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ABSTRACT

A critical appraisal of the ability of the effective diameter
hard-sphere theory (EDHST) for predicting thermal conductivities,
and shear and bulk viscosities of fluids interacting through the
Lennard-Jones potential is presented. This method relies on the
use of the kinetic theory of hard-spheres and the state-dependent
effective diameters given by the equilibrium liquid state theory.
Predictions using this method are compared with molecular dynamics
data given by several authors. In the dense regime this procedure,
using a variational scheme to obtain the effective hard-sphere
diameters makes predictions with an average global deviation of 37%
for the shear viscosity, 32 % for the bulk viscosity, and 10 % for
the thermal conductivity. However, in certain regions of the phase
diagram the predictions are better. All other schemes give worse
results than the variational scheme, except in the case of the
shear viscosity in certain regions of the phase diagram (for this
case we include the low density regions), where the Verlet and Weis
scheme gives better results. For mixtures, we calculated the
transport properties of mixtures using the equivalent one-fluid
approximation, and comparisons with molecular dynamics calculations
previously reported were performed. Our results are quite
satisfactory. In addition, we made comparisons with actual fluids
and extended our procedure to fluids of nonspherical molecules.

INTRODUCTION

The Lennard-Jones (LJ) potential is known to be inaccurate as
a representation of the actual intermolecular potential for inert
gases, but it is sufficiently close to reality for providing a
convenient starting point to deal with transport properties (TP’s)
of actual fluids.

The main purpose of this paper is to show the usefulness of a
procedure to predict TP’s of LJ fluids and their binary mixtures.
In addition, we will show that this method can give good results
for actual fluids, and it can be generalized to non-spherical LJ
potentials. This procedure relies on the kinetic theory of hard
spheres combined with a prescription to obtain effective
state-dependent hard-sphere diameters given in terms of the
parameters associated with the potential. We call this approach
the EDHST. We will show that it gives good estimates for shear and
bulk viscosities, and for thermal conductivities of the LJ fluids
and their mixtures, in wide ranges of densities and temperatures.
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This procedure has been used with success to predict TP’s of actual
pure fluids (Karkheck et al.,1981,1989; Castillo et al.,1988-1990)
and their mixtures (Castillo et al.,1986-1990). The underlying
assumptions are: (1) The particles in the fluid can be modeled by
the LJ potential. (2) In the high density regime, the dynamics of
the fluid is mainly determined by the repulsive part of the
interaction potential, hence hard-sphere expressions for TP’s can
give reliable results if some way to obtain state-dependent
effective diameters is used in order to reflect the somewhat soft
repulsive part of the model potential. Although there has been a
lot of work done to determine if this type of procedures 1is
appropriate, it has not been subjected to a stringent test. This
test can be done now since enough molecular dynamics (MD) data for
LJ systems have appeared recently.

THEORY

Until now, there is no formal kinetic theory to handle TP's of
LJ fluids and ‘thelr mixtures, and the few attempts to deal with the
problem of predicting thermal conductivities (A), shear (n) and
bulk (k) viscosities of these systems from rigorous, fundamental
molecular theories, have proven to be very difficult (Karkheck et
al.,1981,1982,1988; Stell et al.,1983; Sung et al.,1984; Castillo
et al.,1989). Here, one line of approach although approximate, to
deal with pure fluids has been the kinetic variational theories
(KVT’s), and the kinetic reference theories (KRI's), both dealing
with model potentials given by a hard-sphere core and a soft
attractive tail. For the mentioned TP's, KVT (hard core plus an
attractive tail (Karkheck and Stell,1981; Stell et al.,1983) and
KVTI(Karkheck et al.,1982) (hard core plus an attractive tail in
the Kac 1limit) give the same results as in the Enskog theory
(Dorfman and van Beijeren,1977). The KVTII and KVTIII generate the
same expressions as in the Enskog theory, however, with the
provision that the reference hard-sphere structure is replaced by
the structure of the real system (Stell et al.,1983; Sung and
Dahler,1984; Karkheck et al.,1988,1989), except for the case of
bulk viscosity (van Beijeren et al., 1988). The transport
coefficients of the KRT versions are the same as in the Enskog
equations, but corrected by density-dependent factors obtained from
MD.

For mixtures the problem of obtaining TP’s is not as developed
as in pure fluids. On one hand, the KVTII presents several
unsolved problems (Castillo et al.,1986,1989) and the KVTIII has
not been explored. On the other hand, the KVTI gives the TP's of
our interest here as in the revised Enskog theory (RET) (Karkheck
et al., 1982). In addition, there is nothing analogue to Dymond’s
correction in mixtures, hence there are no KRT versions for
mixtures.

In order to make the discussion with the most simplified
theory, our starting point will be the equations for the
hard-sphere fluid given in the RET (van Beijeren and Ernst,1973).
Here, the expressions for pure fluids are the following:
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In these expressions, n is the number density, ¢ is the hard-sphere
diameter, m 1is the mass of the particle, xc is the pair
distribution function at contact, T is the absolute temperature,
and k is Boltzmann’s constant.

The evaluation of equations 1 requires the knowledge of x°. Ve
used the approximate expression of Carnahan and Starling for pure
fluids and its generalization for the binary mixture (Mansoori et
al.,1971).

MD calculations have proven that Enskog's expressions for pure
fluids are not exact, since these do not take into account velocity
correlations in the dense regime. Correction multiplicative
factors to the Enskog expressions have been given by Dymond (1976)
for shear viscosity and thermal conductivity, although for the case
of shear viscosity van der Gulik and Trappeniers (1986) have
modified these expressions on the basis of the computations given
by Michels and Trappeniers (1980). For bulk viscosity we used the
correction given in the paper of Heyes (1987). The correction
factors are:

c,= 1.02 + 10.61(n" - 0.495)° + 247.49 (n"- 0.813)° n'>0.813
= 1.02 + 10.61(n" - 0.495)° 0.593>n" >0.813

= 1.02 0.593>n"
(2a)
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In all the above equations n. = no3.

In order to obtain the molecular and collisional contribution
for the TP’s given in eqs. 1 and 2, we need a prescription to
obtain a state-dependent hard-sphere diameter in terms of the
parameters associated with the LJ potential. Effective diameters
can be obtained by several schemes well established in equilibrium
liquid state theory, for the case of pure fluids. Here, expansions
of the properties of the system around some reference system are
made, and after truncation given by some appropriate mathematical
technique to the first few terms, expregsions in terms of a
hard-sphere fluid of effective diameter o(nco, kT/co) are obtained.
Here, oo and €o are the LJ parameters. The most widely used
schemes from a first order perturbation theory are those given by
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Barker and Henderson (1967) (BH), by Weeks, Chandler and Andersen
(1971) (WCA), by Verlet and Weis (1972) (VW). Quite recently, a
new algorithm for calculating the effective hard-sphere diameter in
the WCA scheme was given by Song and Mason (1989) (SM). From the
schemes using a variational theory, we have chosen those given by
Mansoori and Canfield (1969), and Rasaiah and Stell (1970) (MC/RS).
All these schemes give a hard-sphere diameter depending on both
temperature and density, except those given by BH and SM which are
temperature dependent only. For our calculations in pure fluids,
we followed the explicit procedures given by Verlet and Weis (1972)
and Rasaiah and Stell (1970).

While successful attempts have been made in the prediction of
equilibrium thermodynamic properties for pure fluids by the methods
using hard-sphere diameters just mentioned, the theory for mixtures
needs much more improvement because of additional difficulties.
One of these difficulties has been the lack of a satisfactory way
to define mixture rules for the cross interaction in the model
potential (LJ). Hence, we calculated the TP's of the binary
mixture through defining an equivalent one-fluid, with the
following mixture rules for the equivalent one-fluid interaction
parameters:

2 2
¢ = Y o x x_ , e o= F o & x x. (3)
' nytotr

Therefore, we assume that the TP’s of the binary mixture can be
equated to that of the equivalent one fluid, and the equivalent
one-fluid TP’s can be evaluated as in the pure fluid case, Jjust
described above.

THE MOLECULAR DYNAMICS DATA

In order to make our comparisons, TP's of LJ systems obtained
by MD experiments given by several authors were used. For the
thermal conductivity, we used 65 states (Borgelt et al.,1990;
Hoheisel, 1990), all of these in the dense regime. For the case of
shear viscosity we used 105 states, 36 in the dilute regime, below
the critical density, and the remainder states are in the dense
regime. For the bulk viscosity we used 45 states all in the dense
regime (Borgelt et al.,1990).

A natural extension of the present investigation to binary
fluids is quite difficult because of the scarce MD data for TP’s in
binary LJ fluids. The first extensive MD work, as far as we know,
which addresses this problem has been done by Vogelsang and
Hoheisel (1988) using the Green-Kubo method. MacGowan and Evans
(1986) used non-equilibrium molecular dynamics to evaluate TP’s,
but for one thermodynamic state only. We will compare our
calculation with the former.

RESULTS AND DISCUSSION

We evaluated the TP’s under discussion, and made several
comparisons between our results and the MD data using different
prescriptions to obtain effective diameters as discussed above.
Our results for for the case of shear viscosity are displayed in
tables 1 and 2. Here, we present each of the states studied using
the MC/RS scheme to obtain the effective diameters (under the
heading EDHST), a note of the thermodynamic states, the MD results
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TABLE 1

Comparison between shear viscosity cobiained
with MD and with EDHST, at low densities

*

T MD EDHST SMC/RS VW
0.050 1.300 0.157 0.231 47.324 32.462
1.499 0.185 0.252 36.199 22.001
2.000 0.240 0.301 25.492 il.12c
3.000 G.320 0.392 22.416 §.517
5.000 0.465 0.560 20.439 -2.406
10.000 0.721 0,950 31.734 -6.910
1.300 0.179 0.238 33.066 22.213
1,499 0.208 0,259 24.451 13.986
2.000 0.270 0.308 14.100 3.467
3.000 0.333 0.399 17.588 3.943
5.000 0.485 0.565 16.487 -2.754
10.000 0.746 0.939 25.868 -6.871
1.300 0.217 0.250 15.207 8.441
1.499 0.244 0.272 11.339 4.299
2.000 0.313 0.322 2.828 -4.612
3. 000 0.383 0.412 7.677 -2.245

=4
-

v
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$.000 0.534 0.577 8.010 -6.743

10.000 0.797 0.937 17.567 -8.527

1.300 0.258 0.271 4.911 0.950

1.499 0.284 0.290 2.237 ~1.73¢%

2.000 0.352 0.342 -2.979 ~7.925

3. 000 0.435 0.434 -0.217 ~6.888

S. 000 0.572 0.596 4.276 -6.604

10.000 0.854 0.946 10.757 -9.172

1.300 0.300 0.294 -1.909 -3.160

1.49% 0.317 0.317 -0.022 -1.506

2.000 0.387 0.370 -4.372 -6.548

3.000 0.475 0.464 -2.404 -6.148

5.000 0.610 0.626 2.620 -4.594

10. 000 0.901 0.966 7.164 ~-7.158

1.300 0.351 0.328 -6.622 -5.339

.300 1,499 0.383 0.352 -7.999 -7.127
.300 2.000 Q.447 0.406 -9.061 -8.551

.300 3.000 0.528 0.502 -4.930 ~5.588
.300 5.000 0.700 0.664 -5.0%0 ~8.122
.300  10.000 0.983 0.998 1.529 ~7.050

OO0 00O000000000000000O00000000000000

MD data from Michels and Trappeniers (1985)

of several authors,and the percent deviations between these
calculations and MD data {88 = 100 {SSBKST- &DKI/ Eﬁx}, There too,
the percent deviations between our calculations using only one of
the perturbative schemes (VW) and MD data are presented.

In table 3, th; root~mean-square of the percent deviations
(émus = {1/n ¥ 652)1 %) are presented for the schemes studied in
this work. This table gives a global idea about the capability of
the EDHST for predicting TP's of pure fluids.

Of all the transport properties discussed here, thermal
conductivity is the best predicted by EDHST. Table 3 shows that,
predictions of thermal conductivity of dense fluid using the MC/RS
scheme have a Sres of 10.4, in the direction of overestimation.
Calculations for TP's using the other schemes lie far above from
the MD values. Calculations with BH, WCA and VW schemes behave in
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TABLE 2

Comparison between shear viscosgity obtained with ND and with EDHST,
at high densities.
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MD data form a‘(;Oﬁling, McDonald and Singer “973)é Heyes (1983);
c
Schoen and Hoheisel (1985); Erpenbeck (1988); Hoheisel (1990);
Borgelt, Hoheisel and Stell (1990)

the same way, although the best fit was obtained with the VW.
Calculations with the SM scheme are globally better than those
using the other perturbative methods, but with a very bad trend,
underestimation at low temperatures and large overestimation at
high temperatures.

For the case of shear viscosity, in the low density region,
table 3 shows that calculations with all prescriptions give a &rus
around 10%, except when the variational method 1is used. In this
case calculations are in error by around 17%. A closer view of the
data (see table 1) reveals that, in the density range between 0.2 <
n < 0.3, when the variational method is used a better fit is
obtained, since the amls’g are in general less than 10%. In the
temperature range 1.3 < T < 5 these deviations are less than Si.
It is around n = 0.2 that calculations using perturbative schemes
give a better fit to MD data. Calculations using BH, VW and WCA
prescriptions are closer to the MD data when n < 0.2, and with the
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TABLE 3

Global deviation (SrMs) between MD data and EDHST using different
effective diameters

LOW DENSITY
MC/RS BH VW WCA SM
n 17.2 9.9 9.8 9.8 12.4
HIGH DENSITY
MC/RS BH VW WCA SM
A 10.4 41.7 37.3 48.6 29.4
n 37.4 84.1 73.8 87.9 97.3
K 32.6 31.6 31.4 31.5 36.1

same order of deviation. In general, in the range of 1 < T’< 2,
deviations using perturbative schemes go from underestimation
(~5-8%) at reduced densities around 0.3, to overestimation
(~20-35%) at denslities around 0.05. WCA and VW give almost the
same numbers, qu the SM is the worst for this task. At high
temperatures (T = S}, the use of perturbative prescriptions gives
good results, a few percent below the MD data in all the dilute
regime, probably reflecting their origin as high temperature
perturbative expansions. This does not occur when the variational
scheme is used. For this scheme, overestimation is the rule at
densities below 0.2, but it 1is better at higher densities. The
faillure of EDHST at low densities, and in particular at low
temperatures, no matter whichever procedure is used to obtain
effective diameters, only reflects the inability of this procedure
to deal with fluids in thermodynamic states where attractive forces
have an important role.

For shear viscosity in the dense regime, table 3 shows that
better predictive results are obtained when the variational method
is used to obtain effective diameters. A closer view of the data
in this dense regime shows that, at constant density as the
temperature increases in the range 0.8 < T < 2.7 calculations go
progressively from underestimating to overestimating the »'s, no
matter what scheme is used. Calculations with BH, WCA and VW
schemes start at around zero percent and go to more than 50% above
the MD results, in this range of temperature. Calculations with
these schemes behave in almost the same way although, with WCA
there is an additional overestimate around 10% over the other two.
Apparently, calculations with the SM scheme are the most critically
dependent on the temperature, since they go from -30% to more than
70% deviations. The variational scheme 1in this range of
temperature is the best option, since calculations differ from
around -15% to around 25%. In addition, it is easy to see that,
with the variational scheme, deviations are centered around zero.
This is not true when the WCA scheme is used. Another general
behavior of EDHST is that at the very high densities (n >0.9), no
matter what scheme is used to obtain the effective diameters, we
have a very important overestimation. For the perturbative
schemes, this overestimation trend begins at .lower densities.
Better results are obtalned again, with variational schenme,
although with a very important overestimation. Probably, this
behavior 1is due to the failure of the Carnahan-Starling
approximation to obtain the x°.
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For the case of bulk viscosity table 3 shows that with all
schemes to obtain the diameter, we have about the same predictive
capability. The most important feature of bulk viscosity
calculations with EDHST is the failure of this procedure to give
good results at low temperatures. They go progressively from a
underestimation in the range of -60% at temperatures about T %
0.66, tp an overestimation of the order of 20% at temperatures
about T & 2.7. Perturbative schemes show this behavior, but they
can overestimate by more than a 30%, at high temperatures. EDHST
using the variational method can predjct bulk viscosities with 204
of error when temperature is above T = 1.3. This is not true for
the perturbative schemes in particular for the better option of the
VW, this percent of error occurs 1n the temperature range of 1.2 <
T < 2.2, only. Therefore, the use of the variational scheme is a
better option to predict bulk viscosities, mainly when the
temperature is above 1.2 or 1.3.

The results for mixtures using the equivalent one-fluid are
presented in table 4. Following Vogelsang and Hoheisel (1988), we
characterize the LJ binary mixture by a vector containing four
quantities,

b, v, 1, v.,),

where p and v are defined by

o =pec and e =V el , (4)

22 11 22 1

and p__ and v, give are defined by

12
LAV A (011+ vzz)/ 2 and €, =V, (e11+ ezz)/ 2. (5)
For table 4, the magnitudes of g and are unimportant,

since reduced units are used. In order to compére with the MD data
given by Vogelsang and Hoheisel (1988), we made our calculation for
equimolar mixtures with the same parameters and values for p and v
given by these authors:

for systems Al1-AS5 p =1, v =2

for systems B1-BS u

]
-
»
<

K
-

TABLE 4

Deviation between EDHST in the equivalent one-fluid approximation
and MD.

e T "'12 vl ST'HC/RS anH BKHC/RS BKVH SAHC/RS aAVH
Al 1.74 128.25 1 0.8 -8.7 9.7 -36.7 -31.6 8.0 28.2
A2 1.74 135.383 1 0.9 -1.2 18.7 31.9 42.6
A3 1.74 142.50 1 1.0 -10.7 7.2 68.3 81.9 8.7 28.9
Ad 1.74 149.63 1 1.1 -7.6 11.0 74.0 88.0
AS 1.74 156.75 1 1.2 -5.4 13.6 40.0 51.3 6.7 26.6
Bl 1.92 134.38 0.90 t -17.0 -0.3 7.9 16.6 1.6 20.6
B2 1.79 134.38 0.95 1 -18.8 -2.4 80.9 95.5
B3 1.67 134.38 1.00 1 ~15.7 1.3 72.5 86.5 5.4 25.0
B4 1.55 134.38 1.05 1 -18.4 -2.0 34.0 44.8
BS 1.44 134.38 1.10 1 -5.3 13.7 8.3 17.1 7.0 27.0




The results with the equivalent one fluid approximation are
quite good when the varlational scheme is used to obtain the
equivalent one-fluid diameter. In particular for the thermal
conductivity, no matter how the cross interactions are varied, or
the ratio between the pure component LJ parameters, the deviation
from the MD calculations 1s less than 10%. In the case of the
shear viscosity calculations, they reveal a very high sensitivity
to the cross interactions. If p = 1, i.e. when the cross
interaction is that of a hard spheré mixture (eq.5), no matter how
the energy cross interaction changes, the use of the variational
scheme gives better results. On the other hand, if there is no
additivity, i.e. B, #1, the use of perturbative schemes is a better
option than the varfational schenme. For bulk viscosity, from table
2 we can see that no matter how the parameters are varied in
general the use of the variational scheme is better.

ACTUAL FLUIDS AND EXTENSIONS

The above discussion can be applied when EDHST is compared
with actual fluids like argon. In figure 1, percent deviations
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Fig. 1. Percent deviation of predicted 7's from experimental data,
versus reduced density, for six different reduced temperatures, and
several prescriptions to obtain the state-dependent hard-~sphere
diameters. (o) MC/RS; (+) BH; ({) VW; (A) WCA.

285



286

effective diameter. As expected, for thermal conductivity the
percent deviations are less than for the shear viscosity when the
MC/RS scheme is used (similar deviation charts for A can be seen in
Castillo and Orozco, 1990).

The effective-diameter hard-sphere theory can be extended to
deal with fluids interacting through the gaussian overlap potential
(Berne and Pechukas, 1972). The effective diameter is obtained
through the perturbation expansion method for nonspherical fluids
given by Mo and Gubbins (1975). Figure 2 shows our calculations
for a fluid with an_anisotropy parameter of 1.5, for several
reduced densities at T = 1.5. A thorough evaluation of this method
is presently under way. Variational method can be generalized too.
Here, the free energy of a fluid interacting through the gaussian
overlap potential is developed in terms of a hard-nonspherical
fluid. An effective diameter to deal with this fluid can be
obtained. The results will be published shortly.

12

LBNTE

10

Fig. 2. Reduced shear viscosities (+) and reduced thermal
conductivities (o) for a fluld with an anisotropy parameter of 1.5
at several states. The effective diameters were evaluated
according to Mo and Gubbins (1975).
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CONCLUDING REMARKS

In this work we found that the EDHST can estimate the
transport properties of Lennard-Jones flulds, actual fluids, and
their mixtures, if we are in the dense regime and wuse the
variational scheme (MC/RS) to obtain the effective diameters.
Generally speaking, this is true for the thermal conductivity, the
shear viscosity, and for the case of the bulk viscosity, if we are
above T =1.2. At the very high densities, n > 1, the EDHST can not
be used. At low densities, EDHST with VW diameters can be used to
estimate shear viscosities at reduced densities between 0.05 and
0.15. At higher densities it is better to use the variational
diameters.
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