
International Journal of Thermophysics, Vol. 10, No. 2, 1989 

Global Behavior of the Diffusion Coefficient for the 
Van der Waals Binary Mixture 1 

R. Castillo,  2 M.  E. Costas,  2'3 and A. Robledo 2 

We describe the general dependence of the diffusion coefficient associated with 
the Van der Waals binary mixture on the temperature, number densities, and 
relative strengths of molecular interaction parameters. The task is facilitated by 
the fact that for Kac-type intermolecular potentials, in the long-range limit, the 
diffusion coefficient becomes simply related to the product of a partial com- 
pressibility and the curvature of the equilibrium free energy in the space of 
number densities. Therefore the different kinds of behavior found can be 
classified according to the scheme of Scott and Van Konynenburg for the global 
phase diagram of the same model mixture. 
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1. I N T R O D U C T I O N  

According to the familiar expressions of l inear irreversible thermodynamics  

[1] ,  the diffusion coefficient D for a b inary  mixture is a measure of a 
response to a chemical potent ia l  gradient. Therefore it can be expressed as 

the product  of two terms, a mobi l i ty  M and  the second derivative of the 
system free-energy f with respect to composi t ion  x. Wi th in  such pheno-  

menological  theory the precise dependence of D on the reference or final 

equi l ibr ium state and  on the na ture  of the system is not  readily obtainable.  

This is because details on the form of M and  on the influence of the 
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compressible quality of the fluid (other than that implicit in dZf/dx 2) a re  

not given. Thus the usefulness of this simple and physically transparent 
expression appears limited in describing the dependence of D on tem- 
perature, density, composition, or intermolecular interaction parameters. 
The systematic study of the diffusion coefficient, with the capacity of broad 
comparison with experiment, would require, therefore, expressions 
obtained from statistical mechanical calculations on model systems. 

A few years ago Karkheck et al. [2] derived an expression for the 
diffusion coefficient of the type described above for the Van der Waals fluid 
mixture model. In this expression, however, the form of the mobility M and 
the effect of the compressible quality of the mixture on D appear explicitly. 
They successfully applied a kinetic variational approach [3] based on 
maximization of entropy to a multicomponent system whose particles 
interact through a pair potential consisting of a hard core followed by an 
attractive tail of the Kac type [4]. As is well known [4], this interaction 
potential in its long-range limit leads to the familiar thermodynamic 
expressions for the Van der Waals fluid. It also conduces [-5] to the inter- 
facial density profiles and associated tensions for coexisting phases 
of the model mixture in a manner closely related to that prescribed by 
Van der Waals' theory of capillarity. When applied to transport properties, 
the Kac interaction in the long-range limit gives interesting results only for 
diffusion, mass or thermal; otherwise one obtains the transport coefficients 
that correspond only to the hard core [-2, 6]. 

Another important modern development of the Van der Waals' theory 
of mixtures was the realization, following a more thorough investigation of 
its thermodynamic properties than during his own time [7], that the model 
mixture is capable of reproducing most known types of fluid-fluid phase 
equilibria observed in real mixtures. A readily accesible global phase 
diagram for a universe of binary mixtures is a valuable framework within 
which experimental information on many mixtures can be arranged and 
understood. An extension of the global phase diagram of the Van der 
Waals binary mixture to include interracial properties, such as wetting 
properties, has also been performed [8]. The availability of a simple, 
closed-form expression for the diffusion constant of this model mixture 
suggests an exploration of its global behavior in parallel to the study of 
phase behavior. Here we present some results in the form of contours of 
equal value for this coefficient in the space of number densities at 
progressively higher temperatures for mixtures representative of each class 
in the Scott and Van Konynenburg classification [7]. 
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2. THE DIFFUSION COEFFICIENT OF THE VAN DER WAALS 
MIXTURE 

Notable among kinetic-equation approaches to the transport coef- 
ficients applicable to the liquid state is the mean-field variational theory of 
Karkheck and Stell [3]. Their development is an extension to interaction 
potentials with an attractive tail of the (improved [9]) kinetic theory of 
Enskog [10] for dense hard-sphere fluids. They incorporate this attractive 
tail into the kinetic equation in a mean-field linear term and succeed in 
retaining the analytical tractabililty and internal consistency (Onsager 
reciprocal equations and H-theorem) of the backgrownd hard-sphere 
problem. As expected for a mean-field approach, exact thermodynamic 
results are obtained for Kac-type potentials in the Van dec Waals long- 
range limit. The scheme can be extended to a multicomponent system [2] 
and therefore to expressions for the transport coefficients of this well- 
known mixture model These expressions are approximate [2] compared 
with those that result from other treatments [6] of the dynamics associated 
with the same Kac-type attractive potential. Nevertheless, they coincide in 
the Van dec Waals infinitely weak and long-range limit in that only 
diffusion coefficients exhibit a dependence on the tail strength. In this limit 
viscosity and thermal conductivity coefficients coincide with those for a 
purely hard-core fluid [2, 6]. 

The expression for the (isothermal, isobaric, mass) diffusion coefficient 
D obtained from this approach has a remarkably simple and interesting 
form. For a mixture of two species, a and 2, and considering 2 as the 
solvent species, one has 

D-- rl2Fl2 -[-d(1)-d(2)]~?'12~ (~2f ~2f ( {~2f ~2~ 
2n2kB Tt  aP L&2&  (1) 

where nl and n 2 are the number densities, n = nl + n2, P is the pressure, f 
is the Helmholtz free energy per unit volume, kB is Boltzmann's constant, 
and T is the temperature, d (1) and d (2) a r e  coefficients that appear in Sonine 
polynomial expansions of the one-particle distributions [2]. f has the form 

f =  kH T{nl in nl + n2 In n 2 

+ (1 - Gin1 - o 2 n 2 )  ln(1 - Gin2) ln(1 - ~1nl - a2n2)} 

- (alln 2 + 2a12nln2 + a22 n2) + f o  (2) 

where a a and 0- 2 are the molecular diameters and all ,  a12, and a22 are the 
interaction energy parameters. We have used a hard-rod representation for 
the hard-core contributions in order to obtain the familiar mixture model 
formulae. 
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Equation (1) can be seen to be composed of three factors, each with 
a clearly assignable meaning: 

n2n2 
M - 2n2kB~ [d (1) - d (2) ] (3a) 

~3n 2 
/s = (3b) 

0P 

C -  8n~ an22- t ~ J  (3c) 

The first factor M is directly related to the dynamics of a two-particle colli- 
sion and plays the role of the mobility in a phenomenological theory. The 
Sonine coefficients in M are determined by the hard-core interaction only, 
and their behavior can be extracted from the work of Kincaid et al. [1 1 ]. 
Basically, these coefficients are proportional to (kBT/n~) 1/2. The second 
factor 322 is a partial compressibility. And the third factor is a measure of 
the curvature of the free energy f in the space of the number densities. The 
last two terms are easily determined for every given, one-phase, multiphase, 
or even metastable state (T, n l ,n2)  for a l l  sets of interaction energy 
parameters, so that the global behavior of D for the Van der Waals mixture 
is directly accesible. 

3. D I F F U S I O N  COEFFICIENT BEHAVIOR FOR SOME 
REPRESENTATIVE MIXTURES 

The global phase diagram for the Van der Waals mixture [7]  is 
conveniently represented (when the core sizes of the two species are equal, 
a = al = a2) in the space of the parameters 

= (aze - all) /(al l  + aze) (4a) 

A = (all - 2a12 + a22)/(a11 + a22) (4b) 

where ff is a measure of the difference in critical temperatures (or pressures) 
of the pure components and A is related to the heat of mixing at low tem- 
peratures. If the occurrence of azeothropy is not considered, five different 
regions can be distinghished in (~, A)-space. Systems with A > 0 exhibit 
three-phase coexistence lines that originate from T =  0 (classes [I, III, and 
IV). These three-phase states terminate at upper critical end points 
(UCEPs) of the liquid-liquid type for systems of class II. In class III triple 
points end at UCEPs of the liquid-gas type. Systems of type IV exhibit al 
second three-phase line at higher temperatures and therefore have two 
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UCEPs and one lower critical end point (LCEP). The two remaining 
types, I (with only liquid-gas coexistence) and V (with three-phase points 
bounded by one LCEP and one UCEP)  occur for A < 0. There are addi- 
tional interesting features in the global phase diagram, such as tricritical 
UCEPs in the symmetrical (ff = 0) type III mixtures and the so-called shield 
region that separates type II and type III mixtures along ff = 0; there, four- 
phase points connect four different triple-point lines. 

The multiplicity of phases and the connectivity of their associated criti- 
cal points are determined by the form that the spinodal surfaces [ C =  0 in 
Eq. (2c)] display for every type of mixture. From Eq. (1) we note that D 
vanishes on these surfaces. In Fig. 1 we show contours of equal curvature 
C in the space of number densities at different temperatures for a symmetri- 
cal mixture of type II. (In Fig. 1 and in the subsequent figures we have 
taken a =  !). As shown in Fig. 1, C increases steadily as the system is 
moved away from the spinodal surfaces and becomes infinite at the pure 
component boundaries and at close packing. The behavior of D is similar 
to that of C except that it is modulated by the compressibility K2, which 
has the simple expression 

K2 = [ k T ( 1 - - a n ) - 2 - 2 a 2 2 ( n - A n 1 ) ]  1 (5) 

All mixtures are incompressible at close packing, and the vanishing of/s 
there overwhelms the divergence of C, so that D = 0 when an = 1. In Fig. 2 
we show contours of equal D (actually we calculate and show only 
D o = D / M  in what follows) for the same mixture of type II, where we 
observe the development of a saddle point in Do at temperatures beyond 
those at which the triple points terminate (Figs. 2b and c). As we see in 
other examples below, saddle points always arise in regions bounded by 
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Fig. 1. Contours of equal curvature C for the free energy of a mixture of type II (( = 0 and 
A =0.2) in the space of number densities. (a) T/Tc=0.46, (b) T/Tc=0.5, and (c) T/Tc=0.7, 
where T c is the critical temperature of either pure component, a is taken as unity and C is 
measured in units of kB To The dashed lines are the binodals. 
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Fig. 2. Contours  of equal value for the diffusion coefficient D O for the same mixture as in 
Fig. 1. (a) T/Tc=0.46, (b) T/Tc=0.5, and (c) T/Tc=0.7. With our choice a = l ,  D O has no 
dimensions. 

�9 separate spinodal branches, or between close packing and a spinodal 
branch disconnected from it, provided T >  TucEP. Another effect that /<2 
has on Do is to impress some asymmetry over the otherwise symmetrical C 
countors in Fig. 1. The asymmetry is manifested as a shoulder close to the 
saddle point and adjacent to one of the liquid gas spinodals in Figs. 2b 
and c. This shoulder arises from the term An1 in Eq. (5), so that its location 
depends on the magnitude and sign on A. It is interesting to note, too, that 
the level curves for Do tend to become parallel to the triangle edges (nl, 0) 
and (0, n2) in the dense liquid region, and therefore Do remains practically 
constant under additions of the majoritary component but diminishes 
notably under additions of the minoritary component. The dashed lines in 
Fig. 2 are the binodals of the mixture; therefore some of the features that 
we have described correspond, at least for certain temperatures, to 
metastable states. 

In Fig. 3 we show equal-level Do contours for a symmetrical mixture 
of type III. The main difference between this and the previous example is 
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Fig. 3. Contours  of equal value for the diffusion coefficient D O for a mixture of type III 
( ( = 0 ,  A =0.5). (a) T/Tc=0.735, (b) T/Tc=0.8, and (c) T/Tc=0.9. 
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Fig. 4. Contours of equal for the diffusion coefficient D O for a mixture in the shield region 
( ~ = 0 ,  A = 0 . 4 2 ) .  (a )  T/Tc=0.75, (b)  T/Tc=0.775, and (c)  T/Tc=0.8. 

the existence of two saddle-point lines, which result from the development 
of two (instead of one) spinodal branches in the low-density region for 
temperatures above TucEP. Figure 4 shows our results for a symmetrical 
mixture on the shield region. The four-sphase point and the additional 
three-phase lines associated with this type of system make use of an island 
of stable states that exists within a finite range of temperatures in the 
middle of the (nt, n2)-triangle. This region is bounded by a spinodal surface 
that merges, as the temperature is raised, with the two spinodal branches 
located at the dense-liquid corners of the density triangle. Associated with 
this region we find a local maximum of Do. 

In Fig. 5a we show contours of Do for a nonsymmetric mixture of 
type III. And in Figs. 5b and c we show those found for a mixture of 
type IV at two different temperatures. Finally, in Fig., 6a we show contours 
of Do for a mixture of type I at two different temperatures, and in Fig. 6c 
those for a mixture of type V at a single temperature. An interesting feature 
observed in most of these examples is the occurrence of localized regions 
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Fig. 5. Contours of equal value for the diffusion coefficient D O for ( a )  a mixture of type III 
(~ = 0.6, A = 0.3) a t  T/Tc = 1.5, (b)  a mixture of type IV (~ = 0.6, A = 0.01)  a t  T/Tc = 0.7, and 
(c)  the same as but with T/Tc = 15 .  T c  is the critical temperature of the pure species 1. 
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Fig. 6. Contours of equal value for the diffusion coefficient Do for (a) a mixture of type 1 
((=0, A = -0.33) at T/Tc= 1, (b) the same as a but with T/Tc=2, and (c) a mixture of 
type V (( = 0.8, A = -0.2) with T/Tc = 2. Tc refers to the pure species 1. 

in (nl, nj-space,  adjacent to the spinodal (in Figs. 5b and c and 6c where 
the spinodal bends), where the Do surface is very steep, and the coefficient 
experiences rapid changes with small variations in composition. 

4. SUMMARY 

We have explored the behavior that the diffusion coefficient in Eq. (1) 
generates when the full set of thermodynamic variables, including the par- 
ticle interaction parameters, varies accross their physical range of values. A 
single expression describes both the gas and the dense-liquid regimes, and 
the pattens observed appear to be qualitatively correct. (i) The large values 
for D in the gas regions decrease steadily as the fluid becomes dense (Figs. 
5a and 6b). (ii) The expected tendency, for the Do contours to become 
parallel to the triangle edges (nl, 0) and (0, nz) in the dense-liquid regions, 
was observed in all examples. Other features, such as the saddle points, 
might be observable in real mixtures. (The saddle point in Fig. 2b falls 
close to the liquid-vapor coexistence.) The rapid variations of Do that are 
found within the metastable regions imply strong effects on diffusion-driven 
growth of new-phase droplets formed by nucleation [-12]. 
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