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A predictive method designed to obtain the thermal conductivities of one-com- 
ponent dense fluids is described. This method is based on the revised Enskog 
theory. Here, an effective state-dependent hard-sphere diameter is used to obtain 
the hard-sphere diameter needed by the revised Enskog theory in order to deal 
with actual fluids. In addition, we introduce the contribution of the internal 
degrees of freedom through the Mason Monchick procedure. Our predictions 
for noble gases and hydrocarbons, at high density, are compared with predic- 
tions coming from the conformal solution model, with empirical correlation 
schemes, and with experimental data. A very satisfactory agreement is found. 
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tivity. 

1. I N T R O D U C T I O N  

The need for accurate values of  t ransport  properties for working fluids in 
industrial and research problems is well established. In the same way it is 
clear that  the acquisition of t ransport  properties data  for the great variety 
of compounds  in all the needed thermodynamic  states can never be 
achieved by direct measurements  only. Hence, the development  of predic- 
tive methods  is a partial solution to this problem. 

One way to obtain predictive values of  thermal conductivity, 2, in the 
dense regime is through the use of  empirical correlation schemes [1] ,  but  
these are quite limited and usually designed to correlate pure fluid proper-  
ties only. Another  way is th rough  the use of the conformal  solution model  
based on an extended corresponding states principle. This method was 
developed by Ely and Hanley [ 2 ]  with good  success. In order  to make this 
procedure applicable to actual fluids, these workers postulated that  the 2 
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of pure substances can be divided into two contributions. One arises from 
the transfer of energy from purely collisional or translational effects and is 
calculated through the conformal solution model (CSM). The basic 
assumptions of CSM are three: (1) the transport property of a fluid at 
some density and temperature can be equated to the transport property of 
a hypothetical pure fluid, (2)the transport property of the hypothetical 
pure fluid may be evaluated via a corresponding states principle, and 
(3) the reference fluid densities and temperatures may be evaluated through 
an extended corresponding states principle (for details see Ref. 2). The 
other contribution considered by Ely and Hanley [2] comes from the 
transfer of energy via the internal degrees of freedom. They used a modified 
Eucken correlation for polyatomic gases and assumed that this contribu- 
tion is independent of density. The whole procedure has the additional 
advantage that it can be generalized to binary systems with good success. 

Another way to obtain 2's for actual dense fluids is based on the 
kinetic theory developed by Enskog. Here, one procedure follows the 
so-called modified Enskog theory (MET) [-3], an ad hoc modification of 
Enskog theory to include attractive intermolecular forces. Until quite 
recently [4], MET was generalized to the binary case, although its ability 
to predict 2's in binary mixtures has not been reported. Another procedure 
relies on the revised Enskog theory (RET) combined with a prescription to 
obtain effective state-dependent hard-sphere diameters in terms of the 
parameters associated with the potential chosen to model actual systems 
(effective diameter revised Enskog theory, or EDRET). This procedure has 
been used to predict other transport properties than 2, and has been 
generalized to the binary case [5-8]. In this paper, we present the results 
of our calculations to obtain 2's for pure fluids using this approach. In 
addition, a comparison with the conformal solution model and with 
empirical correlation schemes is presented, as well as some comparisons 
with accurate experimental data. In a forthcoming paper we will present 
the generalization of this procedure to binary systems and its associated 
problems. 

The paper is organized as follows: in Section 2 we present the details 
of our procedure and in Section 3 we present our numerical results for 
noble gases, oxygen, carbon dioxide, and some hydrocarbons, all in the 
dense regime. In Section 4 we present a discussion and some concluding 
remarks. 

2. T H E O R Y  

Until now, there has been no formal theory to handle transport 
properties of polyatomic dense fluids, although several attempts have 
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appeared [9, 10] with a very limited success. In this paper we will use an 
heuristic approach followed by some authors [3, 11] and suggested by a 
previous work of Mason and Monchick [12] on the basis of the Wang 
Chang-Uhlenbeck-De Boer theory [13] in order to deal with polyatomic 
gases in the dilute regime. Here, Mason and Monchick showed that the 2 
can effectively be separated into two parts: a part dealing with the transfer 
of thermal energy by the translational motion of the molecules, and a part 
dealing with the transfer of energy to the internal degrees of freedom of the 
molecules. Hence, we assume that 2 of a dense fluid can be split into a part 
().') due to the energy transfer by molecular motion and collisional transfer, 
as in the monoatomic dense fluid, and a part (2") due to the energy 
transfer associated with the internal degrees of freedom of the molecules. 
Thus 

2 = 2 ' + 2 "  

In addition, we assume that 2" can be represented by the first-order 
approximation formula given by Mason-Monchick for quasielastic colli- 
sions: 

2" = pDC ~ / M = A;/Z (I) 

where D is the self-diffusion coefficient and 2~ is the internal contribution 
to 2 for the dilute hard-sphere gas. Z is the hard-sphere radial distribution 
function at contact, p is the mass density, C~ is the molar heat capacity at 
constant volume for the internal degrees of freedom, and M is the 
molecular weight. 

In order to obtain a general formula for the evaluation of 2; we use 
the modified Eucken correlation for polyatomic gases: 

tr 0 20 = f in , (Cp-  5/2R) t lolM (2) 

where % is the dilute gas viscosity, C ~ is the ideal gas molar heat capacity, 
R is the gas constant, and f~nt has a constant value of 1.32. 

For 2', we assume that it can be obtained through the Enskog theory 
expression: 

)o'= l/Z[1 + 1.2(2nna3z/3)+ 0.755(27rna3z/3) 2] )40 (3a) 

where 2 o is given by 

7 5k ( ij2 
(3b) 
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In these expressions, n is the number density, a is the hard-sphere diameter, 
T is the absolute temperature, and k is Boltzmann's constant. 

We need to comment at this point that Eq. (3) can be obtained within 
the framework of the standard Enskog theory (SET) [14]. Although SET 
is an inconsistent theory, for the case of the one-component fluid the 2 for- 
mulas are the same as in the corrected theory, i.e., the revised Enskog 
theory (RET) [15]. In addition, for the one-component fluid, these expres- 
sions for 2 in the RET are the same as the equations derived with the 
kinetic variational theory I (KVT I) [16] for a system of particles inter- 
acting through the van der Waals potential, i.e., by a hard-core plus an 
infinitely long-ranged and shallow attractive potential (Kac potential). 

The evaluation of Eq. (3) requires the knowledge of Z, a, and C ~ For 
Z, we used the approximate expression of Carnahan and Starling [17], 
since it appears to be quite accurate when compared to molecular 
dynamics data. 

In order to obtain the molecular and collisional contribution for 
given by Eq. (3), we need a prescription to obtain a state-dependent hard- 
sphere diameter in terms of the parameters associated with the potentials 
chosen to model actual systems. Following our previous work, we consider 
that the one-component fluid is modeled through the Lennard-Jones (Lq )  
potential, and we determine separately the effective diameters in terms of 
the original L-J parameters, and the thermodynamic state of the system. 

The effective diameters can be obtained by several schemes well estab- 
lished in equilibrium liquid state theory. The most widely used schemes 
coming from a first-order perturbation theory are those given by Barker 
and Henderson (BH) [18], by Weeks, Chandler, and Andersen (WCA) 
[19], and by Verlet and Weiss (VW) [20]. From the schemes coming from 
a variational theory, we have those given by Mansoori-Canfield [21] and 
Rasaiah-Stell [22] (MC/RS). All these schemes give a hard-sphere 
diameter depending on both temperature and density, except that given by 
BH, which is temperature-dependent only. 

In a previous work, Karkheck and Stell [23 ] compared 2 calculations 
for argon, xenon, and oxygen with experimental data along the liquid 
vapor saturation curve, using the prescriptions pointed above, except 
the VW case, and they concluded that for 2 calculations the MC/RS 
prescription is the best suited. We confirmed this conclusion for noble gases 
and some hydrocarbons using all the above-mentioned prescriptions, but 
not limiting our calculations to the liquid-vapor saturation curve. An 
example is Fig. 1, where 2 calculations using different prescriptions to 
obtain the diameter are presented and compared with accurate 
measurements of 2 in argon [24] (Lennard-Jones parameters a = 3.405/~, 
~/k=119.8 K). In order to do the visual comparison more easily, our 
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Fig. 1. Predicted values for the thermal conduc- 
tivity, 2, of argon using the MC/RS prescription to 
obtain the state-dependent hard-sphere diameters. 
For comparison at 124.769 K, the predicted values 
using the BH, VW, and WCA prescriptions are 
presented. The experimental data are from Ref. 24. 
(11) 110.485K; (D) 124.769K; (O) 138.775K; 
(O) 140.132 K, 

numerical calculations with all the prescriptions are presented at 124.769 K 
only, although the trend for other temperatures follow's the same behavior. 
The general conclusion is that the MC/RS prescription gives the best 
predictions, which is in close agreement with our previous work on other 
transport properties [5-8] .  Also, we include in this figure calculations at 
other temperatures using the MC/RS to show its predictive abilities. 

C ~ values for different systems were obtained through a temperature 
expansion up to sixth order, except for the noble gases where the internal 
contribution was not considered (actually we used the expansions that 
appear in the TRAPP computer program developed by Ely and Hanley 
[25]). 
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3. NUMERICAL RESULTS AND DISCUSSION 

Values for the 2 of several one-component fluids (noble gases, CO2, 
02, and alkanes) were calculated following the method described above, 
i.e., 2's were calculated through Eq. (1)-(3) with the MC/RS scheme to 
fix the state-dependent hard-sphere diameter. The L-J parameters were 
obtained from Ref. 1, except for the case of argon mentioned above. 

Our calculations were in the dense regime, i.e., at reduced densities 
(Pr, density/critical density) greater than 1.1, and at several temperatures. 
Figures 2, 3, and 4 are examples of these calculations. In order to present 
some comparisons, we show in the same figures calculations using the 
CSM (we used the TRAPP computer program [-25]). The lack of accurate 
experimental 2's in wide ranges of the high-density regime and at several 
temperatures is a drawback. Hence, in some of the figures we use values 
obtained from the semiempirical correlation scheme of Stiel and Thodos 
[1, 26] instead of the experimental data, although an accuracy probably 
no better than 10 to 20% should be expected. This correlation needs values 
for ~, at low density. We followed Bromley's formula as given in Ref. 1. 

Figure 2 shows the 2 of liquid methane at several temperatures and 
reduced densities. Here we compare our procedure and the CSM against 
accurate experimental data [27]. Our calculations are closer to the 
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Fig. 2. Predicted values for the thermal conductivity, 2, of methane at 
different temperatures and reduced densities, Pr, using EDRET and 
CSM. The experimental data for comparison are from Ref. 27. 
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experimental data as the temperature is increased and are around 10% 
higher at the worst case (low temperatures). As the temperature increases, 
our procedure goes from overestimating to underestimating the 2 for 
methane. The same occurs to the CSM, although its fitting is a few percent 
better than our method. 

Figure 3 shows the 2 for krypton, oxygen, and CO2, and Fig. 4 does 
the same for ethane, propane, and pentane, in the fluid state at T =  1.1 To 
in all cases. For krypton we observe that our method overestimates and the 
CSM underestimates, with respect to the Stiel and Thodos correlation, 
from a few percent to more than 10% at high densities. For the other cases 
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Fig. 3. Thermal conductivity, 2 (W.m 1.K-1), 
of Kr, 02, and CO 2 vs the reduced density, Pr. (--)  
Empirical correlation of Stiel and Thodos; ( + )  
CSM. (O) EDRET without iniernal degrees con- 
tribution [Eq.(3)]. (A) EDRET with internal 
degrees contribution [Eqs. (1) and (3)]. 
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the fitting of our procedure is quite good and at some densities is better 
than the CSM, although this must be taken with care since the Stiel and 
Thodos correlation value is not obtained from experimental data and has 
a quite uncertain accuracy. In the worst case at very high densities the 
deviation of our procedure from the CSM may be of the order of 50%, and 
usually the semi-empirical correlation value lies between these two ends. 
Another thing that can be followed in these figures is the contribution of 
the 2 associated with the internal degrees of freedom, 4". We can see how 
this contribution becomes less important as the density increases. This 
agrees with previous results [28]. 

We need to comment at this point. When a comparison was made 
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Fig.& Thermal conductivity, 2 (W.m-I .K-X) ,  
of pentane, propane, and ethane vs the reduced den- 
sity, p~. (--)  Empirical correlation of Stiel and 
Thodos; ( + )  CSM. (O) EDRET without internal 
degrees contribution [Eq. (3)]. ( ~ ) E D R E T  with 
internal degrees contribution [Eqs. (1) and (3)]. 
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between calculations for )~ using EDRET with the MC/RS scheme to 
obtain the hard-sphere diameter, and accurate experimental data for 2 in 
argon, nitrogen, methane, ethane, and ethylene, we found a better agree- 
ment in the denser or liquid region of the phase diagram than in the 
moderate or low-density one. In particular, for argon our procedure 
increasingly overestimates )~ as we progressively go to lower reduced den- 
sities (experimental data from Ref. 29). But at lower densities, around 0.7, 
the other schemes to obtain the hard-sphere diameter mentioned above 
(BH, WCA, and VW) better fit the experimental data. At high tem- 
peratures they become more accurate. This is not surprising because these 
schemes were built to fit the low-density equilibrium properties, whereas 
the MC/RS scheme was directed toward the denser regimes. The important 
point to emphasize is that since the crossover occurs at a reduced density 
of about 0.7, our recommendation is that one use the other schemes for 
reduced densities below 0.7 and the MC/RS scheme for 0.7 and above. 
Another point to mention is that in the low-density limit, MET and 
EDRET can give different predictions for 2 due to the different effective 
diameters actually used in both theories, since MET reduces to RET in this 
limit. 

In summary, the above results are encouraging since the described 
procedure has quite good predictive properties with very little input (the 
L J parameters and the C ~ and it is an alternative method to the CSM as 
implemented in the TRAPP computer program, which has a lot of 
experimental information included. In addition, our procedure has an addi- 
tional advantage: since it preserves in some detail its kinetic theory founda- 
tion, it is able to be generalized to rnulticomponent mixtures. This will be 
discussed in a forthcoming paper [-30]. 

ACKNOWLEDGMENTS 

We acknowledge the partial support of CONACYT Grant PVT/PQ/ 
NAL/86/3585 and TWAS Grant RG MP 88-70. J.V.O. acknowledges the 
CONACYT support to do this work. 

REFERENCES 

1. R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids, 
3rd ed. (McGraw-Hill, New York, 1977). 

2. J. F. Ely and H. J. M. Hanley, Ind. Eng. Chem. Fund. 22:90 (1983). 
3. H. J. M. Hanley, R. D. McCarty, and E. G. D. Cohen, Physica 60:322 (1972). 
4. J. M. Kincaid, S. Perez, and E. G. D. Cohen, Phys. Rev. A 38:3628 (1988). 
5. R. Castillo, M. Lopez de Haro, and E. Martina, Int. J. Thermophys. 7:851 (1986). 
6. R. Castillo, E. Martina, and M. Lopez de Haro, KINAM 7:61 (1986). 



1034 Castillo and Orozco 

7. R. Castillo and S. Castafieda, Int. J. Thermophys. 9:383 (1988). 
8. R. Castillo and S. Castafieda, J. Non-Equil. Thermodyn. 14:69 (1989). 
9. S. A. Rice and A. R. Allnat, J. Chem. Phys. 34:2144 (1961). 

10. S. Jagannathan, J. S. Dahler, and W. Sung, J. Chem. Phys. 83:1808 (1985). 
11. H. J. M. Hanley and E. G. D. Cohen, Physica 83A:215 (1976). 
12. E. A. Mason and L. Monchick, 9". Chem. Phys. 36:1622 (1962). 
13. C. S. Wang Chang, G. E. Uhlenbeck, and J. de Boer, in Studies in Statistical Mechanics, 

Vol. 2, Part C, J. de Boer and G. E. Uhlenbeck, eds. (North-Holland, Amsterdam, 1964). 
14. S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases, 3rd ed. 

(Cambridge University Press, Cambridge, England, 1970). 
15. H. van Beijeren and M. H. Ernst, Physiea 68:437 (1973). 
16. J. Karkheck, E. Martina, and G. Stell, Phys. Rev. A 25:3328 (1928). 
17. N. F. Carnahan and K. E. Starling, J. Chem. Phys. 53:600 (1970). 
18. J. A. Barker and D. Henderson, J. Chem. Phys. 47:4714 (1967). 
19. J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54:5237 (1971). 
20. L. Verlet and J. J. Weis, Phys. Rev. A 5:939 (1972). 
21. G. A. Mansoori and F. B. Canfield, J. Chem. Phys. 51:4958 (1969). 
22. J. Rasaiah and G. Stell, MoL Phys. 18:249 (1970). 
23. J. Karkheck and G. Stell, J. Chem. Phys. 75:1475 (1981). 
24. H. M. Roder, C. A. Nieto de Castro, and U. V. Mardolcar, Int. J. Thermophys. 8:521 

(1987). 
25. F. Ely and H. J. M. Hanley, A Computer Program for the Prediction of Viscosity and Ther- 

mal Conductivity in Hydrocarbon Mixtures, National Bureau of Standards, Technical Note 
1039 (April 1981). 

26. L. I. Stiel and G. Thodos, AIChE J. 10:26 (1964). 
27. U. V. Mardolcar and C. A. Nieto de Castro, Ber. Bunsenges. Phys. Chem. 91:152 (1987). 
28. H. J. M. Hanley, Proc. 7th Syrup. Thermophys. Prop., A. Cezairliyan, ed. (Am. Soc. Mech. 

Eng., New York, 1977). 
29. B. A. Younglove and H. J. M. Hanley, Z Phys. Chem. Ref Data 15:1323 (1986). 
30. R. Castillo and J. V. Orozco (to be published). 


