df ≈ 1.7, corresponding to the Flory swelling exponent ν = 

0.588 associated with isolated polymers in a good solvent [5,43]; these results suggest that the 

chemical gel networks are swollen interlocking Gaussian chains. For physicochemical gels, where 

two gelation processes run simultaneously, initiated at 35 oC, immediately quenched and matured 

to 25 oC, df is similar to that obtained for physical gels quenched and matured to 25 oC. For 

physicochemical gels initiated at 35 oC, immediately quenched and matured to 30 oC, df is similar 

to the chemical gels at 35 oC. However, physicochemical gels for other intermediate quenching 

temperatures have df values between 1.46 and 1.60. In Fig. 4.19, it seems as if the fractal 

dimension of hybrid gels, formed at 25 oC, corresponds to a gel whose network is mainly formed 

by a physical mechanism. In the same way, when the physicochemical gel is formed at 30 oC, the 

network formation is apparently dominated by a chemical mechanism producing a df similar to 

that of a chemical gel; the physical gelation is perturbed by the chemical crosslinking as discussed 

above. However, df apparently detects a mean of chemical and physical processes for the gelation 

process occurring at intermediate temperatures quenches. This would explain the trend we 

observe for df with temperature in Fig. 4.19. The conclusion is that the differences in mechanisms 
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to form the gel network can be slightly differentiated by the strain-hardening approach of matured 

gels, where the self-similarity of the network has a direct impact. 

 
Figure 4.19. Fractal dimension for different matured gels aged over four hours. Image from [120]. 

 

LAOS and Lissajous-Bowditch curves. Figs. 4.20 and 4.21 present normalized 3D Lissajous-

Bowditch curves (in red) and their projections for different matured gels in the elastic 

representation (σ/σ0 vs. γ/γ0 in green) and viscous representation (𝜎/𝜎4	𝑣𝑠. 𝛾̇/𝛾̇4	in blue). They 

are measured at ω = 1 s-1, and 𝜎4, 𝛾4 and 𝛾̇4 are the maximum shear stress, shear strain, and shear 

rate in an oscillation cycle, respectively. Diagrams with a blue shadow indicate LB curves 

corresponding to an imposed strain deformation of γ0 = γbreak. LB curves for strain cycles in the LVR 

zone are not presented because they are independent of strain; in this region, the loci of σ/σ0 vs. 

γ/γ0 and 𝜎/𝜎4	𝑣𝑠. 𝛾̇/𝛾̇4	is a diagonal line or a circle, respectively, corresponding to solid-like 

behavior (see discussion of section 3.2). 

For matured physical gels before γ ≤ γbreak, the nonlinear viscoelastic behavior is similar for 

temperatures 25 oC ≤ T ≤ 29 oC. For γ > γbreak, the LB curves are more similar for 25 oC and 27 oC. 

However, all of them differ for γ slightly larger than γbreak, although for 29 oC it is more notorious. 

Nevertheless, they all behave close to liquid-like when γ ≫	γbreak. In LB curves (see Fig. 4.20), there 

are small oscillations (25 oC and 27 oC), which are not as strong as those observed by Goudoulas 

& Germann [124], probably because the gels are weak (G << 3000 Pa). Their gelatin gels have a G 

≈ 3000 Pa (C = 3 Wt %, matured for 30 min and 90 min after a large quench ending to Tf = 5 oC). LB 

curves presented here are similar to recent simulation results for colloidal gels [85].  

1 2 3 4 5 6 7 8 9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

 

df = 1.7 for Flory exponent n = 0.588 

d f

29 oC

25 oC

30 oC

R = 0.20

R = 0.15 27 oC
27 oC

25 oC

Physicochemical gelsChemical gels

 

 

 Fractal dimension (df)

Sample label

Physical gels

29 oC



 113 

 For matured chemical gels at γ0 = 110 %, we observe a small deviation from the linear 

viscoelastic behavior. In the 𝜎/𝜎4	𝑣𝑠. 𝛾̇/𝛾̇4	plane, circles are slightly elongated, and as	𝛾4 

increases, but without gel breaking (γ0 ≤ γbreak), the deviation of the linear viscoelastic behavior can 

be significant; circles become rhomboid-like. On the σ/σ0 vs. γ/γ0, found deformed lines, which, as 

γ increases, appear as lines with a shoulder. This behavior seems to be invariant with the chemical 

crosslinker concentration. However, as observed in their projections, when γ0 > γ_break, LB curves 

show significant changes. For γ0 = 1540 %, the projections on both planes are analogous to 

deformed ellipses with similar areas, which corresponds to G'(γ) ~ G"(γ) of the strain sweep curves 

(see Fig. 4.16b). As strain is γ0 ≫	 γbreak, the deformed ellipses change even more. In viscous 

representations, deformed ellipses are elongated, suggesting that the shear rate is close to being 

in phase with the stress, or equivalent, in an elastic representation, deformed ellipses change to 

distorted circles because the strain is close to being out of phase with stress; approaching to a 

liquid-like behavior. As maturation temperature increases, LB curves for matured physical and 

chemical gels behave similarly. 

LB curves for matured physicochemical gels (see Fig. 4.21) with γ0 ≤ γbreak behave likewise 

when aged at 25 oC and 30 oC, although, at 27 oC, and 29 oC, they present slight differences. The 

deformed circles transform into deformed rhomboids, which increase as strain increases, quite 

visible in the viscous representation. On the elastic representation, the line becomes a shoulder. 

For 𝛾4 > 𝛾/A?^' LB curves for physicochemical gels matured at 30 oC and are similar to those 

where the mechanism to form the network was chemical. On the contrary, LB curves for 

physicochemical gel matured at 25 oC are more similar to those for physical gel aged at 25 oC; here, 

the physical mechanism is dominant. Therefore, the features of LB curves and fractal dimension 

in hybrid gels depend on which gelation mechanism is dominant. 
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Figure 4.20. Normalized 3D Lissajous-Bowditch curves and their projections (elastic representation: 
𝜎/𝜎#	𝑣𝑠. 𝛾/𝛾_0 or viscous representation: 𝜎/𝜎#	𝑣𝑠. 𝛾̇/𝛾̇#) for matured physical gels for different 𝛾#, with C 
= 5 Wt. %, aged 25, 27, and 29 oC on the left, and matured chemical gels aged at 35 oC on the right. Blue 
shadow corresponds to an imposed strain deformation 𝛾# = 𝛾;<=38. Image from [120]. 
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Figure 4.21. Normalized 3D Lissajous-Bowditch curves and their projections (elastic representation: 
𝜎/𝜎#	𝑣𝑠. 𝛾/𝛾# or viscous representation: 𝜎/𝜎#	𝑣𝑠. 𝛾̇/𝛾̇#) for matured physicochemical gels for different 𝛾#, 
aged at 25 oC, 27 oC , 29 oC, and 30 oC from a solution with C = 5 wt % and 𝑅 = 0.15. Blue shadow 
corresponds to an imposed strain deformation 𝛾# = 𝛾;<=38. Image from [120]. 
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Kinetic of gelation: Mean square displacements of microspheres embedded in gelatin 

solutions. The gelation kinetics process is followed by measuring the MSD of microspheres (500 

nm) embedded in gelatin solutions using DWS, which in turn allows evaluating G'(ω) and G"(ω) 

according to described in Chapter 3 (see section 3.3). The MSDs of the microspheres depend on 

the viscoelastic environment, which, in our case, evolves from a sol to a gel state as time elapses. 

Although microspheres with different diameters (799 nm and 500 nm) were tested, the selected 

ones were less noisy at short times, and the MSD plateaus were more clearly defined.  

Fig. 4.22 shows MSD vs. t curves for gelatin solutions at different times after a temperature 

quench to produce a physical gel (T < Tg), after adding glutaraldehyde for chemical gels (T > Tg), 

and simultaneously after adding glutaraldehyde and quenching (T < Tg) for physicochemical gels. 

The elapsed time since the quench or glutaraldehyde addition will be named tq. For solutions that 

produce physical gels with C = 5 Wt %, particles move in a simple liquid (sol state) at tq = 10 min 

after the quench started from 35 oC to 25 oC (see Fig. 4.22a). This behavior prevails for 20 min after 

the quench; a change onset occurs at tq ~ 75 min. The MSD vs. time curves bend to form a shoulder, 

up to t ~ 0.02 s. The shoulder is more pronounced for tq > 75 min; their height decreases as tq 

increases. From a mesoscopic point of view, a shoulder in MSD vs. time curves is evidence of partial 

particle confinement. They explore all the available volume in the polymer network cage formed 

around it, limiting the displacement of the microsphere similar to those described by Sarmiento-

Gomez et al. [133,134]. However, the cages formed by the polymer network slowly break and 

reform due to the physical nature of physical gel crosslinking. They are not permanent, allowing 

the particle to explore a larger space as time elapses; if particles were completely trapped, the 

curves would be flat horizontally.  

Fig. 4.22b shows the MSD curves of colloidal particles embedded in gelatin solutions (C = 3 

Wt % with R = 0.25), which form a chemical gel at 35 oC. For tq ≤ 30 min, the MSD corresponds to 

simple diffusion at short times, MSD ~ t, although when they reach 10-4 s, the MSD vs. t curves 

start to bend. For tq > 30 min, the MSD curves show a flat plateau, indicating that particles are 

confined. The flat shape of the plateau corresponds to particle movement in a polymer network 

cage that cannot relax due to the permanent chemical nature of the crosslinking. It is not possible 

to see the evolution of the MSD curves for the gelation process in less soft chemical gels (C > 3 Wt. 
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%) because the network completely traps them; correlation functions vs. time abruptly drop 

because particles are essentially fixed (not shown).  

 The MSDs for physicochemical gels have a mixed behavior between physical and chemical 

gels. At tq = 20min, the MSD vs. time curve has bent to form a shoulder, and at tq > 20 min, the 

shoulder becomes increasingly horizontal, similar to the physical gel at the same temperature: 25 
oC. In the case where the final quench temperature increases, the MSD vs. time curves become 

more horizontal as in a chemical gel, i.e., more confinement (see Fig. 4.22d for T = 27 oC and Fig. 

Fig.4.22e for T = 30 oC); covalent junctions hinder triple helix formation. Consequently, the 

chemical bonding contribution increases the network cages' rigidity. The MSD vs. t curves for 

microspheres embedded in hybrid gels show a slight dependence on gelation mechanisms that is 

more obvious at early times, which agrees with the contribution of both mechanisms running 

simultaneously, but at very long times, particles are finally trapped.  
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Figure 4.22. MSD vs. time for microspheres embedded in gelatin solutions. a) Physical gel for C = 5 Wt % 
(dia. 500 nm and vol. fraction 0.025) after a temperature quench to 25 oC. b) Chemical gel for C = 3 Wt % 
(dia. 799 nm and vol. fraction 0.025) after adding glutaraldehyde (R = 0.25) at 35 oC. c) Physicochemical 
gel formation for C = 5 Wt % (dia. 500 nm and vol. fraction 0.025) after adding glutaraldehyde (R = 0.15) 
and simultaneously quenching to 25 oC. d) Physicochemical gel formation for C = 5 Wt % with R = 0.15, and 
quenching to 27 oC. e) Physicochemical gel formation for C = 5 Wt % with R = 0.15, and quenching to 30 oC. 
Open circles correspond to experimental MSD data, and continuous lines correspond to best fitting using 
the Bellour et al. model [111]. Image modify from [120]. 
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Viscoelastic spectra and mesoscopic lengths. To describe the temporary evolution of 

viscoelastic features of gelatin solutions from sol to gel were used the best fits to the Bellour et al. 

[111], model (see equation 3.70) for the MSD vs. t data (showing with a continuous line in Fig. 

4.22). Contrary to WLMs solutions, Dm = 0 because particles are trapped in the network and cannot 

leave it. Fig. 4.23a shows the time evolution of viscoelastic spectra of a gelatin solution after a 

temperature quench from 35 oC to 25 oC to produce a physical gel, measured from tq = 10 min to 

tq ~ 240 min, passing through the gel point. Fig. 4.23b–e shows a similar gelation process to obtain 

chemical and physicochemical gels. All gels, 10 min after starting the gelation process, behave as 

in a sol state (G"(ω) > G'(ω)), consistent with the simple diffusive dynamics of microspheres 

embedded in a liquid. As tq increases, the gel reaches the gel point where G'(ω) ~ G"(ω)~ωn, in a 

range of frequencies from ω ~ 102-104 s-1, which is similar to the data of Cardinaux et al.[134] for 

C = 2 Wt % at 20 oC. For large elapsed times after the quench, all gelatin solutions reach the gel 

state (G'(ω) > G"(ω)), and the evolution of viscoelastic spectra is similar for all of them. The elapsed 

time for all solutions to reach the gel point after a quench was more extended in microrheology 

experiments than those developed in macroscopic rheometers because the number of cross-

linkings needed by the network to percolate is larger in DWS cuvettes (~ 2.3 mL) than in the 

rheometer geometry (~ 1.2 mL); however, they have the same information, and viscoelastic 

spectra in the gel point are similar. It is impossible to discern which gelation process dominates in 

hybrid gels, which is consistent with our results of SAOS at gel points.  
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Figure 4.23. Time evolution of viscoelastic spectra for gelatin solution. a) Physical gel formed after a 
temperature quench from 35 oC to 25 oC at different tq. b) Chemical gel formation for C = 3 Wt % at different 
𝑡> after adding glutaraldehyde (R = 0.25). Physicochemical gel formation for C = 5 Wt % at different 𝑡> after 
adding glutaraldehyde (R = 0.15) and simultaneously quenching: c) 25 oC, d) 27 oC, and e) 30 oC. Image 
modify from [120]. 
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An advantage of measuring gelatin flexible polymer solutions' viscoelastic spectra at high 

frequencies is treating them like other biopolymers [48,135] or living polymers [20,21,86,113]. In 

a semidilute regimen concentration (> 1 Wt % for gelatin chains [61]), polymer chains can have 

different stress relaxation modes. As explained, stress relaxes at high frequencies first dominated 

by the Rouse-Zimm modes and at even higher frequencies by the internal bending modes of Kuhn 

segments. The frequency for the change, 𝜔4, allows us to estimate the persistence length in the 

polymer network. The inset of Fig. 4.24a presents |G*(ω)| vs. ω for a gelatine solution quenched 

to 25 oC at tq = 40 min. It shows the frequencies where |𝐺∗(𝜔)|~𝜔-/_, |𝐺∗(𝜔)|~𝜔Y/\, as well as 

ω0. Fig.4.24a shows the frequencies where one of the relaxation modes dominates and ω0 for 

different tq up to 8 h after the gelation process started for producing a physical gel. In the same 

way, ω0 is presented in Fig. 4.24b for a chemical gel and in Fig. 4.24c, for a physicochemical gel 

with two gelation mechanisms running simultaneously. The place where Rouse-Zimm modes 

dominate is observed in all solutions below ω0, which increases as tq increases, while bending 

modes dominate at even higher frequencies until we cannot measure them. For the hybrid 

process, quenched to 30 °C bending modes persist until 8 h after the gelation process started (not 

shown), displaying an important difference from the other gels. It is important to note that 

microspheres embedded in the gel measure bending modes for ω < 106 s-1, which is the limit of 

the DWS-microrheology technique [23,91,94,113].  
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Figure 4.24. Relaxation modes and 𝜔#. a) 
Frequencies where the relaxation modes 
dominate colored arrows, and 𝜔# (full circles) 
for different tq up to 8 h after the gelation 
process has started to produce a physical gel C 
= 5 Wt %. Inset: Power-law exponents of |𝐺∗| 
Rouse-Zimm modes |𝐺∗(𝜔)|~𝜔?/A in orange, 
and bending modes|𝐺∗(𝜔)|~𝜔B/C in green, 
and 𝜔# (full red circle). (b) 𝜔# (full circles) for a 
chemical gel developed at 35 oC with R = 0.25 
and 3 Wt. %. (c) 𝜔# (full circles) for a 
physicochemical gel quenched to 27 oC with R = 
0.15 and 5 Wt %. Image from [120]. 
 

 
 Fig. 4.25 presents the persistence length of polymer chains for gels with different gelation 

processes, i.e., the length at which polymer chains appear straight in the presence of thermal 

undulations given by lp = κ/kBT, where κ is the chain bending modulus. In physical gelation (C = 5 

Wt %), lp starts at ~ 26 nm and decreases to lp ~ 10 nm at tq ~ 190 min. In chemical gelation (C = 3 

wt % and R = 0.25), lp starts at ~ 27 nm and decreases to ~ 12 nm at tq ~ 90 min; lp reaches a 

constant value at tq ~ 200 min; apparently, this is the limiting of evolution for lp in a network formed 

by covalent crosslinking. For the hybrid case, where two mechanisms are evolving simultaneously, 

lp starts at ~ 24-28 nm depending on the glutaraldehyde concentration, and it decreases to lp ~ 10 

nm at tq ~ 360 min for the gel quenched to 30 oC. This lp is observed up to 8 h. The evolution of lp 

as a function of tq is slow despite two gelation mechanisms running simultaneously. For the 

physicochemical gel quenched to 25 oC, lp decreases to 10 nm at tq ~ 75 min, comparable to the 

physical process, which seems to be the dominant mechanism when the solution is quenched to 

this temperature. However, it is unclear why the speed at which lp decreases to 10 nm is greater 

than in the other hybrid processes. For the hybrid process quenched to 27 oC, the evolution of lp 
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has an intermediate behavior compared with the physical and hybrid process quenched to 30 oC. 

The crucial point for understanding Fig. 4.24a is what lp refers to in these biopolymer chains. As 

mentioned, the network is made of segments with triple chains, which must be semiflexible with 

a large lp as in other cases where lp ≥ ξ [5], and of unstructured non-bonded flexible polymer 

sections. It is important to mention that turbidity in our gelatin is quite low, so we ruled out the 

formation of semiflexible collagen fibrils [136]. Then, lp measurements capture the persistence 

length of the non-bonded flexible polymer sections where lp ≤ ξ. These polymer sections are 

relatively large when the gelation starts in all processes. As time elapses, the length of these 

polymer chains (Kuhn segments) appearing straight in the presence of thermal undulations 

decreases due to the formation of bonds. In this way, the curves for the gels undergoing physical 

and chemical processes seem similar. However, in the hybrid case, it is clear that these processes 

are not independent. As mentioned, covalent crosslinking hinders the formation of triple helices 

at T ≤ Tg; the lower the temperature quench, the faster the decay of lp, where physical gelation 

dominates. In quenches to 25 oC, lp decays faster where the physical process dominates, and when 

the chemical process dominates, the decay is slower. At 27 oC, we observe that lp decays in an 

intermediate form between these two cases. 

 Fig. 4.24b presents the evolution of the gel network's volume mesh size, ξ, during the 

gelation process, which roughly follows an exponential decay. The general idea of mesh size is that 

a snapshot of a dense polymeric solution at a particular instant of time looks quite similar to an 

intricate network with a particular mesh size, independent of the presence of crosslinks. 

Consistent with what occurs in flexible polymers, ξ is much larger than lp. Roughly, the mesh size 

in a physical gel is larger than in a chemical gel, but at long times, the last one is larger than in 

hybrid gels, where the lower the quench temperature, the smaller the mesh size. As in the case of 

lp, for the hybrid gels, the decay of ξ as time elapses seems to have no relation with the pure 

physical or chemical processes, which seems to be another effect where the physical and chemical 

processes are not independent when running simultaneously.  
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Figure 4.24. Characteristic mesoscopic scales as time elapses after the gelation process has started for 
physical, chemical, and physicochemical gels. a) lp vs. time; dashed lines are a guide to the eye. b) ξ vs. time; 
lines correspond to exponential decay fits. Image from [120]. 
 

4.2.3. Conclusions  

The critical exponents for physical and hybrid critical gels are relatively close (n ~ 0.6), and 

for chemical gels, n ~ 0.70 - 0.79, slightly depending on the R-value. The features of LB curves and 

fractal dimensions in hybrid gels depend on the dominant gelation mechanism. Differences in 

forming the gel network were, to some extent, distinguished by the strain-hardening approach of 

matured gels, where the self-similarity of the network has a direct impact. Apparently, df results 

from a competition between physical and chemical gelation processes for physicochemical gels. 

For γ > γ_break, LB curves for physicochemical gels matured at 30 oC are similar to those where the 

mechanism to form the network was chemical. On the contrary, LB curves for physicochemical gel 

matured at 25 oC are more similar to those for physical gel aged at 25 oC; here, the physical 

mechanism is dominant. As gelation evolves, the MSD curves develop a shoulder in physical gels, 

which never becomes flat because the cage formed around microspheres can break and reform. 

Chemical gels completely trap microspheres due to the chemical nature of crosslinking, so the 

MSD vs. t curves form a plateau. The MSD vs. t curves for microspheres embedded in hybrid gels 

show a slight dependence on the gelation mechanism; at very long times, particles are trapped. 

At the gel point, it is impossible to discern which gelation process dominates with microrheology, 

in agreement with the SAOS results for critical gels.  
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 As time elapses after gelation starts, the persistence length of the unstructured, non-

bonded flexible polymer sections decreases due to the formation of bonds. The curves for the gels 

undergoing physical and chemical processes seem similar. However, in the hybrid case, it is not a 

simple mixture of both processes since they are not independent. As far as we know, this is the 

first time that the evolution of scales of the mesoscopic structure has been observed after the 

critical gel has been reached with different mechanisms running simultaneously. The time 

evolution of the gel network's mesh size roughly follows an exponential decay. The lower the 

temperature quench, the smaller the mesh size. Understanding the behavior of ξ could be relevant 

for diffusing proteins or nanoparticles in biopolymer networks with applications in different fields. 

For ξ, as for lp, the decay as time elapses for hybrid gels seems to have no relation with the pure 

physical or chemical processes, which seems to be another effect where physical and chemical 

processes are not independent when running simultaneously.  
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4.3 Linear and nonlinear viscoelasticity of flexible charged biopolymer gels 

G R A P H I C A L    A B S T R A C T 

 
The Chambon & Winter criteria indicate a similar critical exponent near the gel point, n ∼	 0.6. This 
demonstrates that, regardless of the physical mechanism of gelation, the percolation threshold associated 
with network formation remains consistent.  

4.3.1 Abstract  

The linear and nonlinear viscoelastic behavior and their relationship with the mesoscopic 

structure of different physical gels made from polysaccharides (alginate, chitosan, and their 

mixture) were investigated. Various physical mechanisms form all gels: the alginate gel was formed 

by complexation between alginate chains and Ca2+, the chitosan gel was formed by modification 

of the hydrophobicity of the medium, and the alginate/chitosan gel was formed by slow 

electrostatic interaction between the chains trough polyelectrolyte complexes (PECs) formation.  

The Chambon & Winter criteria show a similar critical exponent near the gel point for all 

gels n ~ 0.6, demonstrating that, regardless of the physical mechanism of gelation, the percolation 

threshold associated with gel network formation is the same. In the previous section, a similar 

critical exponent for physical gelatin gels supported our observation of the similarity of critical 

physical polymeric gels. Also, the strain-hardening behavior of the matured gels was investigated 

using the LAOS protocol; the BST scaling model was used to interpret the results in mesoscopic 
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terms, such as the fractal dimension. For alginate gels, df ~ 1.25-1.33, and its value depends on 

Ca2+ concentration; as Ca2+ concentration increases, the fractal dimension decreases, showing a 

difference in their network structure due to the formation of different forms of complexation 

between Ca2+ and alginate chains. For chitosan gels, df ~ 1.33–1.49, and their value depends on 

the rate at which the modification of the hydrophobicity of the medium; at a high rate, df 

decreases. The alginate/chitosan mixture forms a microgel, confirmed by the nonlinear 

viscoelasticity spectrum and micrographs obtained by AFM. Fractal dimensions could not be 

determined for alginate/chitosan gels due to the limitations of the BST-scaling model. The 

Lissajous-Bowditch curves exhibit variations among all gels in the region of nonlinear 

viscoelasticity, serving like a fingerprint.  

Additionally, diffusion wave spectroscopy micro-rheology was employed to measure the 

mean square displacements (MSD) of the microspheres embedded in the precursor solution to 

study the kinetics of gelation. In a kinetic study, we observed that the MSD decreased according 

to the formation of the network, and the shape of MSD is different according to the physical 

gelation mechanism. The MSD data can be used to obtain the viscoelastic spectra at high 

frequencies, allowing us to observe the different relaxation modes of the chains in the network. 

The results in this section correspond to the last part of this Ph.D. project and are presented as a 

preliminary discussion of the results. Discussions and writing of two papers are underway. 

4.2.2. Experimental section  

Materials. The alginic acid sodium salt of medium viscosity from brown algae (Mol. Wt. 

324,138 Da, mannuronic acid to guluronic acid ratio (M/G) ≈ 1.56, Sigma-Aldrich USA). Chitosan 

of high molecular weight (Mol. Wt. 966,830 Da, degree of deacetylation (DD) 74.8 %, Sigma-

Aldrich USA), calcium carbonate (CaCO3, purity > 99.0 %, Sigma-Aldrich USA), D-(+)-Gluconic acid 

d-lactone (GDL, purity > 99.0 5, Sigma-Aldrich USA), acetic acid (HAc, purity > 99.8 %, Sigma-Aldrich 

USA), 1,2-propanediol (purity > 99 %,  Germany), hydrochloric acid (37 Wt %, HCl, Sigma-Aldrich 

USA), sodium hydroxide (NaOH, purity > 99 %, Sigma-Aldrich USA), and sodium chloride (NaCl, 

purity > 99.0 %, Sigma-Aldrich USA). Solutions were prepared with ultrapure deionized water 

(Nanopure, USA). Except for chitosan, all chemical products were used as received. The moisture 
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of alginate and chitosan powered were determinate by thermogravimetric analysis (TGA, TA 

Instruments, USA): moisture of alginate and chitosan were 10.44 % and 9.11 %, respectively. 

For chitosan purification, chitosan was dissolved at 1 w/v % in acetic acid at 0.5 Wt % under 

magnetic stirring at ~ 30 oC overnight. After complete dissolution, it was centrifuged at ~ 4500 rpm 

by 2 h, and then the immiscible impurities were decanted. The solution without visible impurities 

was filtered successively on 20 and 8 μm membranes (Millipore, USA). Then, the solution was 

precipitated with [NaOH] = 1 M up to a constant pH of ~ 11 and centrifuged at ~ 4500 rpm by 2 h. 

The precipitate was repeatedly washed with deionized water and centrifuged until a pH of ~ 7 (on 

average four times). Finally, the precipitate was dry at room temperature in a chamber vacuum. 

The moisture was determined by thermogravimetry analysis; on average, moisture was 6.4 Wt %. 

The molecular weight of alginate and chitosan was determined using the Mark-Houwink-

Sakurada (MHS) equation, [𝜂] = 𝐾𝑀�
1 ; here, [η] is the relative viscosity ([𝜂] = lim

b→I

J)J%
bJ%

, η the 

viscosity of the polymer solution, ηs the viscosity of the solvent, and 𝑐 the polymer concentration, 

mg/mL), Mw is the molecular weight, K and α are constants related to the interaction of the 

polymer with the medium [137–140]. Figure 4.25a shows the determination of relative viscosity 

by extrapolation of viscosity data; the continuous lines corresponds to linear fit: y = 1074 + 91×104 

x with (regression coefficient)2 = 0.94 for alginate solutions, and y = 667 + 90×104x with (regression 

coefficient)2 = 0.98 for chitosan solutions. The constants of the MHS equation are 𝐾 =

0.0073	𝑚𝐿/𝑔 and 𝛼 = 0.92 for alginate solution with [NaCl] = 0.1 M at 25 oC [139], and 𝐾 =

0.00181	𝑚𝐿/𝑔 and 𝛼 = 0.93 for chitosan solution solutions in an acid medium ([HAc] = 0.1 M) at 

25 oC [137,138]. Fig. 4.25b shows the linear potentiometric titration for a chitosan sample. The 

procedure was: 0.1201 g of chitosan (𝑊) was dissolved into 35 mL (𝑉�) of [HCl] = 0.8573 M (𝐶�); 

the solution was titrated potentiometrically with [NaOH] = 0.517 M (𝐶&) by steps of 1 mL under 

magnetic stirring; the titration curve having two inflection points (see Fig. 4.25b) where the first 

(1) and second (2) inflection points are the equivalence points of the titration of excessive HCl and 

protonated chitosan, respectively. Due to the precipitation of chitosan in the neutral pH range, 

the second inflection point does not coincide with the actual equivalence point. To calculate the 

volume of NaOH for the titration of protonated chitosan (𝑉?), Ingman & Still [141] proposed a 

linear relationship for the titration curve, 𝑉+^�� = 𝑉? − VK+LKMGNOP!
W ([𝐻0] − [𝑂𝐻)]) (see insert 
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of Fig. 4.25b; the continuous line correspond to linear fit y = 57 + 1.54x with (regression 

coefficient)2 = 0.98). Finally, DD (%) is calculated from the relationship proposed by Tan et al.[142]; 

𝐷𝐷(%) = =
QR#S#T
"/8 0=

, where 𝑑 = c+v+)c!vU
*444

. 

 
Figure 4.25. a) D6D:

D:E
	𝑣𝑠. 𝑐 for alginate solutions with [NaCl] = 0.1 M at 25 oC, and chitosan solutions in an 

acid medium ([HAc] = 0.1 M) at 25 oC. b) 𝑝𝐻	𝑣𝑠. 𝑉+3FG of NaOH added to chitosan in an acid medium. Inset: 
𝑉+3FG 	𝑣𝑠. − F;<=;#.>?9@

H ([𝐻H] − [𝑂𝐻6]).  
 

Gelation protocol. This work investigated the differences in the linear and nonlinear viscoelastic 

behavior of three physical gels made from polysaccharides: alginate, chitosan, and the mixture 

alginate/chitosan (Alg/Chit), where each gel is formed following a different formation protocol.  

The following presents some general characteristics of polysaccharides and an outline of their gel 

formation protocol. 

i) Alginate gel 

Alginate is an anionic linear copolymer of (1→4)-linked β-L-mannuronic (M) and α-L-guluronic 

(G) residues. The residues are arranged randomly with GG, MM, and GM-dimer blocks, 

interspersed along the polymer chain, as shown in Fig. 4.26a. Sodium alginate can be ionically 

cross-linked by divalent ions [143,144]. The stereochemistry of the G monomer allows for the 

formation of a remarkably stable cross-link structure called an “egg box.” In the simple egg-box 

structure, two alginate chains are connected by a divalent ion by coordinating four carboxylic 

groups. The links are mostly favored among G blocks of more than eight units (rod-like junctions) 
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and can even give rise to bundles of junctions with more than two chains involved. Even if the egg 

box determines the formation of a gel, it is worth noticing that other ionic cross-links, e.g., 

between M-M and M-G units [143]. Fig. 4.26a shows a cartoon of the alginate gel, such as the egg-

box structure.  

The gel formation protocol was as: Alginate was dissolved in deionized water under 

magnetic stirring at approximately 30°C overnight. To form a gel, CaCO3 was dispersed in an 

alginate solution under vigorous vortex stirring for ~ 1 min, and subsequently, GDL was added to 

the mixture of alginate/CaCO3 under vortex stirring, promoting the gelation mechanism. The 

alginate concentration was fixed (Calginate = 1.8 w/v %), varying the quantity of CaCO3 and GDL 

([CaCO3] = 0.3, 0.4 and 0.7 mM, CGDL = 6-18 mg/mL). GDL is a slowed-down acidification substance 

promoting the solubilization of CaCO3, 𝐶𝑎𝐶𝑂-(P) ⇄ 𝐶𝑎(0 + 𝐶𝑂-)( with a solubility constant of 

𝐾P = 10)9.4Y [145], trough carbonic acid (H2CO3) formation, which chemical equilibrium is 

𝐻(𝐶𝑂- ⇆ 2𝐻0 + 𝐶𝑂-)(. In this way, it was possible to obtain a Ca2+ slowly and thus study a gel 

formation from sol to gel contrary to alginate gels formed with CaCl2; using CaCl2, the gelation is 

quick due to instantaneous solubilization of the calcium source [37,146].  

ii) Chitosan gel 

Chitosan is a polysaccharide produced from the N-deacetylation of chitin under alkaline 

conditions [137]. Chitin is a mucopolysaccharide abundant in nature and the support material of 

crustaceans, insects, etc. [137], and is a linear polymer (1→4)-2-acetamido-2-deoxy-β-D-glucan 

(GlcNAc). The N-deacetylated derivative of chitin is never complete. Therefore, chitosan belongs 

to the family of linear copolymers of GlcNAc and (1→4)-2-amino-2-deoxy-β-D-glucan (GlcN). The 

degree of acetylation (DA) is an important parameter, corresponding to the molar fraction of 

acetyl units constituting the polymeric chains. For DA lower than 60 %, chitosan is solubilized in 

dilute acid solutions. One way to form a chitosan gel is by modification of the hydrophobicity of 

the medium. Domard [147,148] formed a gel using a mixture of chitosan dissolved in an acid 

medium and 1,2-propanediol in an equivalent amount. They showed that gelation is achieved for 

a critical value of the balance between hydrophilic and hydrophobic interactions; here, the 

gelation mechanism is attributed to the formation of physical junctions due to hydrophobic 



 131 

interactions involving N-acetyl groups and hydrogen bonding. Fig. 4.26b shows a cartoon of the 

chitosan gel. 

 The gel formation procedure followed the chitosan purification protocol; before 

precipitating the chitosan with NaOH, the chitosan solution was mixed with 1,2 propanediol in a 

50:50 ratio under magnetic stirring at room temperature for ~ 30 min. The solution was 

centrifuged for 30 min at ~ 4500 rpm to remove bubbles. The concentration of chitosan and HAc 

was adjusted to obtain a chitosan solution at 0.9 w/v % in HAc 0.5 Wt %:1.2 propanediol. The 

gelation process starts by drying the chitosan solution; the water evaporates first, then the alcohol, 

changing the dielectric constant of the solution. Thus, the medium becomes more hydrophobic 

with time. 

 

iii) Alginate/chitosan gel 

Chitosan dissolves in an acidic medium because the amino group accepts a proton from 

the medium (−𝑁𝐻( + 𝐻0 → −𝑁𝐻-0), charging the chain positively. If the pH is near and above 

the chitosan pKa = 6.3 (minus the logarithm of acidity constant), the amino groups dissociate, 

which leads to the polysaccharide precipitation; so, the solubility and charging of the chitosan 

chain depend on pH, so, it must take into account for a gelation method. The gelation of charged 

polymers lies in forming polyelectrolyte complexes (PECs) by electrostatic interaction between 

cationic and anionic counterparts as they are mixed together. However, an important limitation 

of chitosan is the precipitation of PECs, usually caused by the strong electrostatic interaction of 

the chains, which can be seen as phase separation; one phase rich in polymer and another poor in 

polymer, usually called coacervate. Fig. 4.26e shows a coacervate formed by fast acidification 

using a strong acid (HCl). Shchipunov et al. [149] proposed a method for in situ formation of 

chitosan hydrogel with anionic polysaccharides with chitosan. They proposed slowed-down 

acidification of solutions performed by GDL, gradually charging a chitosan chain (positive charges) 

and then smoothly increasing the attractive electrostatic interactions with anionic 

polysaccharides. Their experiments were performed to test gel formation by the gradual 

acidification of dispersed chitosan particles with alginate, carboxymethylcellulose, carrageenan, 
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sodium hyaluronate, and xanthan. The gelation protocol in this work is similar to that proposed by 

Shchipunov et al. [149]. The Fig. 4.26e shows the gel obtained with this method.  

The formation gel procedure followed: First, alginate was dissolved in deionized water 

under magnetic stirring at approximately 30°C by ~ 8 h at a fixed concentration (Calginate = 0.9 w/v 

%). Subsequently, the chitosan was dispersed into an alginate solution at ~ 30 C overnight at 

different concentrations. The pH of chitosan dispersed in alginate solution was ~ 7.6 (> pKa) and 

was adjusted at pH ~ 7 using [HCl] = 0.1 M; the HCl solution was dripped slowly into the solution 

alginate/chitosan under magnetic stirring at room temperature. Finally, GDL was added to the 

Alg/Chit solution, promoting the gel formation. Depending on the experiment, the chitosan 

concentration was varied (Calginate = 0.375-1.125 %), as well as that of GDL (CGDL = 6-18 g/mL). In 

an approximate way, the number of charges in the chitosan and alginate chain was calculated 

based on the following argument:  

- The number of charges in the alginate chain was calculated by considering the molecular 

weight of the alginate chain and the molecular weight of the M and G monomers that 

constitute the chain; one M and G monomers contribute a unity of charge, -e. Similarly, the 

number of positive charges in the chitosan chain was calculated considering the chitosan's 

molecular weight with a DD = 74.8 %, which indicates that the chain is charged 74.8 % due to 

the presence of GlcN groups. Here, one GlcN monomer contributes a unity of positive charge, 

+e. Table 3 shows the number of charges per unit of volume for different polymer 

concentrations, such as the ratio between positive and negative charges. 

Table 3. Number of charges per unit of volume for all polymer concentrations used to form Alg/Chit gel. 
Cpolymer (v/w %) Number of charges/NA Number of -e / Number of +e (𝑁?R 𝑁?L⁄ ) 

Alginate at 0.9 v/w % 5.1 × 106B --- 
Chitosan at 0.375 v/w % 1.7 × 106B ~3 
Chitosan at 0.75 v/w % 3.5 × 106B ~1.5 

Chitosan at 1.125 v/w % 5.2 × 106B ~1 
NA corresponds to Avogadro’s number (𝑁I ≈ 1.062 × 10&?).  
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Figure 4.26. Cartoon for different gelation mechanisms. a) Structure of alginate chain and formation of egg-
box structure in the presence of Ca2+. b) Structure of chitosan chain and the hydrophobic junctions between 
chitosan chains. c) Alginate and chitosan chains and PEC formation through electrostatic interaction; 
coacervate formation by rapid acidification, and gel formation by low acidification. The length of chitosan 
and alginate chains are consistent according to the ratio between their molecular weight 
(𝑀J

(EK,20L3") 𝑀J
(3MN,"32=) ≈ 3~ ).  

 

Rheological measurements. All measurements for SAOS and LAOS were performed with 

an MCR-702 Twin Drive rheometer (Anton Paar, Austria) using a cone-plate geometry (2o and 4o 

cone angle, Diam. = 40 mm) and temperature control (± 0.1 ºC). A solvent trap was used to avoid 

water evaporation.  
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Viscoelastic spectra close to the gel point. An estimation of the gelation time is given by 

the time needed to reach the gel point, i.e., the elapsed time to reach G'(t) ~ G"(t) along an 

isothermal time sweep experiment with a constant frequency (ω = 0.5 s-1) and constant strain (γ = 

0.15 % or 0.8 %). The viscoelastic spectra are performed after the gelation process starts. The 

measurement of G'(ω) and G"(ω) started after a specific elapsed time, close to the gelation time. 

All measurements were made at 25 oC, except for one chitosan gel formed at 20 oC.  

Linear and nonlinear viscoelastic spectra of mature gels. The viscoelastic spectra were 

obtained on matured gels after 5 – 6 h of starting the gelation process. It was considered a 

matured gel when the viscoelastic moduli did not change with the time for 30 min in an isothermal 

time sweep experiment (ω = 0.5 s-1 and γ = 0.15 or 0.8 % were fixed). Frequency sweep 

measurements were carried out in the range of ω = 0.1-100 s-1 in the LVR (γ = 0.8 % for alginate 

and chitosan gels and γ = 0.15 % for Alg/Chit gels). Afterward, for LAOS measurements, strain-

sweep measurements were developed (γ = 0.1-5000 % at ω = 1 s-1). Lissajous-Bowditch curves 

were obtained for one imposed intra-cycle shear strain.  

Microrheology and diffusive wave spectroscopy. The mean square displacement is 

measured with DWS, as described in section 3.3. Polystyrene microspheres (dia. 784 nm; Bangs 

Labs, USA) were added to the solutions (vol. fraction ~ 0.025), mixed, and placed in a rectangular 

optical glass cuvette (2 mm optical-path length, Sterna Cell, Inc.) at 25 oC. According to the last 

section, the gelation process of alginate and Alg/Chit starts when GDL is added to the polymer 

solution and mixed, and the gelation of chitosan starts when the cuvette is opened for the drying 

process; this time corresponds to the starting point of the gelation process for measuring the 

MSDs. The MSDs of probe microspheres are determined by collecting their scattered light from a 

speckle over 180 – 300 s, and the intensity auto-correlation functions are evaluated; 

measurements were taken along ~ 8 h for different waiting times after gelation started. Scattered 

light collected for 180 s is enough to consider local thermodynamic equilibrium with good 

statistics. From the MSD, the viscoelastic spectra (ω ≈ 102-10^6 s-1) can be evaluated up to high 

frequencies; the experimental MSD curves for sol state (at times close to starting gelatin process) 

were fitted using a power law with two terms (〈Δ𝑟((𝑡)〉 = 𝐴*𝑡1# + 𝐴(𝑡1", A1, A2, α1, and α1 are 

constants from fitting). 
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4.2.3. Results and Discussion 

Linear viscoelastic spectra of critical gels. For the study of critical alginate gels by 

mechanical rheology, GDL concentration was chosen, and the gelation process was slow enough 

to have time for accurate measurements. In an isothermal time sweep experiment (at ω and γ 

fixed), the evolution of G'(t) and G''(t) is similar to that obtained for gelatin gels (see Fig. 4.13). For 

6 mg/mL, 12 mg/mL, and 18 mg/mL, the gelation time (where G'(t) and G''(t) are crossing) are tg 

∼	143 min, tg ∼	59 min, and tg ∼	41 min, respectively. So, the concentration of GDL for the study 

of critical gels is 6 mg/mL. Figure 4.27 shows the viscoelasticity moduli close to the gel point; here, 

measurements were delayed after the onset of gelation until the system was close to the critical 

point to avoid observing a sol state. The time delayed before started the measurements were 

similar to gelation times obtained by an isothermal time sweep experiment: tg∼143 min, tg ∼	88 

min and tg ∼	98 min for [CaCO3] = 3 mM, [CaCO3] = 5 mM and [CaCO3] = 7 mM, respectively. For 

all panels of Fig. 4.27, different vertical scales (y-axis) were used to view all measurements in a 

single figure; the y-axis corresponding to the viscoelasticity moduli data are in the same color. For 

alginate critical gels, G'(ω) and G’’(ω)are parallel along more than three orders of magnitude in 

frequency, and according to Chambon & Winter criteria [28], G'(ω) ∼ G’’(ω) ∼ ωn with n = 0.60 – 

0.65; according to Ca2+ increases the critical exponent decrease. The critical exponents values are 

good agreement with Liu et al. work [150]. They reported n = 0.620 for alginate gels induced by 

calcium cations through in situ release using GDL at Calginate = 3 Wt % ; here, the polymer used is of 

low molecular weight with M/G = 1.85 close to M/G used in this work (M/G ≈ 1.56).  

The critical exponent reflects the nature of the size distribution of the mesoscale 

superstructure in the gel point [26,28,120]; for the case shown here, the n value depends slightly 

on the concentration of Ca2+, essentially. Compared to other works, the critical exponent for 

alginate gels depends strongly on the nature of the alginate chain, e.g., molecular weight and 

mannuronic acid to guluronic acid ratio. For example, Lu et al. [146] reported different critical 

exponents for alginate gels at low and high molecular weights of polymer with Calginate = 2-6 Wt %, 

using Ca-EDTA and GDL for promoting the gelation process. In their work, for alginate with low 

molecular weight with M/G = 0.6, the critical exponent is ≈ 0.71 and independent of Calginate, while 
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for high molecular weight alginate M/G = 91 with, n decreases from 0.72 - 0.37 with increasing 

Calginate.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.27. Linear viscoelastic spectra 
close to gel point for different physical 
gels: a) Alginate gels at 9 w/v %, 6 
mg/mL GDL and CaCO3, b) chitosan 
gels at 0.9 w/v % in HAc 0.5 Wt %:1.2 
propanediol drying at different 
temperatures, and c) alginate/chitosan 
gels at 0.9 w/v % of alginate with 
different quantities of GDL and 
chitosan. Different vertical scales (y-
axis) are used where the color in y-axis 
corresponds to measuring data. 

 

Figure 4.27b shows the viscoelasticity moduli for critical chitosan gels; here, the gelation 

process occurred when the solution of chitosan in HAc:1,2 propanediol is drying; during 
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rheological measurements, the samples were placed in a temperature control chamber and 

without evaporation trap. For gel dried at 20 oC and 25 oC, the critical exponent is n = 0.58 and n 

= 0.62, respectively; drying the solution of chitosan at 20 oC, G'(ω) and G''(ω) are parallel in three 

orders of magnitude in 𝜔, while drying at 25 oC, G'(ω) and G''(ω) are parallel over four orders of 

magnitude in ω. The n values reported here are closed for thermosensitive chitosan- β-

glycerophosphate at 35 oC (MW ≈ 850,000 Da, DD = 93 %), n = 0.61 [151]. However, as well as with 

alginate critical gels, there is a slight difference concerning chitosan gels with different molecular 

weights and deacetylation degrees. For example, Boucard et al. [148] reported a critical exponent 

n = 0.47 for chitosan gel at Cchitosan = 3 Wt % in HAc:1,2 propanediol dry at 50 oC (MW ≈ 540,000 

Da, DD = 97.4 %), and Montembault et al. [147] reported the n = 0.5 for chitosan gels with Cchitosan 

= 0.5-3 Wt % formed by the neutralization of chitosan positively chains with ammonia (MW ≈ 

500,000 Da, DD = 48-95 %). In summary, the critical exponents for alginate and chitosan critical 

gels have a good agreement with systems similar in molecular weight, and the M/G ratio for 

alginate gels validates the procedure shown here to obtain the critical exponent through 

rheological measurements. 

 Linear viscoelasticity spectra for Alg/Chit gels close to the gel point are shown in Fig. 4.27c. 

The chitosan concentrations were chosen to obtain three different ratios between the charges in 

the polymer chains: excess negative charge (𝑁?R 𝑁?L⁄ ≈ 1.5 and ≈ 3), and stoichiometric 

equivalency between charges (𝑁?R 𝑁?L ≈⁄ 1). In early experimental exploration, isothermal time 

sweep experiments show long gelation times using CGDL = 18 mg/mL. However, using these delay 

times before starting the viscoelastic spectra measurement, the viscoelasticity spectra correspond 

to solid-like behavior (G'(ω) > G''(ω)). This underestimation of delay-time by the isothermal time 

sweep experiment may be because the perturbation (γ = 0.15 % and ω = 0.5 s-1) can be enough to 

delay the formation of the infinity network. It was possible to obtain G'(ω) and G''(ω) parallel along 

more than three orders of magnitude in ω for higher 𝑁?R 𝑁?L⁄  adjusting the delay-time; here, n = 

0.58. For lower 𝑁?R 𝑁?L⁄  ratios, it was not possible to obtain the viscoelasticity spectra close to 

the gel point. Lowering 𝐶G�� to 6 mg/mL, the critical exponent for 𝑁?R 𝑁?L⁄ ≈ 1.5 increases to 

0.64. For 𝑁?R 𝑁?L⁄ ≈ 3, G'(ω) and G''(ω) are quasi parallel with the frequency in fourth orders of 

magnitude in ω, showing a shoulder at low frequency; the system is in a post-gel state, where the 
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transition between sol to gel state is faster than time need to acquire rheological measurements 

at low frequencies. However, given the n values for lower Cchitosan, the critical exponent for a gel 

with stoichiometric equivalency charges is expected to be n ∼	0.6. The critical exponents for 

Alg/Chit gels have not been previously reported.  

 In summary, the Chambon & Winter criteria show a similar critical exponent near the gel 

point for all gels n ~ 0.6, demonstrating that, regardless of the physical mechanism of gelation, the 

percolation threshold associated with gel network formation is the same. As previously 

mentioned, the n value depends on the nature of the polymer chain, and these values may vary 

slightly according to the measurement protocol as shown as demonstrated by Lu et al. [146] for 

alginate gels, as well as the dispersion of critical exponents for different polymer gels [27]. The 

results presented here show that the measurement protocol is the same for all critical gels, 

supporting the idea of the similarity of the polymeric network close to the gel point. Also, in the 

previous section, a similar critical exponent for physical gelatin gels was found to support the idea 

of the similarity of biopolymers’ critical gels with a physical gelation mechanism.  

 

Nonlinear viscoelasticity spectra of mature gels. Fig. 4.29 shows the viscoelastic moduli vs. 

γ for different matured gels in a wide range of strain, 0.1 - 5000 %, for a fixed frequency (ω =1s-1); 

measurements started 5 – 6 h after starting the gelation process. The linear viscoelasticity spectra 

show a solid-like behavior (G’(ω) > G''(ω)) for all matured gels in a wide range of frequency, ω = 

0.1-100 s-1 (not shown). G'(γ) and G"(γ) in matured alginate and chitosan (see Fig. 4.29a-b) gels 

exhibit similar trends, which could be described with three regions as well as gelatin matured gels. 

In the LVR region, G'(γ) and G"(γ) are constant. In the second region, G'(γ) and G"(γ) increase with 

a positive curvature strain, and a sudden overshoot produces a third region where G'(γ) and G"(γ) 

decrease as the strain increases, suggesting network failure where it starts to break. As γ increases, 

G"(γ) > G'(γ), which is related to the flow of a broken gel. The overshoot in G'(γ) and G"(γ) can be 

easily seen in the σ vs. γ curves in the insets of Fig. 4.29 show shear thickening.  
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Figure 4.29. G'(γ) and G"(γ) vs. γ at a constant frequency (ω = 

1 s-1) for matured gels. a) Alginate gels at 9 w/v %, 6 mg/mL 

GDL and CaCO3. b) Chitosan gels at 0.9 w/v % in HAc 0.5 Wt 

%:1.2 propanediol drying at different temperatures. c) 

Alg/Chit gels at 0.9 w/v % + 18 mg/mL GDL with different 

Cchitosan. d) Alg/Chit gels at 0.9 w/v % with different Cchitosan  and 

CGDL. e) Photographers of Alg/Chit gels before of LAOS 

measurements. Insets, σ vs.γ, and the fittings to BST model 

(continuous line). The arrows indicate the yield point.  
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As well as gelatin matured gels, to obtain information about the microstructure of the gel 

network, was used the BST–scaling model to fit the nonlinear viscoelastic behavior to determine 

the fractal structure in terms of the fractal dimension (see Eq. 3.15). The fittings of σ vs. γ curves 

correspond to continuous lines in the insets of Fig. 4.29a-b ((regression coefficient)2 > 0.98 for all 

cases). Table 4.3 presents all parameters for the BST–-scaling model and strain breaking. 

 

Table 4.3. Parameters associated with BST scaling model, strain breaking, and yield points of matured gels 
 G#	(Pa) nOPQ dR γSTUVW	(%) 

Alginate matured gels: 1.8 w/v % + 6 mg/mL GDL with CaCO3 

[CaCO3] = 3 mM 12.8 Pa 4.02 1.33 199 % 
[CaCO3] = 5 mM 58.1 Pa 4.64 1.28 111 % 

[CaCO3] = 7 mM 119.5 Pa 4.94 1.25 83 % 

Chitosan matured gels: 0.9 w/v % in HAc 0.5 Wt %:1.2 propanediol drying at different temperatures 

20 oC 16.59 Pa 3.05 1.49 271 

25 oC 43.55 Pa 4.00 1.33 202 

Alg/Chit matured gels: 0.9 w/v % of alginate with different quantities of GDL and chitosan. 

 G#	(Pa) γ%º	Z.\.	(%) γ&º	Z.\.	(%) 
Cchitosan = 0.37, CGDL = 18 mg/mL 30.3 Pa 0.78 % --- 

Cchitosan = 0.75, CGDL = 18 mg/mL 1244.3 Pa 2.48 % 111 % 

Cchitosan = 1.12, CGDL = 18 mg/mL 3496.5 Pa 3.33 % 267 % 

Cchitosan = 0.75, CGDL = 6 mg/mL 822.4 Pa 0.32 % --- 

Cchitosan = 0.75, CGDL = 8 mg/mL 2598.8 Pa 1.03 % 642 % 

Cchitosan = 1.12, CGDL = 6 mg/mL 3850.1 Pa 0.43 % 861 % 

For alginate-matured gels, the elastic modulus, 𝐺4 = 𝑙𝑖𝑚
q→4

𝐺′(𝛾), increases with Ca2+ 

concentration. With [Ca2+] = 3 mM, the elastic modulus is 12.8 Pa, which increases by one order 

of magnitude with 7 mM of Ca2+. Also, γbreak decreases with increasing Ca2+; the network formed 

with [Ca2+] = 7 mM requires a lower strain to break the structure than gel formed with 3 mM of 

Ca2+. The physical mechanism to form alginate gels involves the formation of egg-box structures, 

whose rupture mechanism unzips the two alginate chains [143,146,150]. The fractal dimension of 

alginate matured gels varies from 1.33 to 1.25 and decreases according to increased quantity of 

Ca2+. These results for higher Ca2+ concentration agree well with df reported by Posbeyikian et al. 

[152] for alginate beads; they reported a fractal dimension of 1.25 for alginate beads formed in a 
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divalent cross-linking solution of [CaCl2] = 100 mM using a SAXS experiment. The dependence of 

the fractal dimension with Ca2+ concentration suggests that the network self-similarity changes 

slightly with the quantity of Ca2+ added. It can be interpreted that the fractal dimension is how the 

space is filled; for larger df, the space is more crowded. Larobina et al. [143] reported that alginate 

gels formed with CaCO3 by slowly hydrolyzing using GDL, forming multi-unit egg-box structures, 

resulting in rod-like junctions and bundles of several chains. So, for a fixed concentration of 

alginate chains, the space is being filled according to the increased quantity of Ca2+ with multi egg-

box structures. Figure 4.30 shows a cartoon of network structures with different [Ca2+].  

 

Figure 4.30. Cartoon about egg-box structure between alginate chains and the influence of [Ca2+] in their 
structure.  

For chitosan matured gels, the elastic modulus increases with the drying temperature; at 20 oC, G0 

= 16.6 Pa, while at 25 oC, G0 increases to 43.5 Pa. Also, γbreak decreases with temperature increases. 

Here, controlling the drying speed makes it possible to obtain gels with different rheological 

behavior; for higher temperatures, the elasticity of chitosan gels increases. The decrease of γbreak 

with the temperature suggests that this higher resistance to strain at lower temperatures is due 

to more significantly larger hydrophobic cross-linking regions contrary to higher temperatures. 

Fractal dimension decreases with drying temperature; df = 1.49 and 1.33 for 20 oC and 25 oC, 

respectively. Following the concept of fractal dimension and its relationship with space-filling, the 

matured gel formed at 20°C using chitosan has the most extensive network. This aligns with the 

notion that the hydrophobic regions are larger at this temperature. However, the corroboration 

of these hypotheses needs one of the most exhaustive studies to find the relationship between 

the dry rate of chitosan solution and its network structure. The literature includes several reports 
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about chitosan gel in an alcoholic medium [147,148]. However, the influence of the drying process 

is not fully understood fully. 

The rheological behavior of Alg/Chit matured gels differs concerning gels made from the 

polysaccharides separately. At low shear stress, the viscoelasticity moduli are independent of γ 

(linear response), followed by a decrease as γ increases; here, G'(γ) and G"(γ) do not show an 

overshoot after the linear viscoelasticity region. The red arrows into the Fig. 4.29 c-d indicate a 

first yield point characterized by a maximum shear stress, which marks the viscoelasticity yield 

point followed by a rapid decrease in G'(γ). For some Alg/Chit gels, the nonlinear viscoelasticity 

region shows a second yield point, as marked by the blue arrow. For Alg/Chit matured gels with 

charge equivalence (𝑁?R 𝑁?L⁄ ≈ 1, Cchitosan = 1.2 %), the presence of two yielding points are 

notably (see Fig. 4.29 c-d). Here, the final structure can scatter light, as shown in Fig. 4.29d, 

indicating the formation of large structures of alginate and chitosan chains through PECs 

formation. Recent works [74,75] have reported the nonlinear viscoelasticity spectra of dense 

microgel suspensions, which have two yield points as a rheological signature. Saisavadas et al. [74] 

reported two yield points for thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) core-shell 

analogous to soft-spheres colloidal glasses with attractive interactions. They concluded that core-

shell PNIPAM microgel yields in two steps: one due to the breaking and reformation of 

entanglements between dangling polymer chains and the second one due to cage breaking and 

reformation. Lara-Peña et al. [75] reported a similar phenomenology for core-shell microgel dense 

suspension (PNIPAM as a core and thin poly(ethylene glycol) as a shell). So, due to the similarity 

of the nonlinear rheological behavior of Alg/Chit matured gels with dense suspension of microgels, 

it is suspected that the Alg/Chit mature gel shown here consists of soft spheres interconnected 

between them by dangling polymer chains.  

The work of Varadarajan et al. [153] supported the idea of the presence of large structure 

immersed in Alg/Chit gel. They investigated the changes in the structure of alginate/chitosan PECs 

by adding NaCl; PEC formation was similar to here, showing the same capacity to scatter light. The 

SASX spectrum for undoped PEC (1:1 volume ratio for alginate and chitosan at 1 w/v %) shows two 

fractal dimension masses. At q > qc (∼ 0.0143 A-1), df
(mass) = 2.2, which attributed to the structure 

formation upon complexation of alginate and chitosan, and for q < qc, df
(mass) = 4.4, which indicates 
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the formation of larger aggregates of such polyelectrolyte complexes. Remembering the gel 

formation protocol, where the PEC formation starts by slowing the acidification of chitosan 

dispersed in an alginate solution; here, the small chitosan particle could serve as a nucleation point 

for microgel formation.  

The observed nonlinear rheological behavior for 𝑁?R 𝑁?L⁄ ≈ 1.5 (Fig. 4.29c-d, Cchitosan = 

1.2 %) is not simple phenomenon. It has the same rheological signature as for a ratio 𝑁?R 𝑁?L⁄ ≈

1 for CGDL = 8 and 18 mg/mL with lower elastic modulus; the structure is similar to ratio 𝑁?R 𝑁?L⁄ ≈

1 but weakness and more susceptible to break. For CGDL = 6 mg/mL, nonlinear rheological behavior 

presents one yield point similar to a ratio of 𝑁?R 𝑁?L⁄ ≈ 3, where, according to Fig. 4.29e show 

one phase is rich in polymer and another one poor in polymer. For a ratio 𝑁?R 𝑁?L⁄ ≈ 3, there is 

an excess of negative charges, so neutral PECs formation is impossible. In this case, the first yield 

point is γ = 0.78 %. Here, the network structure is very susceptible to breakage because the 

individual microgels are not yet completely formed, and the union between soft microspheres is 

softer, contrary to when the Cchitosan increases; here, the strain of the first yield point increases. 

Figure 4.31 shows AFM images of the dry surface of Alg/Chit matured gels at room 

temperature for two values of Chitosan (0.75 v/w % and 1.12 v/w %). For Cchitosan = 1.12 v/w %, 

structures on the two largest scales can be seen. For the scale of 600x600 nm, it is possible to 

appreciate several pseudo-spherical structures linked together like a necklace of pearls, 

supporting the idea that the macroscopic structure of Alg/Chit gel is formed by soft spheres 

interlocking; the radius of one colloid can be estimated in ∼ 50 nm. However, this hypothesis 

should be corroborated by scattering experimental techniques. For example, the SANS experiment 

will obtain the structure of Alg/Chit’s microspheres, and the reflectometry experiment will obtain 

a density profile through the shell-to-core microgel structure. Comparing the AFM’s image series, 

it can be seen that for the ratio of 𝑁?R 𝑁?L⁄ ≈ 1 the structures are more compact than a ratio of 

𝑁?R 𝑁?L⁄ ≈ 1.5, showing that the interaction for a stoichiometrically charged system is stronger 

concerning a negatively charged excess. 
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Figure 4.31. Photographs of dry surface of Alg/Chit matured gels by AFM technique.  

 

Kinetic of gelation: Mean square displacements of microspheres embedded in 

polysaccharides solutions. The gelation kinetics process is followed by measuring the MSD of PS 

microspheres (784 nm) embedded in polysaccharide solutions using the DWS technique according 

to the gelation protocol (see section 4.2.2.3). The MSDs of the microspheres depend on the 

viscoelastic environment, which evolves from a sol to a gel state as time elapses. Similarly, to 

gelatin solution, the elapsed time since starting gelation will be named tq.  

Figure 4.32a shows the MSDs of microspheres embedded in alginate solution at 1.8 w/v % 

at 25 oC. An experimental MSD curve can be fit with a power law with two terms (〈Δ𝑟((𝑡)〉 =
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𝐴𝑡1# + 𝐴𝑡1"). At short times (𝑡 ≲ 5 × 10)-𝑠), the first slope is ∼ 0.28, showing a clear deviation 

from the simple diffusive case (〈Δ𝑟((𝑡)〉 = 6𝐷𝑡); here, the interaction of particles with the 

polymer chains limited their displacements with a predominant elastic component where for long 

times (t ≳	 5×10-3 s) approaches a simple diffusive case because the particle escapes of the 

interaction with the polymer chains that limited its displacements. This behavior has been 

reported in polyethylene oxide [154], and acrylamide solutions [133]. Figure 4.32b shows the 

viscoelasticity spectra from MSDs according to the experimental procedure described in Chapter 

3. Here, microrheology and mechanical rheology show good agreement; also, the rheological 

behavior at high frequency is similar to that of synthetic polymer systems [133,154]. 

 
Figure 4.32. Microrheology of alginate solution with Calginate = 1.8 w/v % at 25 oC. a) MSD vs time for 
microspheres embedded in alginate solution (dia. 784 nm and vol. fraction 0.025); open circles correspond 
to experimental MSD data, and continuous lines correspond to best fitting using power law with two terms.  
b) High-frequency viscoelasticity spectra from MSD and mechanical rheometry measurements. Inset: 
correlation function of the field. 
 

For alginate solution with [CaCO3] = 3 mM (see Fig. 4.33a) at tq ≲	42 min, the particles move in a 

polymer solution as described in the last paragraph, showing two slopes at short and long times. 

As the gelation process progresses, the slope decreases for a long time as tq increases. For tq ∼	

220 min, the MSD curve begins to form a shoulder; the shoulder is more pronounced for tq ≳	270 

min. From a mesoscopic point of view, the spreading to long times of the first slope (at short times) 

suggests that the particle cannot move freely as in a simple diffusion case because the polymer 

chains trap it. A shoulder in MSD curves is evidence of partial particle confinement; here, the 
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particles explore all the available volume in the polymer network cage formed around it, limiting 

the displacement of the microsphere similar to those described in gelatin physical gels, where the 

particle to explore a larger space as time elapses. For alginate solutions with [CaCO3] = 7 mM, MSD 

curves have a similar behavior concerning lower Ca2+ concentration; here, the shoulder at long 

times appears at tq ∼ 80 min, suggesting the gel state occurs before that [CaCO3] = 7 mM. For tq > 

80 min, the shoulder is more pronounced than the alginate solution with [CaCO3] = 3 mM and 

appears for shorter times. The last observation suggests that the network is narrower, limiting the 

movement of microspheres. 

 

 
Figure 4.33. MSD vs. time for microspheres embedded in alginate solution after starting the gelation 
process at 25 C: a) With [CaCO3] = 3 mM, and b) with [CaCO3] = 7 mM.  
 

4.3.4. Conclusions  

This last part of PhD project explores in detail the linear and nonlinear viscoelastic behavior 

of different physical gels made from polysaccharides: alginate, chitosan, and their mixture. The 

Chambon & Winter criteria show a similar critical exponent near the gel point for all physical gels, 

n ~ 0.6, demonstrating that, regardless of the physical mechanism of gelation, the percolation 

threshold associated with gel network formation is the same. The same critical exponent for 

physical gelatin gels supported this observation of the similarity of polymeric critical physical gels.  
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Using the LAOS protocol, the strain-hardening behavior of the matured gels was a focal 

point of our investigation. The BST scaling model was employed to interpret the results. We found 

that df ~ 1.25-1.33 for alginate gels, and its value is dependent on Ca2+ concentration. As the 

concentration of Ca2+ increases, the fractal dimension decreases, indicating that the increased 

quantity of Ca2+ fills the space with multi-egg-box structures, a novel finding in line with Larobina’s 

work [143]. For chitosan gels, df ~ 1.33–1.49, and their value is influenced by the rate at which the 

modification of the hydrophobicity of the medium by the drying solvent process occurs; at a high 

rate, df decreases. However, the influence of the dry process is not fully understood yet, 

presenting an intriguing area for further research. In the case of the alginate/chitosan mixture, the 

nonlinear rheological behavior exhibits a single yield point for a system with an excessive negative 

charge (𝑁?R 𝑁?L⁄ ≈ 3) into the alginate chain. For a neutral system (𝑁?R 𝑁?L⁄ ≈ 1), the nonlinear 

rheological behavior shows two yield points; this is a rheological signature CS-microgels due to 

similarity with recent works about synthetic CS-microgels [74,75]. AFM micrographs show a 

structure pearl-necklace-like with a radius of bead ∼ 50 nm. The Lissajous-Bowditch curves differ 

for all gels in the nonlinear viscoelasticity region (not shown); they serve as a unique fingerprint, 

further adding to the novelty of our findings. 

The DWS microrheology kinetics study indicates that the mean square displacement (MSD) 

decreased as the network formed, and its shape changed based on the physical gelation 

mechanism. The MSD data allows observation of the various relaxation modes of the chains within 

the network. 
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5. General conclusions and perspectives 
In this work, three different systems were studied to find a correlation between linear and 

nonlinear viscoelasticity behavior with their mesoscopic structure of thread-like systems from an 

experimental physics point of view. The systems were WLMs solutions as a model of living 

polymers, gelatin solutions as a model of flexible biopolymer, and alginate and chitosan as a model 

of charged biopolymer; all systems present a phase transition under different conditions. Living 

polymers preset a transition from isotropic to nematic state when applying shear strain, called the 

shear banding phenomenon. For biopolymers, the system presents a sol-gel transition by 

physicochemical environment modification. The following is a brief description of the principal 

finding of this PhD research:  

v Linear and nonlinear viscoelasticity of living polymers. Concerning the living polymer system, 

different experiments were made: flow curves, rotating the internal or external cylinder in a 

Taylor-Couette geometry, small and large oscillatory shear tests, and linear shear banding 

observations, all of them to determine how elastic forces modify the rheological behavior in 

different WLMs solutions. From MSDs of microspheres embedded in the micellar fluids, it was 

possible to obtain mesoscopic scales' characteristics, particularly the micelles' total contour 

(Lc) and the entanglement length (le). The ratio κ = LC/le, called the entanglement index, is 

related to the entangled micellar network, which is proportional to the system's elasticity. In 

this sense, the entanglement index, a structural parameter, is valuable for understanding the 

origin of the contribution of elastic forces, such as continuum macroscopic parameter (the 

elasticity as the ratio between Wi number and Re number), from a molecular point of view in 

the fluid dynamics WLMs solutions. This was the first time where showed a direct relationship 

between a structural parameter with a macroscopic fluid parameter.  

v Linear and nonlinear viscoelasticity of flexible biopolymer gels. In this part of the project, there 

are different rheological measurements in physical, chemical, and hybrid gelatin gels: linear 

viscoelasticity spectra around the gel point and nonlinear viscoelasticity spectra in matured 

gels. Their gel fractal dimensions (df) were obtained using the BST-scaling model, where for 

hybrid gels, df is between 1.46 and 1.60, depending on the dominant crosslinking process. The 

main features of the Lissajous–Bowditch curves were determined for maturated gels that 
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follow different gelation processes. The gelation kinetics process is followed by measuring 

MSDs of microspheres embedded in gelatin solutions using diffusion wave spectroscopy, 

which in turn allows evaluation of the viscoelastic moduli; the persistence length and the mesh 

size as a function of time were estimated throughout the gelation process. As time elapses 

after gelation starts, the persistence length of the unstructured, non-bonded flexible polymer 

sections decreases due to the formation of bonds. Also, the time evolution of the gel network's 

mesh size roughly follows an exponential decay. This work shows a dependence of the fractal 

dimension with the type of crosslink for biopolymer gels and the impossibility of separating 

the physical and chemical gelation mechanism when both are running simultaneously.  

v Linear and nonlinear viscoelasticity of flexible charged biopolymer gels. Similar to the last 

system, different rheological measurements were made in physical gels made with alginate 

and chitosan and their mixture: linear and nonlinear viscoelasticity spectra around the gel 

point and matured gels, respectively. The Chambon & Winter criteria show a similar critical 

exponent near the gel point for all gels n ∼	0.6, demonstrating that the percolation threshold 

of the network is the same independent of gelation mechanisms. The same critical exponent 

for physical gelatin gels supported this observation of the similarity of polymeric critical 

physical gels. For alginate gels, df ~ 1.25–1.33, and its value depends on [Ca2+] showing slightly 

different forms of complexation between Ca2+ and alginate chains. For chitosan gels, df ~ 1.33–

1.49, the value depends on the rate at which the modification of the hydrophobicity of the 

medium. Surprisingly, the nonlinear viscoelasticity is drastically different concerning gels 

formed by alginate or chitosan chains. For the polymer mixture, electrostatic interaction leads 

to the formation of PECs and, under the physicochemical conditions and protocol preparation 

presented in this work, forms a microgel confirmed by the nonlinear viscoelasticity spectrum 

and AFM images. In a kinetic study, the MSDs of the microspheres embedded in the polymer 

matrix decreased according to the formation of the network, and the shape of the MSD’s curve 

was different according to the gelation mechanism.  

For the three thread-like systems, this research has revealed a crucial insight that the structure 

of the polymer matrix directly influences the nonlinear rheological response. The Lissajous-

Botwich curves, in particular, serve as a fingerprint for each system. For living polymers, a 
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significant discovery was the definition of the entanglement index, a mesoscopic parameter 

essential for understanding the entanglement of the micellar network. This index is directly linked 

to the solution's elasticity from a dynamic fluid point of view. However, the correlation between 

this index parameter, elasticity, and the inertia-elastic instabilities is a complex and interesting 

topic that requires further exploration, where the findings shown here should be considered. 

The study of large shear strain rheological behavior in biopolymer gels indirectly reveals the 

fractal dimension, which agrees with the dimension obtained directly from other experimental 

techniques such as SANS and SASX. An important finding is that the Chambon & Winter criteria 

show a similar critical exponent (n ∼ 0.6) for all physical gels, indicating that the percolation 

threshold of the network is independent of gelation mechanisms, this suggests a universality of 

gel-sol transition. In the literature, several critical exponents have been reported for physical gels 

where the values have a high dispersion. The critical exponents shown here were determined 

using the same measurement protocol that supported the conclusion about the universality of the 

physical gelation phenomena. However, additional theoretical work and simulations are needed 

to conclude the gel-sol transition for biopolymer gels. This study's chemical and hybrid gels were 

made using glutaraldehyde, a toxic component. Therefore, the next step in the technological 

approach to hydrogels is to characterize chemical and hybrid gels made with non-toxic 

components. 

An exciting result shows that the mixture of alginate and chitosan forms microgels, possibly 

due to the gel preparation method and the physicochemical parameters presented here. This 

mixture exhibits the same rheological signature as core-shell synthetic microgels. Recently, 

microgels made with natural polymers have gained attention in the soft matter community due to 

biotechnological applications like Pickering emulsion; the alginate/chitosan microgels shown here 

could be used for these propourse. It is essential to understand the mesoscopic structure of these 

microgels, and characterization techniques such as SANS, SASX, and reflectometry can help clarify 

their structure. Modifying the polymer properties, e.g., molecular weight, deacetylation of 

chitosan, and M/G proportion of alginate, could result in different microgels. Also, studying the 

impact of the physicochemical environment is essential to achieving tunable microgels, e.g., 

PNIPAM-microgels with temperature sensitivity. 
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6. Scientific technical reports 
6. 1 Published work 

v López-Santiago, R. F., Delgado, J., & Castillo, R. (2024). Competition among physical, chemical, 

and hybrid gelation mechanisms in biopolymers. Soft Matter, 20, 2518 – 2531. DOI: 

https://doi.org/10.1039/D3SM01682J 

v López-Santiago, R. F., Delgado, J., & Castillo, R. (2022). Micellar entanglement and its relation 

to the elastic behavior of wormlike micelle fluids. Journal of Colloid and Interface Science, 626, 

1015 – 1027. DOI: https://doi.org/10.1016/j.jcis.2022.07.003 

v Tavera-Vázquez, A., Rincón-Londoño, N., López-Santiago, R. F., & Castillo, R. (2021). Measuring 

mesoscopic scales in complex fluids embedded with giant cylindrical micelles with diffusing 

wave spectroscopy micro-rheology.  Journal of Physics: Condensed Matter, 34(3), 034003. DOI: 

https://doi.org/10.1088/1361-648X/ac2c3e 

 

6. 2 Manuscripts in preparation 

v López-Santiago, R. F., & Castillo, R. Linear and nonlinear viscoelasticity of gels made with 

polycations, polyanions, and their mixtures; rheology and microrheology approach (in 

preparation).  

v López-Santiago, R. F., & Castillo, R. From gel birth to gel breakdown in alginate solutions: Linear 

and nonlinear rheological and microrheological approach. Manuscript under review from 

authors for a special issue, “Kitchen Flows 2024”, Physics of Fluids. 
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