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The purpose of this paper is to find a method for calculating the free energy and the transport 
properties of a fluid made up of nonspherical nonpolar molecules in the dense regime. The model 
potential used was the Gaussian overlap model with constant E. Our procedure relies on the 
assumption that at high densities the behavior of a molecular fluid is dominated by the harsh 
repulsive forces. Hence, the properties of the fluid can be given in terms of an effective hard core 
fluid. Thus, the free energy was obtained through a variational method with the aid of a 
nonspherical reference potential. The results were compared with molecular dynamics 
calculations and with calculations using a perturbation method. These results are in a close 
agreement with simulation data. In a further level of approximation the transport properties, 
thermal conductivity and shear viscosity, can be estimated with an extension of the 
effective-diameter hard-sphere theory. The results of our calculations for transport properties 
were compared with experimental data, and with calculations using the effective-diameter 
hard-sphere theory, but with effective diameters coming from perturbation theory. In particular, 
for the case of shear viscosity the results were excellent. For thermal conductivity the results are 
not that good, however, the sources of discrepancy are discussed. 

I. INTRODUCTION 

The development of fundamental microscopic theories 
devised to understand the features of thermodynamic and 
transport properties (TP’s) of molecular fluids (MF’s), 
has proven to be very difficult. This aim has been pursued 
for a long time. Therefore, alternative routes that can deal 
with realistic intermolecular potentials making our estima- 
tions little dependent on measurements are useful, if they 
allow us to make explicit calculations, even when neither 
the model potential nor the theory are exact. 

A considerable effort has been devoted to the study of 
thermodynamic properties of MF’s, and a relatively impor- 
tant progress has been acquired in the last years,’ mainly 
due to the help provided by Monte Carlo and by molecular 
dynamics simulations. For the case of TP’s of MF’s the 
situation is very different. Our capability for estimating 
these properties based on realistic physical models is very 
limited. 

In order to calculate thermodynamic properties of 
MF’s, two approaches have been used. These are based on 
perturbation or variational methods. These methods are a 
logical extension of the work for atomic fluids developed 
by Weeks, Chandler, and Andersen* (WCA) for the case 
of perturbation methods, and of the work developed by 
Mansoori and Canfield, and by Rasaiah and StelL4 for the 
case of variational methods. In the perturbation method, 
the free energy can be given as an expansion in terms of a 
reference potential (RP); here several techniques have 
been developed.’ The first step was to take as the RP, a 
potential with a spherical symmetry.5 Of course, it was 
proven that is more convenient to take a nonspherical hard 
body (HB) as the RP, since it can mimic, in a better way, 
the angular dependence of the model potential. This kind 

of RP was considered by MO and Gubbins6 in their gener- 
alization of the WCA method. In the same way, when 
variational theory is used similar facts can be found. Here, 
the free energy of the MF is bounded by the free energy of 
a RP plus a correction term. Thus, the first step was ad- 
dressed to use a RP which does not include angular depen- 
dence.7-9 The use of a nonspherical RP has not been ex- 
plored yet. 

As mentioned earlier, the study of TP’s of MF’s is 
quite undeveloped. Their study began with the the pioneer- 
ing work of Curtiss and co-workers,‘c-‘2 who found a gen- 
eralized Boltzmann equation for dilute gases in order to 
include contributions to free streaming and collisions. 
Since there, several routes have been devised mainly for 
hard-convex-body (HCB) fluids. These routes follow quite 
different lines: ( 1) derivation of kinetic equations for the 
phase space density,‘3,‘4 with solutions obtained through 
the Grad’s moment method; (2) the use of time correlation 
functions in conjunction with the method of Ernst to trans- 
form the time correlation functions into distribution func- 
tions;15 (3) the use of a Mot-i-generalized Langevin equa- 
tion method;16 (4) the use of first order perturbation 
theory, through the expansion of all terms in the time cor- 
relation functions including the propagator.‘7V’8 In spite of 
these quite formal results, an explicit evaluation of these 
methods has not been reported. 

The selection of a model potential to mimic the inter- 
action between particles of a MF is a relevant point. Al- 
though there are several different alternatives, the model 
must have two basic characteristics: it must be mathe- 
matically simple, and it must not violate too strongly our 
sense of what is physically correct. The potentials models 
mainly considered in the literature for modeling these flu- 
ids are the generalized Stockmayer model,’ the Kihara- 
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type models,1t19 the site-site models,’ and the Gaussian 
overlap (GO) mode1.20-29 In this study, we selected the last 
model. In the Gaussian overlap model, a molecule is re- 
garded as an ellipsoidal Gaussian distribution of matter 
density, and it is assumed that when the distributions over- 
lap slightly, the pair potential is proportional to the overlap 
volume integral of the distributions. The original model 
was devised primarily to give a simple expression for the 
orientation dependence of molecular interactions, and fur- 
ther modified to give a realistic r dependence.*’ This model 
can describe oblate as well as prolate shapes of arbitrary 
anisotropy, and the shape of the molecular core is modeled 
correctly, at least qualitatively. The main problem of this 
model potential is related with the failure to yield correctly 
some long-range interactions, and of course the correct 
multipolar behavior. Some of the most important features 
of this model, and its relation with other models can be 
found in Refs. 21, 23-26, and 29. The GO potential can 
be expressed as 

~(T,u~,uz)=~E(u~,u~)([(T(P,~I,~~)/~I’* 

- b(~,ur,u2vr161, 

with 

(la) 

1 
cr(Iz,u~,u*)=o~ ‘-5x 

I ( 

(P’U~+f’U*)* 

l+xu1 ‘U2 

+ 
(hll-i*Il*)* 

11 

-l/2 

l-~u~‘u* ’ (lb) 

and 

E(U1,U*)=EO[l-~*(U,-U*)]-“*. (lc) 

Here, ? is the unit vector in the r direction and ui and u2 
are unit vectors along the principal axis of the molecules. 
co, ao, and x are strength, range, and anisotropy parame- 
ters, respectively. a0 and x can be written in terms of the 
range parameters oII and a, characterizing each ellipsoid 
as 

uo=v%* , 

and 

x=bf, -a: l/b$ i-of I=+W[ti+ll. (IdI 
Here, K is the length to breadth ratio of the ellipsoids, such 
that K> 1 for prolate, and K < 1 for oblate molecules. 

As mentioned, the shape of the anisotropic molecular 
core is modeled reasonably well, but this is not the case for 
long-range interactions. We hope this point will be of no 
consequence in our approach for dense nonspherical fluids. 
We shall assume that the the repulsive forces,’ i.e., the 
shape of the molecules, determine the liquid structure and 
intermolecular correlations in the same way as in atomic 
fluids. 

One further advantage of the GO model is that, for 
that anisotropies of interest here, molecular dynamic cal- 
culations developed by Steele and his’ colleges24 have 
shown that thermodynamic properties of the GO model, 
are almost identical to a simpler version of this model. This 

is the Gaussian overlap model, but with constant E. This is 
called the GOCE mode1.24 The calculations with GOCE 
model are simpler than with the GO model. 

The purpose of this paper is addressed to calculate the 
free energy, and TP’s of a fluid made up of nonspherical 
nonpolar molecules in the dense regime. This fluid will be 
modeled with the GOCE potential. The free energy will be 
obtained through a variational method with the aid of a 
nonspherical RP. The TP’s of interest here will be the 
thermal conductivity, and the shear viscosity. These will be 
estimated with an extension of the effective-diameter hard- 
sphere theory (EDHST) .30 

Our procedure to calculate the free energy will be a 
direct generalization of the Rasaiah and Stel14 work for 
atomic fluids. The most important problems to be solved in 
this procedure will be the following: (a) The develop- 
ment of a specific procedure to obtain free energies for the 
nonspherical RP. In our case, we selected as the RP, the 
hard-Gaussian overlap (HGO) potential. This is defined as 

Wr,ul,u2) =Q r> @,Ul ,u2), 
(2) 

w~lq,u2)=03> r<0(i,u,,u2). 

(b) The explicit calculation of the pair distribution func- 
tion (PDF) for the HGO. 

In order to solve the first problem, we compared sev- 
eral geometric properties of hard ellipsoids (HE) and of 
HGO cores. We found that for length to breadth ratios 
within the interval of [0.5,2.0], the HGO cores and the HE 
are the almost identical. Hence, the excess free energy of 
the HGO can be estimated through integration, of the HE 
state equation given by Boublik.3’ For the PDF, we studied 
several approximations. The best results were obtained 
with a procedure given by Steele and Sandler.32 

The calculation of TP’s for the GOCE fluid can not 
proceed directly, since it is not possible in the present state 
of kinetic theory. Studies in simpler cases as those related 
to the HCB mentioned earlierlO-‘* can be an example. Ef- 
forts to deal with realistic potentials have been reported 
only for “simple fluids”, i.e., the atomic fluids, and they 
have proven to be very difficult.33-37 Formally, kinetic the- 
ory has been developed only for the hard-sphere fluid,38*39 
the square-well fluid,-* and for systems interacting 
through a spherical hard-core plus an attractive tai1.33-37 
Even in these cases, there are several issues that remain to 
be solved.36*42 

Here, we will test a procedure that is an extension of 
the EDHST.30 Probably, since the time of Enskog and 
latter, with the recognition that the dynamics of atomic 
liquids is mainly determined by the repulsive part of the 
interaction potential, there is a common belief that hard- 
sphere expressions can give good estimates of the TP’s of 
actual fluids, if some state-dependent effective hard-sphere 
diameter is used. However, until the developing of the ki- 
netic mean field equations, this issue could be included in 
the framework of kinetic theory. There are two lines of 
approach that give the appropriate theoretical support to 
the EDHST. The first one is based on the use the maximi- 
zation of entropy principle subject to constraints developed 
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by Stell and his collaborators.33-36141 The second was de- 
veloped by Sung and Dahler using a Mori-Zwanzig for- 
malism.37 These two approaches derived originally by dif- 
ferent means can be related.36 

In order to extend the EDHST to obtain the TP’s for 
MF’s in the dense regime, we will assume that the dynam- 
ics of the fluid is mainly determined by the repulsive part of 
the nonspherical interaction potential, that is, by the HGO 
potential. Hence, we assume that a reasonable good cari- 
cature of the TP’s of the GOCE model fluid at high den- 
sities could be obtained through the HGO fluid. The pa- 
rameters of the best HGO body that can represent the 
GOCE potential, at some specified thermodynamic state, 
can be given by the the free energy calculation using the 
variational method. However, the TP’s of the HGO model 
are not known either. Hence, we will follow a heuristic 
approach. In a further level of approximation, we could 
estimate these properties through hard-sphere expressions, 
if some method is implemented to obtain an effective hard- 
sphere fluid in terms of the parameters of the HGO fluid 
and of the thermodynamic state. Accurate estimates are 
expected, if the anisotropy of the original molecules to be 
modeled is not so large. In particular, to obtain this effec- 
tive fluid we followed the Bellemans’ method.43 

Quite recently we have used a similar scheme, but us- 
ing the perturbation method with good results.44 Following 
the same line of reasoning presented earlier, but using the 
blip function theory formalism,2~6~45 the properties of the 
system were given in terms of an appropriate HGO fluid, 
and in a similar way, the TP’s properties of HGO were 
obtained through hard-sphere expressions following the 
procedure given in the blip function theory to deal with 
nonspherical potentials.6 

The paper is organized as follows. In Sec. II the theory 
for the variational technique is developed in order to obtain 
the free energy for the GOCE fluid, and the procedure to 
obtain the TP’s of the GOCE model through the hard- 
sphere kinetic theory. The specific details to obtain the 
state dependent effective diameter for the effective hard- 
sphere fluid in terms of the model potential will be pre- 
sented here. In Sec. III we make some comments about the 
data used in order to compare our results. Finally, in Sec. 
IV, the numerical results are presented and discussed. 
Here, a comparison between several procedures to obtain 
TP’s and experimental data is presented. 

II. THEORY 

A. Free energy 

In this section we will describe our procedure devised 
to obtain the free energy for the GOCE fluid. Our starting 
point will be the inequality that gives an upper bound to 
the excess free energy for the GOCE system in terms of the 
excess free energy of a reference fluid, i.e., the HGO fluid. 
The excess free energy obtained in this way does not in- 
clude the contribution due to translational and rotation. 

In general, for a nonspherical model potential, 
@( ri2,w1 ,w,) describing the interaction in a MF, we can 
define a HB through the nonspherical potential expression: 

Q”(h2,q,w2) =O, r12>d(mlw2), 
(3) 

Here, r12 is the vector separating the centers of molecule 1 
and 2, with molecular orientations 01 and ~2 (Oi=~i,Qi,Xi 
for nonlinear, and 6i,#i for linear molecules, respectively), 
and ~(w,,o~) is the closest distance between these two 
particles.- 

The free energy of the model potential and of the HB 
can be related, using the Gibbs-Bogoliubov inequality:46 

s drNdmNF ( rN,oN) log F( rN,aN ) 

> 
s 

drNdaNF( rN,WN)log G( rN,aN), 
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where F and G are two integrable, positive, arbitrary con- 
figuration space functions, defined in such a way that 

s drNdoNF ( rN,mN) = 
s 

drNdmNG( rN,tiN), (5) 

one can obtain a bound for the free energy of a MF, se- 
lecting F and G as 

F(rN,aN)=exp@[AAo--Y”(rN,oN)]) 

and 

G(rN,oN)=exp@IIAA-Y(rN,aN)]}, (6) 

where hA” refers to the excess free energy of the reference 
fluid, AA to the model fluid, and fl= l/kT. Limiting our 
derivation for systems where the total potential is given as 
a sum of pair terms, 

Y(rN,coN) = C @(rij,@i9@j), 

i#i 
(7) 

we can obtain from Eq. (4) the following expression: 

PhA/N@AA”/N+2?rPp Wr,q,w2) 
s 

xg”(r,wl,w2)?drdwldw2. (8) 

The zero superscript refers to properties related with 
@‘( r,0102), N is the number of particles, p is the number 
density, and go is the PDF. The function W(r,w,w,) is 
defined as 

Now, restricting our derivation for the case of interest 
here, i.e., the GOCE and the HGO potentials, W( r,q ,w2) 
can be written as 

Here, following the same line of reasoning given in the 
work of Rasaiah and Stell,4 a factor c is introduced in Eq. 
( 10). This factor will define the size of the HGO potential 
for the reference fluid, as d(wl,w2) =c0(u1,u2,P), and it 
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will be chosen in such way that the right side of Eq. (8) 
will be a minimum. The procedure will be described later. 

The inequality (8) can be written as 

BM/~<l4c,p*,T*h (11) 

using the dimensionless variables p* = po$, d* =c3p*, 
T* = kT/e, , and y = r/co,,, where 

tC’(c,p*,T*) =j3AA”/N+2nT*-‘p*~-3[IA(s*) 

+ (P- 1 )I,(d*) 1 (12) 

with IA (d*) and IB( s*) given by 

I,@+)= Jam 4[ (E)12-(f)6]gO(~,~102;d*~ 

(13) 

IB(d*) = 
I 0 

m 4 f 
0 Y 

‘z$(y w,w2+)$dy dw do 2 9 1 29 

(14) 

where f is (o/co). 
These equations are an extension of the Rasaiah and 

Stell work4 given for the atomic fluids. Although, they used 
a Pad& approximant for estimating the free energy of the 
RP fluid (hard-sphere in their case), that formula is equiv- 
alent to that obtained by integrating of the Carnahan- 
Starling (CS) equation of state.47 Since, the latter is sim- 
pler, we used an equation of state for hard nonspherical 
particles that can be reduced to the CS equation for the 
spherical case. One of the most confident state equations 
for this kind of system is that suggested by Boublik.31 This 
gives good results when compared with computer simula- 
tions, and can be written as 

The factor (((~(P,u~,u~)/~~)~)~~~~ plays a significant 
role in molecular fluid models, like GOCE, HGO, and HE. 
Here, the angular brackets denote angular integration. In 
these models, some formulas of thermodynamic properties 
can be written as an expression involving a function de- 
pending on r only, equal for the three models, times that 
factor. The factor (((~(P,u~,u~)/~~)~)~,~~ is almost the 
same for the HGO, and for the HE. We have calculated 
and compared this factor for both systems and they are 
very close; the difference is less than 0.1%. This can be 
expected from the way in which the GO mode12’ definition 
relies on the ellipsoidal geometry. Reduced virial coeffi- 
cients of systems made up of HE and of HGO can be an 
example, that illustrates this property. They have been 
compared by Bhethanabotla and Steele.25 They found that 
these coefficients are almost identical for both systems if 
they have the same value of K. 

The aforementioned comments clearly suggest that the 
HGO and the HE are almost the same bodies. Therefore, 
the HGO fluid geometric parameters can be estimated 
through the hard ellipsoid fluid geometric parameters. 
Some authors have followed the same approach of using 
the same parameter a for HGO and HE bodies, provided 
that they have the same K and oo. The work of Boublik and 
Diaz-Peiia49 devoted to find a state equation for the HGO 
system can be an example. 

+5a7j3]/( 1 -v)3. (15) 

From here, the expression for the excess free energy of the 
RP fluid needed in Eq. (12) can be obtained straightfor- 
wardly: 

+ (6a2-5a-l)ln( 1-v). (16) 

In these equations, ?I= pV, V is the volume of the HB, 
a=RS/3 V, R is ( 1/4~) times the mean curvature inte- 
gral, and S is the surface area of the the HB.19 

Now, the volume needed in expression (16) can be 
calculated with the formula V=~oc~/6. In the same way, 
a can be evaluated by the expressions given by Isihara.” 

The PDF required in Eqs. (13) and (14) was calcu- 
lated following the approximate procedure given by Steele 
and Sandler.32 Since, in the dense regime, the repulsive 
forces determine the fluid structure, the approximated 
equation for the PDF of the reference fluid can be written 
as32 

The excess free energy of the reference HGO fluid can 
be evaluated, if the geometrical parameters (volume, sur- 
face, and R) of the particles composing the fluid are pro- 
vided. However, this information cannot be easily obtained 
from the interaction potential (2), because this only gives 
information about the separation between the centers of 
two particles when they come into contact for a given ori- 
entation. Hence, instead of being engaged in complex geo- 
metrical problem to obtain the mentioned geometrical pa- 
rameters, we followed a different method. We assumed that 
the HGO fluid geometric parameters can be obtained 

gO(rmw2) =AS(r)exp[ -P*“(r,qw2> I, (17) 

where 9, is expressed in terms of a convenient spherical 
reference potential (SRP), u,(r) . In order to find this SRP, 
Steele and Sandler32 used the WCA method. For our case, 
the equation defining u,(r) is given by 

s 
Cexp[-P~O(r,WIW2)l--exp[--pu,(r)l) 

y,(r) dr dwldw2=0. (18) 

Besides, in order to avoid density and temperature depen- 
dence of the SRP, the following condition must hold:32 

exp[ -SW> I= (exp[ -P@“(~tw2>l )wloz. (19) 
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through the geometric parameters of a HE fluid. This can 
be justified, with the following considerations. 

If a comparison is made between the contact functions 
d( wi ,w2) for HGO and HE bodies, i.e., the closest distance 
of approach of two molecular centers for a fixed orienta- 
tion, both at the same K and a,, we found differences of the 
order of 0.5% in the worst case, when 0.5 <K < 2.0. The 
contact functions for the HE’s were obtained with the Per- 
ram and Wertheim algorithm.48 
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TABLE I. Parameters of the integrals IA and I,. 

K 0.5 1.3 1.55 

A” 
1.1795 1.0247 1.0697 

-0.5222 - 1.1869 - 1.4740 
B -0.1516 -0.7157 - 1.1695 
C -0.0179 -0.1660 -0.3773 
D 0.0503 0.8910 2.9622 
E 0.2580 0.5863 0.7281 
F 0.1969 0.7505 1.5188 
G 0.0286 0.1681 0.6027 
H 0.0599 0.5140 3.5301 

The calculation of the function js( r) was done with the 
Perkus-Yevick theory, and the Omstein-Zernike integral 
equation was solved using the algorithm of Labik, Mali- 
jevsky, and Voiika.5’ 

Now, the integrals IA and IB given by Eqs. ( 13) and 
( 14) can be performed once the PDF is provided. These 
integrals are functions of the density only. Thus, a polyno- 
mial was fitted to each integral, for several values of K, in 
the form 

I/,=A+ Bd*+Cde2+Dde3 9 

IB=E+Fd*+Gd*2+Hd*3. 
(20) 

The values for these constants are given in the Table I. 
Finally, with the set of expressions given, the factor c 

defining the size of the HGO model for the reference fluid 
can be found, in such a way, that the right side of Eq. ( 11) 
can be minimized by an iterative calculation. 

B. Transport properties 

As mentioned in Sec. I, for the case of the atomic fluids 
there are two well connected starting points to obtain a 
procedure for estimating TP’s, based on kinetic mean field 
theories.33*45 However, this is not the case for the inter- 
action potential of interest here. Thus, an adaptation of the 
Enskog theory for fluids interacting through the GOCE 
model is implemented here, with the procedure of Sung 
and Dahler45 given for the Lennard-Jones (LJ) interaction 
as a guide. 

The basic idea to obtain TP’s in our approach is quite 
simple, and it is responsible of much of the progress done 
in the equilibrium theory of dense molecular liquids. In a 
dense fluid, the repulsive forces which are nearly convex 
hard-core interactions dominate the liquid structure. 
Hence, we expect that attractive forces, dipole-dipole in- 
teractions, and any other slowly varying forces play a mi- 
nor role in the fluid behavior. Thus, if a dense liquid is 
composed of nearly spherical molecules, its structure 
should be very similar to that of a HCB fluid. Now, in a 
further level of approximation, this HCB fluid can be de- 
scribed in terms of a fluid made up of hard spheres of an 
appropriate effective diameter, a fluid that can be handled 
with the hard-sphere kinetic theory in order to predict the 
thermal conductivity (A) and the shear viscosity (q) of 
our original fluid, i.e., the GOCE model fluid. Of course, 
since the HCB characteristics depend on the thermody- 
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namic state in order to reflect the somewhat soft repulsive 
r dependence of the model potential, and on the anisotropy 
parameters of the GOCE model, the effective diameter of 
the hard-sphere fluid must do the same. The reference fluid 
that dominates the structure of the molecular fluid have 
been characterized in the free energy calculation given ear- 
lier. Thus, following our basic assumptions the TP’s of 
our model system in the dense regime can be calculated 
through the evaluation of the TP’s of a hard sphere fluid 
with an effective diameter do. To obtain this effective di- 
ameter we used the Bellemans’ method,43 which should 
apply provided the anisotropy of the HCB is not too great. 
Here, the contact distance d(w, ,w2) can be expanded as 

d(wl,w2,a) =do+ay(~~,G&, (21) 

where y(oI,w2) is defined so that d(w1,w2,a=1) 
=d(q ,w2), and do is the effective hard sphere diameter 
given by 

(22) 

Once the effective diameter is calculated at some ther- 
modynamic state, the TP’s for the GOCE fluid can be 
obtained using the Enskog kinetic theory. 

Hence, following our basic assumptions, the TP’s of 
our model system in the dense regime can be estimated 
through the evaluation of the TP’s of the hard-sphere fluid 
with the effective diameter do. We hope that this procedure 
will improve the estimation of TP’s of actual fluids, since 
there is a large body of evidence52-55 that support the idea 
that the predictions of the Enskog theory can be made to 
agree with the experiment quite well, when an effective 
diameter is introduced. The actual potential in these fluids 
is probably better modeled with a three parameter poten- 
tial, like the GOCE model, than with a two parameter 
potential, as is commonly used.52-55 

The hard-sphere kinetic theory that will be used here, 
is the so called revised Enskog theory (RET) first derived 
by van Beijeren and Ernst.38 Here, the hard-sphere radial 
distribution function is the same functional of the number 
density as the radial distribution function of a system in 
nonuniform equilibrium. The RET equation can be solved 
by the use of the Chapman-Enskog solution method. The 
molecular fluxes and the transport coefficients for dense 
hard-sphere fluid, up to the Navier-Stokes level, can be 
directly obtained on the basis of the procedure used in 
Refs. 39 and 56. Here, we only present the final expres- 
sions to obtain the TP’s for pure fluids: 

where 

A’=$ [ 1+f(f 7md~“) +0.7575($ mdf)2]A~, (24) 

(25) 
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75k rkT ‘I2 
h=64?r$m * ( ) 
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TABLE II. Parameters for the GOCE model (from Ref. 21). 
(26) 

In these expressions, n is the number density, (T is the 
hard-sphere diameter, m is the mass of the particle, xc is 
the pair distribution at contact, T is the absolute temper- 
ature, and k is Boltzmann’s constant. 

The evaluation of Eqs. (23) and (24) requires the 
knowledge of xc. We used the approximate expression of 
Carnahan and Starling,47 since it appears to be quite accu- 
rate when compared to molecular dynamics data. 

MD calculations have proven that Enskog’s expres- 
sions for transport coefficients are not exact, since these do 
not take into account velocity correlations in the dense 
regime. Correction multiplicative factors to the Enskog ex- 
pressions have been given by Dymond” (Dymond’s cor- 
rection) for shear viscosity and thermal conductivity, al- 
though for the case of shear viscosity van der Gulik and 
Trappeniers5* have modified these expressions on the basis 
of the computations given by Michels and Trappeniers.” 
The correction factors are 

Benzene 
Nitrogen 
GOCE GOCEl GOCEZ 

Gl (A) 3.37 6.3 6.474 
e. (k/E’ 1 94 300 265 

K 1.3 0.5 0.5 

C,,= 1.02+ 10.61(n*-0.495)3 

The molecular dynamic simulation results useful for 
the comparison of the free energy were obtained from the 
work of Sediawan et ai., for different values of density, 
temperature, and K. They reported simulations for ~=0.5 

and 1.55, at reduced temperatures of 1.0 and 1.5, and for 
K= 1.3 at reduced temperatures of 1.0, 1.5, 2.0, and 3.0; in 
both cases, in a wide range of densities. 

The parameters for the GOCE potentials used to 
model nitrogen and benzene, are shown in Table II. The 
accurate experimental data for nitrogen were obtained 
from Sthephan et al. 62 and Jacobsen et a1.63 and, for ben- 
zene, from Ramires et aLM and Assael et al.65 

+247.49(n*-0.813)3, n*>0.813 

=1.02+10.61(n*-0.495)3, 0.593<#<0.813 
IV. RESULTS AND DISCUSSION 

= 1.02, 0.593 > n* (274 

CA=0.99+0.1597n*-0.7464n*2+ 1.2115n*3-0.5583n*4. 

A. Free energy 

In all of the previous equations n*=nd. 
(27b) 

III. THE SOURCES OF EXPERIMENTAL DATA 

Accurate values from computer simulations are needed 
to make a stringent test of the procedures developed ear- 
lier, for calculating the free energy, and the TP’s of the 
GGCE fluid. For the case of the free energy, there are 
enough published data to make this comparison. However, 
for the case of TP’s, as far as we know, there are no pub- 
lished data for this model. Although some data have been 
published for molecular fluids,60*61 they are not useful in 
the discussion of our results. Hence, we used experimental 
data to make our comparisons, although, unfortunately, 
there are only three fluids characterized in the context of 
the GOCE potential.21 These are nitrogen, benzene, and 
carbon dioxide, and their parameters, i.e., eo, ao, and K, 

were fitted in order to reproduce thermodynamic proper- 
ties. 

To evaluate the usefulness of our procedure, the free 
energy of the GOCE fluid was calculated, as described in 
Sec. II A, and compared with results coming from molec- 
ular dynamics simulations. In addition, our calculations 
were also compared with the excess free energy calcula- 
tions obtained with perturbation theory. This is the blip 
function theory developed by Weeks, Chandler, and 
Andersen,2 but generalized to molecular fluids. The per- 
turbation theory calculations were obtained from the work 
of Boublik,28 and of Singh et al.29 The excess free ener- 
gies calculated with our procedure, with the perturbation 
theory, and the molecular dynamics data, are presented in 
Figs. l-3. 

It is clear that the comparison to be presented could 
not be a good test of our procedure to estimate TP’s, not 
only by the fact that actual fluids do not interact through 
the GOCE model, but, in addition, there is not enough 
information to support the quality of the reported param- 
eters in the estimation of TP’s. TP’s appear to be quite 
sensible to the potential parameters, at least, this is the case 
for atomic fluids. In particular, we have not used the pa- 
rameters for the carbon dioxide, since they have shown 
some drawbacks to fit thermodynamic properties.2’ 

FIG. 1. Comparison between the excess free energy from molecular dy- 
namics data (MD), variational theory (VT), and perturbation theory 
(PT) for GOCE fluid, with a length to breadth ratio of 1.3. 
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- MD 

-1.5 - m  VT 
x PT 

-2 - 
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P' ' 1.2 "4 '& 

FIG. 2. Comparison between the excess free energy from molecular dy- 
namics data (MD), variational theory (VT), and perturbation theory 
(PT) for GGCE model, with a length to breadth ratio of 0.5. 

In Fig. 1, the values for the excess free energy of the 
GOCE fluid are presented, for a particular length to 
breadth ratio (K= 1.3), at several reduced densities and 
reduced temperatures. We can see there that our procedure 
gives the correct qualitative behavior as compared with 
molecular simulations. Our results are little bit above the 
molecular simulation data, as expected from a variational 
procedure, since it gives an upper bound for the free energy 
of the GOCE fluid. Thus, as a rule variational theory will 
overestimate. From a quantitative point of view, our pro- 
cedure, in spite of the underlying approximations, is quite 
good. The percent deviation from simulations is on the 
average of the order of 4.7% upwards, for the temperatures 
and the densities presented in Fig. 1. However, in some 
regions it is very close to molecular simulation data 
(T* > 2, and p* > 0.6). When the precision of our calcu- 
lations are compared with that of the perturbation theory, 
we found that perturbation theory is, in general, closer to 
simulation results. The percent deviation of perturbation 
theory calculations from molecular dynamics data is 

A;.;zy+T*- 1.5 ; :--:--:“i 
i 

- MD 

-1.5 * VT 

x PT 

-2 

t 
-2.5 

t 

-.I 

0.1 0.2 0.3 

P' 
0.4 0.5 0.6 

FIG. 3. Comparison between the excess free energy from molecular dy- 
namics data (MD), variational theory (VT), and perturbation theory 
(PT) for GOCE model, with a length to breadth ratio of 1.55. 

0.85 I j(=O.S 
+ f + + + + 
- . . . + + + + 

. . . . * . 

0.75’ ’ I I I t 
0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.8 1.7 1.8 1.9 

T' 

FIG. 4. Effective diameters as a function of reduced temperature, 
T*=kT/ee, for the GOCE model obtained from variational (VT) and 
perturbation (PT) theories, at two length to breadth ratios (p&=0.6). 

around 3.1%, for the cases presented in Fig. 1. However, at 
high densities and high temperatures the variational theory 
calculations are closer to simulation data. 

In Figs. 2 and 3, we present the same kind of results as 
earlier, but for other two values of the length to breadth 
ratio (~=0.5 and ~=1.55). Since the lack of simulation 
data, we present our comparisons for two temperatures 
only. These figures show almost the same features as de- 
scribed for Fig. 1. At a temperature T* = 1, perturbation 
theory gives better results. However, at T* = 1.5 for K= 0.5 
and K= 1.55, both theories present almost the same devia- 
tion from simulation data. The overall percent deviation 
when ~=0.5, is of the order of 2.8% for perturbation the- 
ory and of 3.1% for variational theory. For K= 1.55, the 
the percent deviation is of the order of 3.3% and of 4.6%, 
for perturbation and variational theories, respectively. 

From Fig. 2, we can see that there is a point, at 
T*= 1.5 and p*= 1.7, where the value of the excess free 
energy obtained by the variational technique is less than 
the value of molecular dynamics. It is not clear if the origin 
of this strange result comes from our procedure or from 
the precision of the simulation. 

B. Transport properties 

Shear viscosity and thermal conductivity for the 
GOCE fluid were calculated using the effective diameter 
hard sphere theory in the way described in Sec. II B. 
Hence, our first point to study was the behavior of the 
effective diameters, do, at different thermodynamic states. 
Figures 4 and 5 present the behavior of the effective diam- 
eters obtained through Eq. (22) with respect to tempera- 
ture and density. In addition, we included in these figures 
the effective diameters obtained with the perturbation the- 
ory for the GOCE fluid.44 

Figure 4 shows that the effective diameter, as expected, 
decreases as the temperature increases. As also expected, in 
Fig. 5 we show that at high densities the effective diameter 
decreases as density increases. The effective diameters cal- 
culated with the variational theory are always below the 
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FIG. 5. Effective diameters as a function of reduced density, p*= p&, for 
the GOCE model obtained from variational (VT) and perturbation (PT) 
theories, at two length to breadth ratios (W/e,,= 1.4). 

effective diameters calculated with the perturbation theory, 
in the same way as in the case of potentials with spherical 
symmetry.33 This only reflects the difference between 
both approaches. This difference increases at high densi- 
ties. 

Figure 6 shows an example of the behavior of the re- 
duced shear viscosity (q* = qdd &), and of the re- 
duced thermal conductivity (/2* = ;la& &&) for the 
GOCE fluid with a length-to-breadth ratio equal to 0.5, 
both as a function of the reduced density. In Fig. 6 we also 
included the calculations using the EDHST with the effec- 
tive diameter calculated with perturbation theory. As we 
can see, when variational theory is used to obtain the ef- 
fective diameters, the TP’s are smaller than when the di- 
ameters are calculated with the perturbation theory. Of 
course, this result only reflects the difference between the 
effective diameters obtained by those theories, at the same 
thermodynamic state. A similar behavior has been re- 

0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.8 0.8 0.7 0.7 0.6 0.6 0.9 0.9 

P  P  

, , 

FIG. 6. Reduced transport properties (n* = n@&; A.* 
= k$/k&) given by EDHST as a function of reduced density, 
p*=pdO, evaluated for systems interacting with GOCE potential, with 
K=0.5 and kT/e,,= 1.4. 

- EXD.  

250 x EDHST-VT 
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0 
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FIG. 7. Comparison between shear viscosity calculations for nitrogen 
along the liquid coexistence curve and experimental data. Calculations 
were performed with EDHST for nitrogen modeled with the GOCE po- 
tential, and the effective diameters were obtained with variational theory 
(EDHST-VT), and with perturbation theory (EDHST-PT) . The units of 
shear viscosity are Pa s and the temperature is given in K. 

ported when EDHST is used to study the TP’s of the LJ 
fluid.30 

In Fig. 7, our predictions for the shear viscosities of 
liquid Nz, modeled with the GOCE model potential along 
the coexistence curve and the experimental data, are pre- 
sented. Here, the shear viscosities are calculated with the 
EDHST, but in two versions. In the first one the effective 
diameters are calculated with variational theory, i.e., Eq. 
(22). In the second one, the effective diameters are calcu- 
lated with the perturbation theory; for details see Ref. 
44. As we can see in Fig. 7, the results when the varia- 
tional theory is used are remarkably good. These results 
are quite better than those obtained using EDHST, but 
with the actual fluid modeled with the LJ potential.66 

In order to compare thermal conductivities with exper- 
imental data some corrections must be introduced related 
to the internal degrees of freedom. Until now, we have 
considered that the process of energy transfer is only due to 
translation of the molecules. For thermal conductivity, a 
contribution of rotational and other internal degrees of 
freedom is expected, although in the range of few percent. 
52 Hence, if we want to compare our calculations using 
EDHST and experimental data, we need to take into ac- 
count the contribution to transport from the internal de- 
grees of freedom. In order to consider this, we followed the 
same approach as in previous works,6749 and suggested by 
the work of Mason and Monchick7’ for polyatomic gases 
in the dilute regime, on the basis of Wang-Chang-de Boer 
theory.” Mason and Monchick showed that the thermal 
conductivity can be separated into two contributions: one 
dealing with the transfer of thermal energy due to the 
translational motion of the molecules, and one dealing with 
the transfer of energy due to changes in the internal energy 
of the molecules. Here, we will assume that the thermal 
conductivity of a dense fluid can be split into a part due to 
the transfer of energy by molecular motion and by collision 
transfer (A’), given by EDHST, and a part due to the 
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FIG. 8. Comparison between thermal conductivity calculations for nitro- 
gen along the liquid coexistence curve and experimental data. Calcula- 
tions were performed with EDHST for nitrogen modeled with the GOCE 
potential, and the effective diameters were obtained with variational the- 
ory (EDHST-VT), and with perturbation theory (EDHST-PT). The 
units of thermal conductivity are m W  m-’ K-‘, and the temperature is 
given in K. 

energy transfer associated with the internal degrees of free- 
dom of the molecules through diffusion (A”). Terms in- 
volving the interchange of translational and internal energy 
through inelastic collisions have not been considered. This 
correction will improve the EDHST results mainly at mod- 
erate densities. Thus 

A=A.‘+A”. (28) 
In addition, we assume that A” can be represented by the 
first order approximation formula given by Mason and 
Monchick for quasielastic collisions: 

A”=pDC;/M=A;/-f, (29) 

where D is the self-diffusion coefficient and n: is the inter- 
nal contribution to /1 in the dilute hard sphere gas, C’r is 
the molar heat capacity at constant volume for the internal 
degrees of freedom, and A4 is the molecular weight. 

To obtain a general formula for the evaluation of &‘, 
for real fluids, the modified Eucken correlation for poly- 
atomic gases was used69*72 

A;;=f&+R/2)q&f, (30) 

where q. is the dilute gas viscosity, q is the ideal gas 
molar heat capacity at constant pressure, R is the gas con- 
stant, M  is the molecular weight, and fint has a constant 
value of 1.32 

The values of q were obtained by an expansion in 
terms of the temperature up to sixth order. The coefficients 
used were those reported in the TKAPP computer pro- 
gram.69 

In Fig. 8, the values for thermal conductivity of N2 
modeled with the GOCE model potential along the coex- 
istence curve and the experimental data are presented. 
Here, as earlier, the thermal conductivities are calculated 
with the EDHST, in two versions. In the first one the 
effective diameters are calculated with variational theory, 

180, 

120 

1 
100’ 

290 300 310 320 330 340 “r Xi0 

T 

FIG. 9. Comparison between thermal conductivity calculations for ben- 
zene along the liquid coexistence curve and experimental data. Calcula- 
tions were performed with EDHST for benzene modeled with the GOCE 
potential, and the effective diameters were obtained with variational the- 
ory (EDHST-VT), and with perturbation theory (EDHST-PT). The 
units of thermal conductivity are m W  m-’ K-’ and the temperature is 
given in K. 

i.e., Eq. (22). In the second one, the effective diameters are 
calculated with the perturbation theory.44 As we can see in 
Fig. 8, at low temperature the variational diameters under- 
estimate /2, and at high temperatures there is a overestima- 
tion, although the percent deviation is of the order of 5% 
overall. For this case, EDHST with effective diameters 
coming from perturbation theory gives slightly better re- 
sults. 

In Fig. 9, we present the experimental data and the 
EDHST calculations for the thermal conductivities of ben- 
zene, modeled with GOCE. As before, we used effective 
diameters coming from variational and from perturbation 
theories. For this particular case, we can use two sets of 
parameters for the GOCE model potential, (see Table II). 
The results are not that good, as expected. The predicted 
values along the coexistence line are almost constant when 
the variational theory is used to obtain the effective diam- 
eters. When the perturbation theory is used to obtain the 
effective diameters, with parameters labeled as GOCE2, 
the thermal conductivities have a correct trend, but quite 
above the experimental results, and when the parameters 
labeled as GOCEI are used, we obtain results closer to the 
experimental data, but with a bad trend. One can see here 
that our procedure is very sensitive to the selection of 
GOCE parameters. This is due to the high sensitivity of the 
hard-sphere TP’s expressions to variations in the hard- 
sphere diameter. 

A clear explanation of the deviation between calcu- 
lated and experimental thermal conductivities, mainly for 
the case of benzene, is not so easy. There are several pos- 
sibilities: (a) benzene is not well modeled with the 
GOCE potential, (b) the parameters for the GOCE poten- 
tial are not of enough quality to be used in the evaluation 
of TP’s, and (c) the contribution of the internal degrees of 
freedom is not so simple as assumed here. Viscosities are 
quite well predicted, whereas it is not the case for thermal 
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conductivities. A more fundamental explanation may be 
obtained in the work of Theodosopulu and Dahler.13 They 
showed that, for nonspherical particles, the shear viscosity 
is not affected by the rotational motion, however, on the 
other hand, for the case of the thermal conductivity, the 
situation is quite different. There is a contribution of the 
molecular rotation, although it is not practicable in the 
present state of the theory. Thus, we could expect that the 
shear viscosity can be predicted more precisely than the 
thermal conductivity. 

In summary, the procedure presented in this paper 
constitutes the first attempt to predict numbers for excess 
free energies and for TP’s of molecular fluids using the 
variational theory. The results for the free energies are 
encouraging since they are very close to simulation data. 
The results for the case of TP’s are, in general, better than 
those presented quite recentlya in a similar study, where 
EDHST with effective diameter obtained with perturbation 
theory was used. We hope this type of study will motivate 
simulation work in molecular fluids, in particular, on TP’s. 

ACKNOWLEDGMENTS 

We acknowledge partial support from the DGAPAU- 
NAM and CONACYT, Grant Nos. IN 102689 and 0114E, 
respectively. J.O. acknowledges CONACYT support for 
this work. 

’ C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids (Clarendon, 
Oxford, 1984), Vol. 1. 

‘J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 
5237 (1971). 

‘G. A. Mansoori and F. B. Canfield, J. Chem. Phys. 51, 4958 (1969). 
‘J. Rasaiah and G. Stell, Mol. Phys. 18, 249 (1970). 
‘J. Fischer and N. Quirke, Mol. Phys. 38, 1703 (1979). 
6K. C. M O  and K. E. Gubbins, J. Chem. Phys. 63, 1490 (1975). 
‘S. Goldman and B. Kumar, J. Chem. Phys. 82, 4276 (1985). 
*M S. Shaw, J. D. Johnson, and J. D. Ramshaw, J. Chem. Phys. 84, 

3479 (1986). 
9D. MacGowan, J. Chem. Phys. 84, 5215 (1986). 
“C. F. Curtis, J. Chem. Phys. 24, 225 (1956). 
“C. F. Curtis and C. Mackenfuss, J. Chem. Phys. 26, 1619 (1957); 29, 

1257 (1958). 
‘*C. F. Curtiss and J. S. Dahler, J. Chem. Phys. 38, 2352 (1963) 
I3 M. Thecdosopulu and J. S. Dahler, J. Chem. Phys. 60,3567 (1974); 60, 

4080 (1974). 
“S. Jagannathan, J. S. Dahler, and W. Sung, J. Chem. Phys. 83, 1808 

(1985). 
‘“R G Cole D. K. Hoffman, and G. T. Evans, J. Chem. Phys. 80, 5365 

(1984). ’ 
“G. T. Evans, Mol. Phys. 74, 775 (1991). 
“K. C. M O  and K. E. Starling, J. Chem. Phys. 65, 3715 (1976). 
‘*S. Harris, Mol. Phys. 21, 933 (1971). 
“T. Boublik, Mol. Phys. 27, 1415 (1974). 
MB. J. Beme and P. Pechukas, J. Chem. Phys. 56, 4213 (1972). 
“T. B. MacRury, W. A. Steele, and B. J. Beme, J. Chem. Phys. 64, 1288 

(1976). 
“J. Krushick and B. J. Beme, J. Chem. Phys. 64, 1362 (1976). 
23P. A. Monson and K. E. Gubbins, J. Phys. Chem. 87, 2852 (1983). 
24V. N. Kabadi and W. A. Steele, Ber. Bunsenges. Phys. Chem. 89, 2 

(1985); 89, 9 (1985). 
r’V. R. Bhethanobtla and W. A. Steele, Mol. Phys. 60, 249 (1987). 

26W A. Sediwan, S. Gupta, and E. McLaughlin, Mol. Phys. 62, 141 
(1987). 

“T. Boublik, Mol. Phys. 65, 209 (1988). 
*‘T. Boublik, Mol. Phys. 67, 1327 (1989). 
29U P. Singh, U. Mohanty, and S. K. Sinha, Mol. Phys. 68, 1047 (1989). 
‘OR: Castillo, A. Villaverde, and J. Orozco, Mol. Phys. 74, 1315 ( 1991). 
3’ T. Boublik, Mol. Phys. 42, 209 ( 1981). 
32W. A. Steele and S. I. Sandler, J. Chem. Phys. 61, 1315 (1974). 
33J. Karkheck and G. Stell, J. Chem. Phys. 75, 1475 (1981). 
34G Stell, J. Karkheek, and H. van Beijeren, J. Chem. Phys. 79, 3166 

(1983). 
“J. Karkheck, E. Martina, and G. Stell, Phys. Rev. A  25, 3328 (1982). 
36R. Castillo, E. Martina, M. Lopez de Haro, J. Karkheck, and G. Stell, 

Phys. Rev. A  39, 3106 (1989). 
37S. Sung and D. Chandler, J. Chem. Phys. 56,4989 (1972). 
38H, van Bijeren and M. H. Ernst, Physica (Utrecht) 68, 437 (1973). 
39 J R Dorfman and H. van Beijeren, in Statistical Mechanics: . . Part B, 

edited by B. J. Beme (Plenum, New York, 1977). 
“H, T. Davis, S. A. Rice, and J. V. Sengers, J. Chem. Phys. 35, 2210 

(1961). 
4’ J Karkheck, H. van Beijeren, I. de Schepper, and G. Stell, Phys. Rev. 

i 32, 2517 (1985). 
42H van Beijeren, J. Karkheck, and J. V. Sengers, Phys. Rev. A  37, 2247 

(1’988). 
43A. Bellemans, Phys. Rev. Lett. 21, 527 (1968). 
44R. Castillo and J. Orozco, Mol. Phys. (to be published). 
45 W. Sung and J. Dahler, J. Chem. Phys. 80, 3025 (1984). 
46A. Isihara, J. Phys. A  1, 539 (1968). 
“N F. Camahan and K. E. Starling, J. Chem. Phys. 53, 600 ( 1970). 
“J. ‘W. Perram and M. S. Wertheim, J. Comput. Phys. 58, 409 (1985). 
49T. Boublik and M. Diaz-Peiia, Mol. Phys. 70, 1115 ( 1990). 
so A. Isihara, J. Chem. Phys. 18, 1446 (1950). 
“S. Labik, A. Malijevsky, and P. Voiika, Mol. Phys. 56, 709 (1985) 
52R. Castillo and J. Orozco, Physica A  166, 505 ( 1990). 
53R Castillo and S. Castaiieda, J. Non-equil. Thermodyn. 14, 69 ( 1989). 
s4J ‘C. G. Calado, J. M. N. A. Fareleira, U. V. Mardolcar, and C. A. 

Nieto de Castro, Int. J. Thermophys. 9, 351 (1988). 
55J. H. Dymond, Q. Rev. Chem. Sot. 3, 317 (1985). 
56M. Lopez de Haro, E. G. D. Cohen, and J. Kincaid, J. Chem. Phys. 78, 

2746 (1983). 
57J. H. Dymond, Physica, 75, 100 ( 1974). 
“P  S. van Der Gulik and N. J. Trappeniers, Physica A  135, 1 ( 1986). 
5g J.’ P. J. Michels and N. J. Trappeniers, Physica A  104, 243 ( 1980). 
6oJ. J. Magda, H. T. Davis, and M. Tirrel, J. Chem. Phys. 85, 6674 

(1986). 
6’D. T. Evans and S. Murad, Mol. Phys. 68, 1219 (1989). 
62K. Stephan, R. Krauss, and A. Laesecke, J. Phys. Chem. Ref. Data 16, 

993 (1987). 
63R. T. Jacobsen, R. B. Stewart, and M. Sahangiri, J. Phys. Chem. Ref. 

Data 15, 735 (1986). 
“M. L. V. Ramires, F. J. Vieira dos Santos, U. V. Mardolcar, and C. A. 

Nieto de Castro, Int. J. Thermophys. 10, 1005 (1989). 
65M. J. Assael, M. L. V. Ramires, C. A. Nieto de Castro, and W. A. 

Wakeham, J. Phys. Chem. Ref. Data 19, 113 (1990). 
&R. Castillo, A. Villaverde, and J. Orozco. Fluid. Phase Eq. 79, 277 

(1992). 
67H. J. M. Hanley, R. D. McCarty, and E. G. D. Cohen, Physica 60, 322 

(1972). 
68H. J. M. Hanley and E. G. D. Cohen, Physica A  83, 215 ( 1976). 
6gT. Ely and H. J. M. Hanley, A  Computer Program For The Prediction of 

Viscosity and Thermal Conductivity in Hydrocarbons Mixtures, Natl. 
Bur. Stand. (U.S.) Tech. Note 1039 (U.S. GPO, Washington, D.C., 
1981). 

“E. A. Mason and L. Monchick, J. Chem. Phys. 36, 1622 (1962). 
“C S  Wang Chang, G. E. Uhlenbeck, and J. De Boer, in Studies in . 

Statistical Mechanics edited by J. De Boer and G. E. Uhlenbeck 
(North-Holland, Amsterdam, 1964), Vol. 2, Part C. 

“R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of 
Gases and Liquids, 3rd. ed. (McGraw-Hill, New York, 1977). 

J. Chem. Phys., Vol. 99, No. 2, 15 July 1993 Downloaded 03 Jan 2008 to 138.23.2.156. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp


