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A method for calculating the thermal conductivity of dense fluids and their mixtures is 
described. This method relies on the results of the revised Enskog theory for hard-sphere fluid 
mixtures, and the use of the temperature and density dependent diameters given by Mansoori 
and Canfield, and Rasaiah and Stell. In addition, a correction in order to take into account 
the internal degrees of freedom contribution was introduced. A comparison with the 
conformal solution model, and with accurate experimental data was made. A very good 
agreement was found. 

1. Introduction 

In recent years, there has been an increasing demand from industry for 
transport  properties information of fluid mixtures, and in particular for thermal 
conductivity (A). However ,  it is clear that the acquisition of reliable data for 
the great variety of mixtures and thermodynamic states can never be achieved 
in a satisfactory way by direct measurements only. There  are two ways out, 
mainly in engineering calculations, to fulfill this gap of information. The first 
one uses empirical correlation schemes. These usually are limited to narrow 
ranges of temperatures and pressures and often mainly designed for pure 
fluids. A review of these methods are given in Reid et al. [1]. 

The  second way involves the use of predictive methods more or less related 
to kinetic theory. In this case, the prediction of transport properties is more 
reliable if the method adopted is founded on a realistic physical model of the 
fluid mixture, and if it is combined with a suitable theory. Even when neither 
models nor the theories are exact, it is possible to give reasonably accurate 
results depending little on measurements or empirical prescriptions. 
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In predictive methods there are two groups of procedures for obtaining A's in 
the dense regime. The first one is mainly based on the conformal solution 
model (CSM), which is related to the corresponding-states principle. The best 
suited method for the prediction of A on non-polar fluid mixtures over the 
entire range of PVT states was given by Ely and Hanley [2]. They realized this 
method using a state equation, and a A surface for a reference fluid (methane). 
Although some additional corrections are required in order to include the 
internal degrees of freedom contribution, and deviations from the correspond- 
ing states model, this method has good predictive features (for details see refs. 
[2] and [3]). 

The other group of procedures mainly used for predicting A's for dense fluids 
is related to the kinetic theory of hard spheres developed by Enskog [4]. Some 
examples can be found elsewhere [5-8]. Here, one procedure follows the 
so-called modified Enskog theory [5] (MET), an ad hoc modification of the 
Enskog theory to include attractive intermolecular forces. Until quite recently 
[9] MET was generalized to the binary case, although its ability to predict A's in 
binary mixtures has not been reported. Another procedure relies on the 
revised Enskog theory [10] (RET) combined with a prescription to obtain 
effective state-dependent hard-sphere diameters in terms of the parameters 
associated with the potential chosen to model actual systems. We call this 
approach the effective-diameter revised Enskog theory (EDRET).  We will 
show in this paper that this procedure can be generalized to the binary case, in 
the same way as we did for other transport properties [11-14]. Here, the basic 
assumptions are three: (1) particles in the fluid mixture can be modeled by the 
Lennard-Jones potential. (2) The behavior of A in this regime is mainly 
determined by the repulsive part of the interaction potential. (3) The hard- 
sphere expression for A coming from the RET can give confident results if 
some prescription to obtain state-dependent effective diameters is used in 
order to reflect the somewhat soft repulsive part of the model potential. 

The main purpose of this paper is to show the usefulness of EDRET to 
predict A's of one-component fluids and their mixtures, and to present some 
comparison between our approach and the CSM. The paper is organized as 
follows: in section 2, we present the details of our method. In section 3, the 
numerical results are presented and compared with the CSM, and experimental 
data. 

2. Theory 

Our starting point is the set of coupled non-linear integro-differential 
equations for the hard-sphere single particle distribution functions given in the 
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RET, first derived by van Beijeren and Ernst [10]. Here,  the two hard-sphere 
radial distribution functions are the same functionals of the number densities as 
the radial distribution functions of a binary mixture in nonuniform equilibrium. 
The RET equations can be solved by the use of the Chapman-Enskog solution 
method. The molecular fluxes and the transport coefficients for dense hard- 
sphere binary mixtures, up to the Navier-Stokes level, can be directly obtained 
on the basis of the procedure used in ref. [15]. 

Thermal conductivity in a binary mixture, 3 ,̀ is defined through the following 
expression [16]: 

a T  _ p T D T  olx a 
Jq = -3 ,  -~r Or (1) 

where Jq is the heat flux, T is the temperature, p is the mass density, D T is the 
thermal diffusion coefficient and /z  a is the chemical potential of component 1. 

Here,  we must have a comment. Diffusion and heat conduction in a fluid 
mixture become inextricably coupled. In a uniform mixture, as time progresses 
in the course of an experimental determination, concentration gradients appear 
in the mixture and they themselves provide driving forces for opposing fluxes. 
Eventually, in a steady state thermal diffusive flux is exactly balanced by this 
back diffusive flux, so that there is no net molecular flow. Hence, to stress this 
fact experimentalists define two A coefficients. The first one is 3`0, this is the 
thermal conductivity of a uniform mixture (no concentration gradients), and 
the second one is 3`=, the thermal conductivity corresponding to a fluid in the 
steady state (no mass fluxes). Since many accurate experiments actually 
measure 3`=, as in the transient hot-wire technique, we decided to calculate this 
quantity. The formal definition of 3`= for a binary mixture is given by [17] 

OT 
Jq = - A =  0---7 (Ji = O),  (2) 

where Ji is the mass flux for component i. 
The explicit expressions for the linear transport coefficients in the RET were 

gathered and discussed in detail by Lopez de Haro et al. [15]. These will serve 
to us as a point of departure for the calculations presented in this paper. So, 
following their notation, the explicit expression for A= is 

_ n '  a ' )  - ( 1  - 6 1 , l ) ( d ~ l ~  - , 4 ( ' )  ~h A = ~ k .  1 + Pbi /Mi /M/ ixq  n 
i=1 j = l  k = l  

+ k k n'n' i4x:' 
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Here, k B is Boltzmann's constant, Pbij = 2/3-rrtrij, M~j = r n i / ( m  i + mj), where 
m i is the mass of the hard sphere of diameter o-i, n i is the number density of 
component i, and X~ is the pair distribution function at contact. T h e  a~ i) and 
d(k) i,1 are the coefficients that appear in the Sonine polynomial expansion of the 
one particle distribution function, in the so-called Nth Enskog approximation, 
i.e., when the first N Sonine polynomials are taken into account in the 
expansion. The a~ ') and ,4(~) -~,1 are determined from a set of linear equations (for 
details see ref. [15]). The coefficients d~ h are given by the equations 

2 
(it(j) (,) th = a{o i) 3 

j= l  \~i ,0  - d i , 0 ) ( 1  - ~jl)dj ~ r  l o g  T ( i  # 1) ( 4 )  

and 

th th 
dj = d j  ~ r r l ° g T "  (5) 

The evaluation of A for a given set of {h i}  , {or/} , { m i }  and T using eqs. 
c c (3)-(5) ,  requires knowledge of X , .  An exact, explicit equation for Xij in terms 

of the number densities and the set of hard-sphere diameters is not available, 
but several approximate expressions already exist. In particular, the so-called 
Carnahan-Starling approximation [18] appears to be quite accurate when 
compared to molecular dynamics data. 

In order to use eq. (3) to obtain numerical estimates of A for real mixtures, a 
prescription to obtain state-dependent hard-sphere diameters in terms of the 
parameters associated with the potential chosen to model the actual systems is 
needed. As mentioned above, we considered that each component of the 
binary mixture is modeled through a Lennard-Jones potential 

c r P L J ( r ) = 4 e i I ( ~ 2 ) 1 2 - - ( - ~ ) 6 ]  , (6) 

where E i is the well depth and o-0i is the minimal separation of two molecules of 
species i such that ~LJ(tr0i) = 0, and separately the effective diameters in terms 
of o'0i, e i, and of the thermodynamic state of the system are determined. For 
the cross interaction, we assumed it to be that of a hard-sphere mixture with 
effective diameters, i.e., 

o',2 = o-2~ = ½(o', + o-2). (7)  

The effective diameters can be obtained by several schemes well established 
in equilibrium liquid state theory. The most widely used schemes coming from 
a first order perturbation theory are those given by Barker and Henderson 
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(BH) [19], by Weeks, Chandler and Andersen (WCA) [20], and by Verlet and 
Weiss (VW) [21]. From the schemes coming from a variational theory, we have 
those given by Mansoori-Canfield [22] and Rasaiah-Stell [23] (MC/RS).  All 
these schemes give a hard-sphere diameter depending on both temperature and 
density, except that given by BH that is temperature dependent only. 

In order to obtain numerical estimates of A's for actual fluids using EDRET, 
a correction to include the internal degrees of freedom contribution is needed. 
But, until now, there is no formal theory to handle transport properties of 
polyatomic dense fluids, although several attempts have appeared [24, 25] with 
a very limited success. In this paper we will follow an heuristic approach 
followed by some authors [5, 26], and suggested by a previous work of Mason 
and Monchick [27] on the basis of the Wang Chang-Uhlenbeck-De Boer 
theory [28]. This theory was developed by these authors to deal with the 
transport properties of polyatomic gases in the dilute regime. Mason and 
Monchick showed that the A can effectively be separated into two parts: a part 
dealing with the transfer of thermal energy by the translational motion of the 
molecules, and a part dealing with the transfer of energy to the internal 
degrees of freedom of the molecules. Hence, we will assume that A of a dense 
fluid can be split into a part due to the energy transfer by molecular motion 
and collisional transfer (A'), given by EDRET, and a part due to the energy 
transfer associated with the internal degrees of freedom of the molecules (A"). 
Thus, 

A = ( 8 )  

In addition, we assume that A" for the one-component fluid can be represented 
by the first order approximation formula given by Mason-Monchick for 
quasi-elastic collisions [5]: 

tP 

h"= p D C v / M  = h'o/X c , (9) 

where D is the self-diffusion coefficient, and A' 0 is the internal contribution to h 
t t  . 

for the dilute hard-sphere gas, C v IS the molar heat capacity at constant volume 
for the internal degrees of freedom, and M is the molecular weight. 

For the case of the binary mixture the evaluation of h" has not been explored 
from the point of view of kinetic theory. Hence, a mixing rule is the only way 
out. This rule should keep a close analogy with eq. (9) in order to have a fair 
density dependence. Hence, we modified the empirical mixing rule given by Li 
[29]:. 

(v )tmix(P, T, x,) = xixjAi / .  X12(P, T, xi) ,  (10) 
- / ' = 1  
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where 

1 [ (  " - - 1  " -1  -1  
" =  aO,) +(aO,) ] (11) 

pt 
Here, A0~ is the internal contribution to thermal conductivity of component i in 
the dilute regime. 

t! tt 
In order to obtain a general formula for the evaluation of A 0 or A0~, given by 

eqs. (9) or (11), we use the modified Eucken correlation for polyatomic gases: 

X'o, = fint(C°,i - 5R)rloi /Mi,  (12) 

0 where B0i is the dilute gas viscosity, Cp, i is the ideal gas molar heat capacity, R 
is the gas constant, M i is the molecular weight of component i, and f~nt has a 
constant value of 1.32. 

0 Cp,i values for different systems were obtained through a temperature 
expansion up to 6th order, except for the noble gases where the internal 
contribution was not considered (actually we used the expansions that appear 
in the TRAPP computer program developed by Ely and Hanley [3]). 

3. Numerical results and discussion 

Values of a for several one-component fluids (noble gases, N2, 0 2 ,  C O 2 ,  and 
some hydrocarbons), and some of its mixtures were calculated following the 
method described above, i.e., h's were calculated through eq. (3), and the 
state-dependent hard-sphere diameters were determined with the MC/RS 
scheme. For one-component fluids we used eq. (3), but in the form given in the 
standard Enskog theory [4]. The Lennard-Jones parameters were obtained 
from ref. [1], except for the case of argon that will be mentioned below. 

Our calculations were done in the dense regime mainly, i.e. at reduced 
densities (Pr, density/critical density) greater than 1.1, and at several tempera- 
tures. Figs. 1-5 are some examples of these calculations. 

In a previous work, Karkheck and Stell [30] compared A calculations for 
argon, xenon, and oxygen using the prescriptions to obtain the hard-sphere 
diameter mentioned above, except for the VW one, with experimental data 
along the liquid saturation line. They concluded that the MC/RS prescription 
is the best suited for predicting h's. We confirmed this conclusion for noble 
gases and some hydrocarbons using all the above mentioned prescriptions, but 
not limiting our calculations to the liquid saturation line. As an example we 
show fig. 1. Here, h calculations for argon using different prescriptions to 
obtain the diameter are presented, and compared with the accurate correlation 
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Fig. 1. Percent deviation for predicted A's from experimental data, BA, versus the reduced density, 
Pr, for six different reduced temperatures, and several prescriptions to obtain the state-dependent 
hard-sphere diameters. (E3) MC/RS; (+)  BH; (O) WCA; (A) VW. 

of Younglove and Hanley [31] (Lennard-Jones parameters, cr = 3 .405/~ ,  e / k  = 

119.8 K),  along the phase diagram. As  we can see, our procedure increasingly 
overestimates A as we progressively go to lower reduced densities. At  lower 
densities (below Pr ~ 0.7) the other schemes to obtain the hard-sphere diam- 
eter (BH,  W C A  and VW) are better to fit the experimental data. At higher 
temperatures they become more accurate. This is not surprising because these 
schemes were built to fit the low density equilibrium properties, whereas the 
M C / R S  scheme was directed toward the denser regimes. The important point 
to emphasize is that since the crossover occurs at a reduced density of about 
0.7, our recommendation is that one uses the other schemes from reduced 
densities below 0.7 and the M C / R S  scheme from 0.7 onwards. The general 
conclusion is: the M C / R S  prescription gives better predictions in a wide range 
of fluid reduced densities (Pr=0 .7 - -2 .7  at Tr>  1), and at liquid densities 
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(T, < 1). This is in close agreement with our previous work in other transport 
properties [8, 11-14]. 

When a comparison is made between our A calculations, and accurate 
experimental data for nitrogen, methane, ethane, and ethylene, we found a 
better agreement in the denser or liquid region of the phase diagram than in 
the moderate or low density one, confirming the conclusions given for the case 
of argon. 

Figs. 2 and 3 show A for liquid nitrogen and ethylene respectively, along the 
saturation line. Here, we compare our procedure, the CSM, and experimental 
data [32, 33]. In a general way, we can say that our calculations are closer to 
the experimental data than CSM. On the other hand, in these figures we can 
see that the internal degress contribution as implemented above is less im- 
portant as density increases. This agrees with previous results where the role of 
this contribution has been discussed [34]. 

Figs. 4 and 5 show A for mixtures. Fig. 4 shows a nitrogen/oxygen mixture 
(X~2 = 0.78569, Xo2 = 0.21431, p = 0.6 g/cm3). Here, A calculations are com- 
pared with CSM, and with experimental data for air [35], at several tempera- 
tures. As we can see in this figure, EDRET without the internal degrees 
contribution gives a better fitting to the experimental data than CSM. If we 
include the internal degrees contribution to EDRET, we have a better fitting to 
the experimental data at lower temperatures, but at high temperatures our 
procedure overestimates A around 15%. 
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Fig. 2. Thermal conductivity, A, of liquid nitrogen versus temperature, at the saturation line. (El) 
experimental; dashed line, CSM; solid line, EDRET without the internal degrees correction; (O) 
EDRET with the internal degrees correction. 
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Fig. 5. Thermal conductivity in W m 1K 1, of a mixture of methane /e thane  (XcH = 0.68526) 
versus the molar density. 

In fig. 5, we show two examples of our h calculations for the methane/  
ethane mixture (XcH 4 = 0.68526). These calculations were done at two differ- 
ent temperatures,  242.269 and 203.697 K. The experimental data come from 
ref. [36]. As we can see in this figure, our  procedure gives a bet ter  fitting to the 
experimental  data than CSM. The major  deviation occurs near the critical 
point, since our procedure at its present form cannot evaluate critical enhance- 
ment. Although, the existence of critical enhancement  in mixtures is under  
discussion yet [36, 37]. At  higher temperatures (T  > Tc), not shown in this 
figure, our procedure underestimates h's, and in the high densities is bet ter  
than CSM, but not at values around the critical density. For  lower densities, 
until experimental  data let us make comparisons, both methods underestimate 
A by a few per cent. 

The lack of accurate experimental  data for several mixtures, along wide 
ranges of densities and temperatures,  do not permit a major  test for our 
procedure.  Although it is promising, a more stringent test is needed.  

In summary, the above results are encouraging since the described procedure 
has quite good predictive features with very little input (the L-J  parameters 
and the C°'s),  and it is an alternative method to the CSM as implemented in 
the T R A P P  computer  program [3], that has a lot of experimental  information 
included. 



R. Castillo and J.V. Orozco / Thermal conductivity of dense fluids 515 

Acknowledgements 
J ,  

We acknowledge the partial support  f rom the C O N A C Y T  and from the , 
TWAS, grants P V T / P Q / N A L / 8 6 / 3 5 8 5  and R G  MP 88-70. J.V.O. acknowl- 

edges the C O N A C Y T  support  to do this work. ' " 

References 

[1] R.C. Reid, J.M. Prausnitz and T.K. Sherwood, The Properties of Gases and Liquids, 3rd ed. 
(McGraw-Hill, New York, 1977). 

[2] J.F. Ely and H.J.M. Hanley, Ind. Eng. Chem. Fundam. 22 (1983) 90. 
[3] F. Ely and H.J.M. Hanley, A Computer Program for the Prediction of Viscosity and Thermal 

Conductivity in Hydrocarbon Mixtures, Nat. Bur. Stand (U.S.) Tech. Note 1039 (April 1981). 
[4] S. Chapman and T.G. Cowling, The Mathematical Theory of Nonuniform Gases, 3rd ed. 

(Cambridge Univ. Press, Cambridge, 1970). 
[5] H.J.M. Hanley, R.D. McCarty and E.G.D. Cohen, Physica 60 (1972) 322. 
[6] J.C.G. Calado, J.M.N.A. Fareleira, U.V. Mardolcar and C.A. Nieto de Castro, Int. J. 

Thermophys. 9 (1988) 351. 
[7] J.H. Dymond, Q. Rev. Chem. Soc. 3 (1985) 317. 
[8] R. Castillo and J.W. Orozco, Int. J. Thermophys., to be published. 
[9] J.M. Kincaid, S. Perez and E.G.D. Cohen, Phys. Rev. A 38 (1988) 3628. 

[10] H. van Beijeren and M.H. Ernst, Physica 68 (1973) 437. 
[11] R. Castillo, M. Lopez de Haro and E. Martina, Int. J. Thermophys. 7 (1986) 851. 
[12] R. Castillo, E. Martina and M. Lopez de Haro, KINAM 7 (1986) 61. 
[13] R. Castillo and S. Castafieda, Int. J. Thermophys. 9 (1988) 383. 
[14] R. Castillo and S. Castafieda, J. Non-Equil. Thermodyn. 14 (1989) 69. 
[15] M. Lopez de Haro, E.G.D. Cohen and J.M. Kincaid, J. Chem. Phys. 78 (1983) 2746. 
[16] S.R. De Groot and P. Mazur, Non-Equilibrium Thermodynamics (Dover Publications, New 

York, 1984). 
[17] H.E. Khalifa, J. Kestin and W.A. Wakeham, Physica A 97 (1979) 273. 
[18] G.A. Mansoori, N.F. Carnahan, K.E. Starling and T.W. Leland, J. Chem. Phys. 54 (1971) 

1523. 
[19] J.A. Barker and D. Henderson, J. Chem. Phys. 47 (1967) 4714. 
[20] J.D. Weeks, D. Chandler and H.C. Andersen, J. Chem. Phys. 54 (1971) 5237. 
[21] L. Verlet and J.J. Weiss, Phys. Rev. A 5 (1972) 939. 
[22] G.A. Mansoori and F.B. Canfield, J. Chem. Phys. 51 (1969) 4958. 
[23] J. Rasaiah and G. Stell, Mol. Phys. 18 (1970) 249. 
[24] S.A. Rice and A.R. Allnatt, J. Chem. Phys. 34 (1961) 2144. 
[25] S. Jagannathan, J.S. Dahler and W. Sung, J. Chem. Phys. 83 (1985) 1808. 
[26] H.J.M. Hanley and E.G.D. Cohen, Physica A 83 (1976) 215. 
[27] E.A. Mason and L. Monchick, J. Chem. Phys. 36 (1962) 1622. 
[28] C.S. Wang Chang, G.E. Uhlenbeck and J. de Boer, in: Studies in Statistical Mechanics, vol. 

2, part C, J. De Boer and G.E. Uhlenbeck, eds. (North-Holland, Amsterdam, 1964). 
[29] C.C. Li, AIChE J. 22 (1976) 927. 
[30] J. Karkheck and G. Stell, J. Chem. Phys. 75 (1981) 1475. 
[31] B.A. Younglove and H.J.M. Hanley, J. Phys. Chem. Ref. Data 15 (1986) 1323. 
[32] K. Stephen, R. Krauss and A. Laesecke, J. Phys. Chem. Ref. Data 16 (1987) 993. 
[33] P.M. Holland, B.E. Eaton and H.J.M. Hanley, J. Phys. Chem. Ref. Data 12 (1983) 917. 



516 R. Castillo and J.V. Orozco / Thermal conductivity of dense fluids 

[34] H.J.M. Hanley, Proc. 7th Symp. on Thermophysical Properties, A. Cezairliyan, ed. (Am. 
Soc. Mech. Eng., New York, 1977). 

[35] K. Stephan and A. Laesecke, J. Phys. Chem. Ref. Data 14 (1985) 227. 
[36] H.M. Roder and D.G. Friend, Int. J. Thermophys. 6 (1985) 607. 
[37] L. Mistura, J. Chem. Phys. 62 (1975) 4571. 


