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ABSTRACT 

A critical appraisal of the ability of the effective diameter 
hard-sphere theory (EDHSTI for predicting thermal conductivitles, 
and shear and bulk viscosities of fluids interacting through the 
Lennard-Jones potential is presented. This method relies on the 
use of the kinetic theory of hard-spheres and the state-dependent 
effective diameters given by the equilibrium liquid state theory. 
Predictions using this method are compared with molecular dynamics 
data given by several authors. In the dense regime this procedure, 
using a variational scheme to obtain the effective hard-sphere 
diameters makes predictions with an average global deviation of 37% 
for the shear viscosity, 32 % for the bulk viscosity, and 10 % for 
the thermal conductivity. However, in certain regions of the phase 
diagram the predictions are better. All other schemes give worse 
results than the variational scheme, except in the case of the 
shear viscosity in certain regions of the phase diagram (for this 
case we include the low density regions), where the Verlet and Wels 
scheme gives better results. For mixtures, we calculated the 
transport properties of mixtures using the equivalent one-fluid 
approximation, and comparisons with molecular dynamics calculations 
previously reported were performed. Our results are quite 
satisfactory. In addition, we made comparisons with actual fluids 
and extended our procedure to fluids of nonspherical molecules. 

INTRODUCTION 

The Lennard-Jones (LJI potential is known to be inaccurate as 
a representation of the actual intermolecular potential for inert 
gases, but it is sufficiently close to reality for providing a 
convenient starting point to deal with transport properties (TP’s) 
of actual fluids. 

The main purpose of this paper is to show the usefulness of a 
procedure to predict TP’s of LJ fluids and their binary mixtures. 
In addition, we will show that this method can give good results 
for actual fluids, and it can be generalized to non-spherical LJ 
potentials. This procedure relies on the kinetic theory of hard 
spheres combined with a prescription to obtain effective 
state-dependent hard-sphere diameters given in terms of the 
parameters associated with the potential. We call this approach 
the EDHST. We will show that it gives good estimates for shear and 
bulk viscosities, and for thermal conductlvltles of the LJ fluids 
and their mixtures, in wide ranges of densities and temperatures. 
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This procedure has been used with success to predict TP’s of actual 
pure fluids (Karkheck et al., 1981,1989; Castlllo et al.,1988-19901 
and their mixtures (Castlllo et al.,1986-1990). The underlying 
assumptions are: (1) The particles in the fluid can be modeled by 
the LJ potential. (2) In the high density regime, the dynamics of 
the fluid is mainly determined by the repulsive part of the 
interaction potential, hence hard-sphere expressions for TP’s can 
give reliable results if some way to obtain state-dependent 
effective diameters is used in order to reflect the somewhat soft 
repulsive part of the model potentlal. Al though there has been a 
lot of work done to determine if this type of procedures is 
appropriate, it has not been subjected to a stringent test. This 
test can be done now since enough molecular dynamics (MD) data for 
LJ systems have appeared recently. 

THEORY 

Until now, there is no formal kinetic theory to handle TP’s of 
LJ fluids and.thelr mixtures, and the few attempts to deal with the 
problem of predicting thermal conductlvltles (h). shear (q) and 
bulk (K) viscosities of these systems from rigorous, fundamental 
molecular theories, have proven to be very difficult (Karkheck et 
a1.,1981,1982,1988; Stell et al.,1983; Sung et a1.,1984; Castlllo 
et al. ,1989). Here, one line of approach although approximate, to 
deal with pure fluids has been the kinetic variational theories 
(KvT’s), and the kinetic reference theories (KRT’s), both dealing 
with model potentials given by a hard-sphere core and a soft 
attractive tall. For the mentioned TP’s, KVT (hard core plus an 
attractive tall (Karkheck and Ste11,1981; Stell et al.,19831 and 
KVTIcKarkheck et al. ,1982) (hard core plus an attractive tall in 
the Kac limit) give the same results as in the Enskog theory 
(Dorfman and van BelJeren,l977). The KVTII and KVTIII generate the 
same expressions as in the Enskog theory, however, with the 
provision that the reference hard-sphere structure is replaced by 
the structure of the real system @tell et a1.,1983; Sung and 
Dahler,1984; Karkheck et a1.,1988,1989), except for the case of 
bulk viscosity (van Beljeren et al., 1988). The transport 
coefficients of the KBT versions are the same as in the Enskog 
equations, but corrected by density-dependent factors obtained from 
MD. 

For mixtures the problem of obtaining TP’s is not as developed 
as in pure f lulds. On one hand, the KVTII presents several 
unsolved problems (Castlllo et al., 1986,1989) and the KVTIII has 
not been explored. On the other hand, the KVTI gives the TP’s of 
our interest here as in the revised Enskog theory (BET) (Karkheck 
et al., 1982). In addition, there is nothing analogue to Dymond’s 
correction in mixtures, hence there are no KBT versions for 
mixtures. 

In order to make the discussion with the most simplified 
theory, our starting point will be the equations for the 
hard-sphere fluid given in the BET (van Beljeren and Ernst, 1973). 
Here, the expressions for pure fluids are the following: 

(la) 



h = 2 [1 + @u’x~) + 0.7575(+‘xc)~h~ 
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In these expressions, n is the number 
diameter, m is the mass of the 
distribution function at contact, T 
and k is Boltsmann’s constant. 

density, (P is the hard-sphere 
particle, xc is the pair 

1s the absolute temperature, 

The evaluation of equations 1 requires the knowledge of xc. We 
used the approximate expression of Carnahan and Starling for pure 
fluids and its generalization for the binary mixture (Mansoorl et 
a1.,1971). 

ns 
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MD calculations have proven that Enskog’s expressions for pure 
fluids are not exact, since these do not take into account velocity 
correlations in the dense regime. Correction multiplicative 
factors to the Enskog expressions have been given by Dymond (1976) 
for shear viscosity and thermal conductivity, although for the case 
of shear viscosity van der Gullk and Trappenlers ( 1986 1 have 
modified these expressions ‘on the basis of the computations given 
by Mlchels and Trappenlers (1980). For bulk viscosity we used the 
correction given in the paper of Heyes (1987). The correction 
factors are: 

Cn= 1.02 + 10.61(n* - 0.49513 + 247.49 (n*- 0.813j3 n*>O. 813 

= 1.02 + 10.61(n* - 0.49513 0.593>n*>0.813 

= 1.02 0.593>n* 

(2a) 

C,= 0.9881 +0.2710 n*- 1.8394 no2+ 4.1881 ng3- 2.5960 nw4 0.8839>n* 

= 1.0982-8.4584 (n*- 0.8839) n*>0.8839 

(2bI 

CA= 0.99 + 0.1597 n* - 0.7464 n*2 + 1.2115 no3 - 0.5583 ng4. (2cI 

In all the above equations n* = no3. 
In order to obtain the molecular and collisional contribution 

for the TP’s given in eqs. 1 and 2, we need a prescription to 
obtain a state-dependent hard-sphere diameter in terms of the 
parameters associated with the LJ potential. Effective diameters 
can be obtained by several schemes well established in equilibrium 
liquid state theory, for the case of pure fluids. Here, expansions 
of the properties of the system around some reference system are 
made, and after truncation given by some appropriate mathematical 
technique to the first few terms, expressions in terms of a 
hard-sphere fluid of effective diameter cr(ntro, kT/coI are obtained. 
Here, uo and EO are the LJ parameters. The most widely used 
schemes from a first order perturbation theory are those given by 
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Barker and Henderson (19671 (BH), by Weeks, Chandler and Andersen 
(19711 (WCA), by Verlet and Weis (1972) (VW). Quite recently, a 
new algorithm for calculating the effective hard-sphere diameter in 
the WCA scheme was given by Song and Mason (19891 (SM). From the 
schemes using a variational theory, we have chosen those given by 
Mansoorl and Canfield (19691, and Basaiah and Stell (19701 (MC&S). 
All these schemes give a hard-sphere diameter depending on both 
temperature and density, except those given by BH and SM which are 
temperature dependent only. For our calculations in pure fluids, 
we followed the explicit procedures given by Verlet and Weis (19721 
and Hasaiah and Stell (19701. 

While successful attempts have been made in the prediction of 
equilibrium thermodynamic properties for pure fluids by the methods 
using hard-sphere diameters just mentioned, the theory for mixtures 
needs much more improvement because of additional difficulties. 
One of these difficulties has been the lack of a satisfactory way 
to define mixture rules for the cross interaction in the model 
potential (LJ). Hence, we calculated the TP’s of the binary 
mixture through defining an equivalent one-fluid, with the 
following mixture rules for the equivalent one-fluid interaction 
parameters: 

c3 = 
x 

; o:, x1 x, , 
i,J 

(31 

Therefore, we assume that the TP’s of the binary mixture can be 
equated to that of the equivalent one fluid, and the equivalent 
one-fluid TP’s can be evaluated as in the pure fluid case, just 
described above. 

THE MOLECULAFt DYNAMICS DATA 

In order to make our comparisons, TP’s of LJ systems obtained 
by MD experiments given by several authors were used. For the 
thermal conductivity, we used 65 states (Borgelt et al.,1990; 
Hoheisel,19901, all of these in the dense regime. For the case of 
shear viscosity we used 105 states, 36 in the dilute regime, below 
the critical density, and the remainder states are in the dense 
regime. For the bulk viscosity we used 45 states all in the dense 
regime (Borgelt et a1.,19901. 

A natural extension of the present investigation to binary 
fluids is quite difficult because of the scarce MD data for TP’s in 
binary LJ fluids. The first extensive MD work, as far as we know, 
which addresses this problem has been done by Vogelsang and 
Hoheisel (19881 using the Green-Kubo method. MacGowan and Evans 
(1986) used non-equilibrium molecular dynamics to evaluate TP’s, 
but for one thermodynamic state only. We will compare our 
calculation with the former. 

HESULTS AND DISCUSSION 

We evaluated the TP’s under discussion, and made several 
comparisons between our results and the MD data using different 
prescriptions to obtain effective diameters as discussed above. 
Our results for for the case of shear viscosity are displayed in 
tables 1 and 2. Here, we present each of the states studied using 
the MC/BS scheme to obtain the effective diameters (under the 
heading EDHST), a note of the thermodynamic states, the MD results 



281 

TABLE 1 

Comparison between shear viscosity obtained 
with MD and wfth EDHST. at low densities 

n* TE 
o.o!x 1.300 
0,050 1.499 
0.050 2.000 
0.050 3.000 
0.050 5.000 
0.050 10.000 
0.100 1,300 
0.100 1,499 
0.100 2.000 
0.100 3,000 
0.100 5,000 
0.100 10.000 
0.150 1.300 
0.150 1.499 
0.150 2.000 
0.150 3,000 
0.150 5.000 
0.150 lO*OOC 
0.200 1.300 
0.200 1.499 
0.200 2.00Q 
0.200 3.000 
0.200 5.000 
0.200 10.000 
0.258 1.300 
0.250 1.499 
0.250 2.000 
0.250 3.000 
0.250 5.a00 
0.250 10.000 
0.300 1.300 
0.300 1.499 
0.300 2.000 
0.300 3-080 
0.300 5.000 
0.300 10.000 

MD KDHST mcm iww 
0.157 0.231 47.324 32.462 
0.185 0.252 36.199 22.001 
0.248 0.301 25.492 11.120 
0.320 0.392 22.416 5.517 
0.465 0.560 20.439 -2.406 
0.721 0.950 31.734 -6.910 
0.179 0.238 33.066 22.213 
0.208 0.259 24.451 13.986 
0.270 0.308 14.100 3.467 
0.339 0.399 17.588 3.943 
0.485 0.565 16.487 -2.754 
0.746 0.939 25.868 -6.871 
0.217 0.250 15.207 8.441 
0.244 0.272 11.339 4.299 
0.313 0.322 2.828 -4.612 
0.383 0.412 7.677 -2.245 
0.534 0.577 8.010 -6.743 
0.797 0.937 17.567 -8.527 
0.258 0.271 4,911 0.950 
0.284 0.290 2.237 -1.739 
0.352 0.342 -2.979 -7.925 
0.435 0.434 -0.217 -6.888 
0.572 0.596 4.276 -6.604 
0.854 0.946 10.757 -9.172 
0.300 0.294 -1.909 -3.160 
0,317 0.317 -0,022 -1.506 
0.387 0.370 -4.372 -6.548 
0.475 0.464 -2.404 -6.148 
0.610 0.626 2.620 -4.594 
0.901 0.966 7.164 -7.158 
0.351 0.328 -6.622 -5.339 
0.383 0.352 -7.999 -7,127 
0.447 0.406 -9.061 -8.551 
0.528 0.502 -4,930 -5.588 
0.700 0.664 -5.090 -8.122 
0.983 0.998 1.529 -7.050 

MD data from Hichels and Trappeniers (19851 

of several authors,amd the percent deviations between these 
calculatfons and MD data [S< = 100 f~En"Sf- eDal/ Enal. There too. 
the percent deviations between our calculations using anly one of 
the perturbatlve schemes (VW) and MD data are presented. 

In table 3 , 2tQy2 root-mean-square of the percent deviations 
(&as = {l/N x a< ) 1 are presented for the schemes studied in 
this work. This table gives a global idea about the capability of 
the EXIST for predictins TP's of oure fluids. 

Of all the transport pro~ertfes discussed here, thermal 
conductfvity is the best predicted by EDHST. Table 3 shows that. 
predictions of thermal conductivity of dense fluid using the MC/FEZ 
scheme have a &as of 10.4, in the direction of overestimation. 
Calculations for TP's uslng the other schemes lie far above from 
the MD values. Calculations with BH, WCA and VW schemes behave in 
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TABLE 2 

Comparison between shear viscosity obtained with WD and wlth EDHST, 

at high densltlee. 

‘Of 
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F 

F 
f 

F 

:: 

F 

s 

- 

UD data form -Gosling, HcDonaAd and Singer (197316 Dlieye* (1983) ; 
+oen and Iiohelsel (1985); Erpcnbeck (1988); Hohelsel (1990); 

Borgelt, Hohslsel and Stell (1990) 

the same way, although the best fit was obtained with the VW. 
Calculations with the St4 scheme are globally better than those 
using the other perturbatlve methods, but with a very bad trend, 
underestimation at low temperatures and large overestimation at 
high temperatures. 

For the case of shear viscosity, in the low density region, 
table 3 shows that calculations with all prescriptions give a &x-s 
around lo%, except when the variational method is used. In this 
case calculations are in error by around 17%. A closer view of the 
dgta (see table 1) reveals that, in the density range between 0.2 < 
n < 0.3, when the variational method is used a better fit is 
obtained, since the 61~s’~ are in general less than 10%. In the 
temperature rawe 1.3 < T < 5 these deviations are less than 5%. 
It is around n = 0.2 that calculations using perturbatlve schemes 
give a better fit to MB data. Calculations rqzlng BH, VW and WCA 
prescriptions are closer to the MD data when n < 0.2, and with the 
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TABLE 3 

Global deviation (baxsl between MD data and EDHST using different 
effective diameters 

LOW DENSITY 

MC/BS BH VW WCA SW 
B 17.2 9.9 9.8 9.8 12.4 

HIGH DENSITY 

MC/BS BH VW WCA St4 
h 10.4 41.7 37.3 48.6 29.4 
1) 37.4 84.1 73.8 87.9 97.3 
K 32.6 31.6 31.4 31.5 36.1 

same order of deviation. In general, in the range of 1 < T*< 2, 
deviations using perturbative schemes go from underestimation 
(-5-8X) at reduced densities around 0.3, to overestimation 
(-20-35X) at densities around 0.05. WCA and YW give almost the 
same numbers, %nd the SM is the worst for this task. At high 
temperatures (T m 51, the use of perturbative prescriptions gives 
good results, a few percent below the MD data in all the dilute 
regime, probably reflecting their origin as high temperature 
perturbative expansions. This does not occur when the variational 
scheme is used. For this scheme, overestimation is the rule at 
densities below 0.2, but it is better at higher densities. The 
failure of EDHST at low densities, and in particular at low 
temperatures, no matter whichever procedure is used to obtain 
effective diameters, only reflects the inability of this procedure 
to deal with fluids in thermodynamic states where attractive forces 
have an important role. 

For shear viscosity in the dense regime, table 3 shows that 
better predictive results are obtained when the variational method 
is used to obtain effective diameters. A closer view of the data 
in this dense regime shows that, at co%stant density as the 
temperature increases in the range 0.8 < T < 2.7 calculations go 
progressively from underestimating to overestimating the n’s, no 
matter what scheme is used. Calculations with BH, WCA and VW 
schemes start at around zero percent and go to more than 50% above 
the MD results, in this range of temperature. Calculations with 
these schemes behave in almost the same way although, with WCA 
there is an additional overestimate around 10% over the other two. 
Apparently, calculations with the SM scheme are the most critically 
dependent on the temperature, since they go from -30% to more than 
70% deviations. The variational scheme in this range of 
temperature is the best option, since calculations differ from 
around -15% to around 25%. In addition, it is easy to see that, 
with the variational scheme, deviations are centered around zero. 
This is not true when the WCA scheme is used. Anothsr general 
behavior of EDHST is that at the very high densities (n >0.91, no 
matter what scheme is used to obtain the effective diameters, we 
have a very important overestimation. For the perturbative 
schemes, this overestimation trend begins at .lower densities. 
Better results are obtained again, with variational scheme, 
although with a very important overestimation. Probably, this 
behavior is due to the failure of the 
approximation to obtain the xc. 

Carnahan-Starling 
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For the case of bulk viscosity table 3 shows that with all 
schemes to obtain the diameter, we have about the same predictive 
capability. The most important feature of bulk viscosity 
calculations with EDHST is the failure of this procedure to give 
good results at low temperatures. They go progressively from,a 
underestimation in the range of -60% at temperatures about T BI 
0.66, to an overestimation of the order of 20% at temperatures 
about T p! 2.7. Perturbatlve schemes show this behavior, but they 
can overestimate by more than a 30%. at high temperatures. DHST 
using the variational method can predict bulk viscosities with 20% 
of error when temperature is above T = 1.3. This is not true for 
the perturbatlve schemes in particular for the better option of the 
q, this percent of error occurs in the temperature range of 1.2 < 
T c 2.2, only. Therefore, the use of the variational scheme 1s a 
better option to predict bulk viscosities, mainly when the 
temperature is above 1.2 or 1.3. 

The results for mixtures using the equivalent one-fluid are 
presented in table 4. Following Vogelsang and Hohelsel (19881, we 
characterize the LJ binary mixture by a vector containing four 
quantities, 

where p and Y are defined by 

o- 
22 

=pcll and c~~=v~~~, 

and F and v 12 12 give are defined by 

o- 
12 = cIl2 

hrll+ (P22v 2 and E 
12 

=v l2 (cl*+ E22v 2. (5) 

For table 4, the magnitudes of fl and r1 are unimportant, 
since reduced units are used. In order to compare with the MD data 
given by Vogelsang and Hohelsel (1988). we made our calculation for 
equlmolar mixtures with the same parameters and values for p and v 
given by these authors: 

for systems Al-A5 p = 1, v = 2 

for systems Bl-B5 w = 1.4, v = 1. 

TABLE 4 

Deviation between EDHST in the equivalent one-fluid approximation 
and MD. 

Al 1.74 128.25 1 0.8 -8.7 9.7 -36.7 -31.6 8.0 28.2 
A2 1.74 135.38 1 0.9 -1.2 18.7 31.9 42.6 
A3 1.74 142.50 1 1.0 -10.7 7.2 68.3 81.9 8.7 28.9 
A4 1.74 149.63 1 1.1 -7.6 11.0 74.0 88.0 
A5 1.74 156.75 1 1.2 -5.4 13.6 40.0 51.3 6.7 26.6 
Bl 1.92 134.38 0.90 1 -17.0 -0.3 7.9 16.6 1.6 20.6 
B2 1.79 134.38 0.95 1 -18.8 -2.4 80.9 95.5 
B3 1.67 134.38 1.00 1 -15.7 1.3 72.5 86.5 5.4 25.0 
B4 1.55 134.38 1.05 1 -18.4 -2.0 34.0 44.8 
B5 1.44 134.38 1.10 1 -5.3 13.7 8.3 17.1 7.0 27.0 

P 



The results with the equivalent one fluid approximation are 
quite good when the variational scheme is used to obtain the 
equivalent one-fluid diameter. In particular for the thermal 
conductivity, no matter how the cross interactions are varied, or 
the ratio between the pure component LJ parameters, the deviation 
from the MD calculations is less than 10%. In the case of the 
shear viscosity calculations, they reveal a very high sensitivity 
to the cross interactions. If ya = 1, i.e. when the cross 
interaction is that of a hard sphere mixture (eq.51, no matter how 
the energy cross interaction changes, the use of the variational 
scheme gives better results. On the other hand, if there is no 
additivity, i.e. p *l, the use of perturbative schemes is a better 
option than the va:fatianal scheme. For bulk viscosity, from table 
2 we can see that no matter how the parameters are varied in 
general the use of the variational scheme is better. 

ACTUAL FLUIDS AND EXTENSIONS 

The above discussion can be applied when EDHST is compared 
with actual fluids like argon. In figure 1. percent deviations 

Fig. 1. Percent deviation of predicted n’s from experimental data, 
versus reduced density. for six different reduced temperatures, and 
several prescriptions to obtain the state-dependent hard-sphere 
diameters.(o) MC/BS; (+l BH; (01 VW; (Al WCA. 



effective diameter. As expected, for thermal conductivity the 
percent deviations are less than for the shear viscosity when the 
MC/RS scheme is used (similar deviation charts for h can be seen in 
Castlllo and Orozco, 19901. 

The effective-diameter hard-sphere theory can be extended to 
deal with fluids lnteractlng through the gausslan overlap potential 
(Berne and Pechukas, 19721.. The effective diameter is obtained 
through the perturbation expansion method for nonspherical fluids 
given by MO and Gubbins (1975). Figure 2 shows our calculations 
for a fluid with an,anlsotropy parameter of 1.5, for several 
reduced densities at T = 1.5. A thorough evaluation of this method 
is presently under way. Variational method can be generalized too. 
Here, the free energy of a f luld interacting through the gausslan 
overlap potential is developed in terms of a hard-nonspherical 
f luld. An effective diameter to deal with this fluid can be 
obtained. The results will be published shortly. 
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Fig. 2. Reduced shear viscosities (+I and reduced thermal 
conductlvltles (01 for a fluld with an anisotropy parameter of 1.5 
at several states. The effective diameters were evaluated 
according to MO and Gubblns (1975). 
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CONCLUDING REMARKS 

In this work we found that the EDHST can estimate the 
transport properties of Lennard-Jones fluids, actual fluids, and 
their mixtures, if we are in the dense regime and use the 
variational scheme (MC/RSl to obtain the effective diameters. 
Generally speaking, this is true for the thermal conductivity, the 
shear vjscosity, and for the case of the bu&k viscosity, if we are 
above T =1.2. At the very high densities, n > 1, the EDHST can not 
be used. At low densities, EDHST with VW diameters can be used to 
estimate shear viscosities at reduced densities between 0.05 and 
0.15. At higher densities it is better to use the variational 
diameters. 
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