
The mutual diffusion coefficient for the van der Waals binary mixture 
of type I 

R. Castiilo, C. Garza, and H. Dominguez 
Instituto de Fisica. UNAM., P.O. Box 20-364 Mexico, D.F.01000 Mexico 

(Received 16 April 1993; accepted 10 September 1993) 

In the framework of the mean-field kinetic variational theory, the explicit dependence of the 
mutual diffusion coefficient of the van der Waals binary mixture with composition and 
interaction parameters is obtained. The different kinds of behavior shown by this coefficient can 
be classified according to the scheme of van Konynenburg and Scott devised to describe the 
global phase diagram of this model mixture. A numerical study to understand the concentration 
dependence of the mutual diffusion coefficients for mixtures of type I is presented here, in terms 
of molecular masses, sizes, and interaction parameters. Moreover, the behavior of the mutual 
diffusion coefficient of the van der Waals mixture is compared with that of a hard-sphere 
mixture. In addition, a comparison is made between our calculations and experimental data of 
binary systems classified as belonging to type I: HzO/D,O, hexane/heptane, toluene/hexane, 
and benzene/hexane. From the explicit model presented here, one can obtain semiquantitative 
explanations of the role played by the variables that determine the concentration dependence of 
the mutual diffusion coefficient. 

I. INTRODUCTION 

The mutual diffusion coefficient (MDC) measures the 
rate at which the concentration fluctuations (gradients) in 
a solution approach their equilibrium values. Therefore, 
the decay of these gradients to obtain the equalization of 
the concentration throughout the binary mixture takes 
place by direct change of the composition of every small 
portion of the fluid. The thermodynamic theory of inter- 
diffusion has provided unequivocal statements concerning 
the minimum number of independent coefficients required 
to describe the mass transport in an isothermal fluid con- 
taining any specified number of components.’ In some bi- 
nary systems within this framework, it is possible to dem- 
onstrate some regularities in the diffusion behavior of a 
series of related solutes in the same solvent.’ But, from a 
more fundamental point of view, theory has not been able 
to explain how the MDC is related to the intermolecular 
interaction parameters. Although some developments have 
been presented,3-‘0 the interpretation of diffusion coeffi- 
cients of binary mixtures in a more fundamental way has 
been pursued for a long time without great success. 

Probably, one of the most used theories to correlate 
mutual diffusion data relies on the empirical equations of 
Hartley and Crank.3*4V6”0 Here the MDC is related to two 
self-diffusion coefficients and it can be helpful in some ap- 
plications,6*1 ’ but these equations provide little insight into 
the nature of mutual diffusion at a microscopic level. 
Moreover, to be useful as a predictive tool two self- 
diffusion coefficients measurements are required, each of 
which is nearly as difficult to make as the direct measure- 
ment of the MDC itself. Hence, this approach has little 
value for predicting MDCs. Another approach used to cor- 
relate mutual diffusion data is the rough hard-sphere the- 
01$,8 Here a hard-sphere theory, the so-called standard 
Enskog theory’* (SET), is amended to allow for the trans- 
fer of angular momentum through the rough hard-sphere 

concept developed by Chandler.i3 This theory although 
quite popular’“” is incorrect. It relies on the standard 
Enskog theory which is at odds with linear irreversible 
thermodynamics.18 A further development in kinetic the- 
ory due to van Beijeren and Ernst” gave rise to a corrected 
version for the Enskog theory, the revised Enskog theory 
(RET). The partial success of the rough hard-sphere the- 
ory for predicting diffusion in binary solutions, nearly 
ideal, arises from the way in which it includes the correc- 
tion due to correlated motion. A density dependent correc- 
tion factor,7’8 coming from comparing SET and molecular 
dynamics simulations*’ is used. Therefore, other effects in 
addition to correlated motion are included in this correc- 
tion factor. 

The RET is prominent for transport properties, since it 
is a kinetic theory for hard-sphere fluids, beyond the low 
density limit, that can give explicit calculations.21722 The 
first computer simulation studies to test the predictions for 
the mutual diffusion coefficients given in the RET have 
been presented recently by Erpenbeck.23’24 In the most ex- 
tended work,24 that author studied equimolar mixtures 
having a diameter ratio of 0.4, a mass ratio of 0.03, and at 
volumes 5, 10, and 20 times the close-packed volume. He 
found evidence of negative deviations form the RET at low 
densities. Notwithstanding those studies, it is still an open 
question if the RET can predict correctly the MDC for 
binary mixtures of hard spheres, in particular at high den- 
sities. More simulation studies are needed to understand 
the contribution of correlated motion to the MDC in hard- 
sphere mixtures. 

In binary liquid systems with a somewhat realistic in- 
termolecular model potential, simulations of one particle 
dynamic phenomena are frequently studied to yield self- 
diffusion, but investigations of collective properties in such 
systems as the MDC are scarce. Hence, it is difficult to 
obtain a clear view of the role played by the several pa- 
rameters that influence the MDC values. The best model 
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potential studied has been the Lennard-Jones poten- 
tia1.25-31 The work of Hoheisel and collaborators29-31 has 
been particularly important to understand how the particle 
volumes and the interaction strength affect the MDC for 
equimolar mixtures, as well as the role of cross correlation. 

The purpose of this paper is to present an alternative 
route to study the mutual diffusion coefficient of binary 
mixtures. Of course, a point of interest here is to under- 
stand the effect on the MDC due to molecular masses, 
short-range forces (molecular volumes), and attractive po- 
tential interactions. There are a few model mixtures for 
which theory can be handled almost without approxima- 
tions, and can give explicit equations relating their molec- 
ular parameters to the MDC. One of these is the van der 
Waals binary mixture. Hence, this paper is addressed to 
study the MDC of that model mixture, and to show how 
this procedure can be helpful to understand the way in 
which the interaction parameters affect the concentration 
dependence of the MDC of actual systems. 

phase diagrams. The behavior of the MDC is similar to 
that of the free energy curvature, except that the MDC is 
modulated by a compressibility factor,43P44 and factors re- 
lated to the dynamics of a two-particle collision. Although, 
a preliminary survey using these ideas relating diffusion 
and phase diagram have been presented by one of us else- 
where,@ they are neither critically discussed nor con- 
fronted with actual systems. 

More than a century ago, van der Waals developed a 
simple model which turned out to be extremely fruitful in 
describing the main properties of realistic fluids. In modem 
language, a rigorous formulation of this model can be given 
by writing the molecular pair interaction in the form 

An outline of the paper is as follows. In Sec. II, we 
review the kinetic variational theory I, i.e., the van der 
Waalsian theory of transport processes. In Sec. III, the 
main features of the scheme of van Konynenburg and Scott 
are reviewed. Section IV is devoted to presenting a numer- 
ical study to understand how the different parameters in- 
volved in the van der Waals theory affect the concentration 
dependence of the MDC. In addition here, the differences 
between the calculations using the van der Waals theory 
and the RET are discussed. In Sec. V, calculations are 
presented for several actual systems belonging to the dia- 
grams of type I: H,O/D,O, hexane/heptane, toluene/ 
hexane and benzene/hexane. These calculations are com- 
pared with experimental data and with similar calculations 
performed with the RET. 

V(r) = VS(r) +ywyr>, (1) 

where Vs refers to the short-range reference system, while 
VL is the long-range part of the potential, with range y-l. 
If the properties of this model are analyzed in the limit of 
y-0, the van der Waals equation combined with the Max- 
well equal-area construction is obtained.32 Besides, the van 
der Waals theory has been developed to understand fluid 
phase equilibria in binary mixtures, and it has revealed a 
rich variety of behaviors accounting in a qualitatively way, 
for most of the types of fluid phase equilibria shown by 
actual mixtures.33’34 This model potential has been also 
used to understand a long list of related problems such as 
the theory of capillarity,35 nonuniform fluids,36 interphase 
properties,37 and density fluctuations.38 

There are several points of departure to study the mu- 

II. KINETIC VARIATIONAL THEORY 

The kinetic variational theory is defined by a set of 
coupled nonlinear mean-field kinetic equations given be- 
low, first obtained by Karkheck et ai.43 They were derived 
for a system of particles interacting through a pair poten- 
tial consisting of a hard-sphere part plus a smooth but, 
otherwise arbitrary attractive tail. The set of equations for 
the two single particle distribution functions defined in a 
binary mixture fi(rl,Vl,t), (i= 1,2), are the following: 

[&+h- &]fi(r,,vl,t) 

tual diffusion of the van der Waals mixtures,3943 although, 
the best suited for obtaining explicit expressions for the 
MDC in terms of molecular parameters is the mean-field 
kinetic variational theory.43 Here the expression for the 
MDC is given in such a way that it can be related to the 
curvature of the free energy of the binary mixture. The free 
energy curvature in a binary mixture is responsible of the 
specific characteristics of the equilibrium phase diagrams. 
The multiplicity of phases and the connectivity of their 
associated critical points are determined by the form of the 
spinodal surfaces (free energy curvature= 0). The different 
kinds of phase diagrams obtained for the van der Waals 
mixture have been classified according to a scheme devised 
by van Konynenburg and Scott.33 With this classification, 
these authors were able to reproduce most of the known 
types of fluid-fluid phase equilibria observed in actual fluid 
mixtures. The relation between the free energy curvature 
and the MDC can give us a useful way to describe the 
global behavior of mutual diffusion on the same basis as in 

=CRET(filfj) +i, jil Jm 
r12’“i, 

dr2 nj(r2,t)$(rl ,rl 

a. a 
+aijeI Cnkl) - q7l(‘1*) * - fi(rl,Vl,t), 

hl ah 
(2) 

where fi(r, ,vl ,t) is the average number of particles of 
component i (with mass m) at the position ri, at the ve- 
locity vi, and at the time t. ni= s&i f i( rl ,v, ,t). 

The Kac limit 

p$+=lirn r’Vij(rr), (3) 
P-0 

can be done in the mean field term (aij -+ O,gii + 1 ), and a 
kinetic equation can be obtained that embodies the exact 
thermodynamic description43 of a system interacting with a 
potential consisting of a hard-sphere core, and an infinitely 
weak long-range attraction, i.e., the van der Waals inter- 
action. We shall call this theory KVT I.45 The collision 
term CaET has exactly the form of that which appears in 
the revised Enskog theory introduced by van Beijeren and 
Ernst,” 
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Here Vji=vj-vj is the relative velocity of two particles 
with velocities Vi and vi, respectively. i is a unit vector 
directed along the line of centers from the particle of com- 
ponent j to the particle of component i upon collision, and 
0 is the Heaviside step function. vl and vJ denote the 
velocities of the restituting collision, which are connected 
to those of the direct collision vi and Vi by the relations 

Vi=Vi+2Mji(Vji' Z)E”, 
(5) 

where Mij=mi/(mi+mj). The es are the radial distri- 
bution functions of a binary hard-sphere mixture. They are 
the same functionals of the local number densities {ni}, as 
in the case of the binary mixture in nonuniform equilib- 
rium.” 

Explicit expressions for the transport coefficients up to 

I 

I 

the Navier-Stokes level can be directly obtained by ex- 
panding the heat, the momentum and the mass fluxes to 
linear order in the gradients. This is done by solving Eqs. 
(2) in the Kac limit, in the form fi(” = fi(‘) [I +@J via the 
Chapman-Enskog development.‘* Here the fro’ are the 
local Maxwell distribution functions, and @i= B (V). The 
thermal conductivity and the viscosities obtained are iden- 
tical to those given in the RET.43 The diffusion coefficients 
are the only ones that exhibit explicit dependence on the 
tail strength.43 

We will limit our derivation to the case of the MDC of 
a binary mixture. Here an explicit derivation to obtain this 
coefficient will be presented on the basis of the procedure 
developed by Lopez de Haro et al.*’ for the case of hard 
spheres. The starting point for our discussion will be the 
linearized integral equations given for the Q’/s in Ref. 43 

2 dy;jfj”‘JdV2 f;‘)J 
j=l 

dZ(E^'Vji)e(E"'Vji) [@j(Vi) +cPi(V;)-*j(V*) 

/mol+2/3[ %‘f-i] $ *U[ l+g+ (f) it o>ijny,/mij] 1. (6) 

The Yij are the contact values of g?, gi = d mi/2kT(vi-u), mij=mi+mj, and GFi%i=%P%‘i- (l/3)%;?, 7 
being the unit dyadic and u the local velocity. k is the Boltzmann constant. di = dys + d:, where 

(7) 

and 

d:=(ni,n)8[2~,aij~ni-(~) :“I. (*I 

Here the total number density is n=2F=tni, p=$= ,nimi 
=Zfzlpi, p= l/(kT), the temperature is T= (3/2nk) 
XHf=‘=,Jdvt( 1/2)mi(vl--u)*fi, and the pressure is 
P=p’-j-P’, where 

(9) 

and 

P’= i tlijninj. 
i,j= I 

(10) 

(11) 

The chemical potential is expressed as ~i( T,{nj}) = pyS 
+ ,uLf , where 

/Liz2 2 aijnj. 
i,j=l 

(12) 

,uyS is the chemical potential for component i in a binary 
mixture of hard spheres.46 

As mentioned, Eq. (6) can be solved on the basis of 
the method developed for hard-sphere mixtures presented 
in Ref. 21, with some appropriate changes. Hence, to 
follow the derivation given there, we will define some 
variables 
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Ki= 1 + ( fh/5 > j;, azyijn+ij/mij 3 (13) Ky=1+PHS/nkT+(4r/3) C ofyijn+i/mijs (15) 
j=1 

K; = 1 + ( 8~/ 15 ) jzi af’ijn+ij/mij 7 (14) Now, Eq. (6) can be written in the following form: 

Equation ( 16) is the same as Eq. (25a) of Ref. 21. The 
only difference relies on the definition of di, where the tail 
contribution is included. Hence, following the method of 
solution presented there,” the independent mass flux in a 
binary system under the condition of no external forces, 
mechanical equilibrium and isothermal conditions can be 
obtained. This mass flux, relative to the local center of 
mass velocity, can be obtained by substituting the solution 
for the fi to the first order in the gradients, into the ex- 
pression 

Ji( r,t) = 
s ml(V1-U)fidvl. (17) 

The most relevant steps of the derivation are presented in 
Appendix A. The final result is as follows: 

Jj”= -(pi/2n2) i (l--6jL) 
j=l 

1 a 
X (Ekj- (Pj/f'L)EkL) 5 nj, (18) 

where the Jj” are the macroscopic mass fluxes to the first 
order in the gradients, relative to the local center of mass 
velocity, and 

j=* * 

and 

(19) 

These functions defined in Ref. 21 should not be confused 
with the pressure. 

Equation (18) has been written in such a way that all 
the gradients occurring in it are independent. The choice of 
component L, the dependent component, is arbitrary.47 
Although not explicitly indicated, the diffusion coefficients 
will depend on the choice of L. In the case of solutions, L 
is usually identified with the solvent. 

The macroscopic isothermal-isobaric mass-diffusion 
coefficient for a binary system is defined by the relation 

I 

2 

Ji=- C (l--6jL)D$“mjinj. (20) 
j=1 

In binary mixtures there is only one independent dif- 
fusion coefficient.’ Equation (20) has been written in such 
a way that all the gradients occurring there are indepen- 
dent. Now, if Eqs. ( 18) and (20) are compared, one can 
obtain the expression for the MDC for the van der Waals 
binary mixture in the KVT I 

D~~=(p1/2mln2) i di;‘d[Ejl-(P,/PL)Ejt]. (21) 
j=l 

Here the d@ are the coefficients that appear in the Sonine 
polynomial expansion given by Eq. (Al 1). In order to 
obtain practical results, one restricts the number of Sonine 
polynomials in the expansion. We shall adopt here the con- 
vention usually called the Nth Enskog approximation, i.e., 
only N Sonine polynomials are taken into account. For 
details see Appendix B. Equation (2 1) can be transformed 
straightforwardly into the expression given by Karkheck 
et aL43 for the MDC. The dependence on the tail contri- 
bution in Eq. (2 1) comes through the chemical potential, 
Eqs. (12) and (19). The coefficients di$ depend on the 
hard core part of the interaction only. 

Although, our final formula is the same of that given 
by Karkheck et al.,43 our procedure has an additional prac- 
tical advantage. In our derivation, the explicit dependence 
of the tail contribution is handled in such a way that the 
structure of the equations given in Ref. 21 for the case of 
hard spheres is conserved. Thus the tail contribution is 
included into the chemical potential and the pressure. This 
makes easier the task of developing numerical solutions to 
calculate MDCs. In particular, comparisons between the 
KVT I and the RET are very simple, since we only need to 
turn off the tail contribution to recover the MDCs given in 
the RET. 

Equation (2 1) can be used for calculating the MDC in 
binary mixtures, but if one is interested in comparisons 
with experimental MDCs of actual mixtures, some addi- 
tional calculations are needed. From the experimental 
point of view, the natural MDCs are those given relative to 
the mean volume velocity. Therefore, a transformation is 
needed. The relationship between the MDC for a binary 
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PIG. 1. Classification of Scott and van Konynenburg. (a) Values of A and c defining the main regions of similar phase diagram (modified from Ref. 
33). The shield region is not shown. (b) Sketches of the pressure-temperature projections of the six possible types of fluid phase equilibria exhibited by 
binary mixtures [modified from K. E. Gubbins, K. S. Shing, and W. B. Street, J. Phys. Chem. 87, 4573 ( 1983)]. The vapor-pressure curves of pure 
components are shown as solid curves. The gas-liquid-liquid three-phase lines are shown as dash-dot, and the gas-liquid and liquid-liquid critical lines 
are shown dashed. The U and L are the upper and lower critical end points, respectively. 

mixture relative to the local center of mass velocity, DylM, 
and to the mean volume velocity, Of;, is given by’ 

D,‘,=(p,)D:,? (22) 

where v2 is the partial specific volume of component 2. For 
details see Appendix C. 

III. FLUID PHASE EQUILIBRIA FROM THE VAN DER 
WAALS MODEL 

Studies of fluid phase equilibria have shown that there 
are continuous transitions between phase diagrams that 
exhibit gas-liquid, liquid-liquid, and gas-gas phase sepa- 
rations. Critical lines are often observed to change contin- 
uously from one type of phase separation to another. When 
the lines representing a single degree of freedom (pure- 
component vapor pressure curves, three-phase lines, criti- 
cal lines, etc.) are plotted on P-T diagrams, the resulting 
graphs fall naturally into several different categories, pro- 
viding a convenient basis for classification of the fluid 
phase equilibria. 

A very useful classification scheme has been devised 
some time ago by van Konynenburg and Scott,33 who used 
the van der Waals equation of state in a systematic study of 
fluid phase equilibria. They characterized the mixtures by 
three adimensional parameters. 

(2W 

t=($-$) /($+$$ (23b) 

(23~) 

For g=O, f is related to the difference in critical temper- 
atures or pressures of the pure components, and A is re- 
lated to the molar heat of mixing. The van der Waals con- 
stants am and b, for the mixture depend upon mole 
fraction Xi as 

2 2 

a,,,= s XFpij b, = C x$jbij e 
ij 

(24) 

The constants a, t and a22 measure the attractive forces 
between pairs of molecules of the pure components 1 and 
2, respectively, and aI2 is the corresponding parameter for 
the interaction between molecules 1 and 2. The constants 
bl t , bz2, and b12 are the size parameters for the pure com- 
ponents and for mixed pairs, respectively. Here in agree- 
ment with the van Konynenburg and Scott convention,33 
we have used for the cross interaction 

bn= (bll+bd/2. (25) 

On the basis of selected parameters 5‘ and A, and of the 
P-T diagrams resulting from their calculations, van Kony- 
nenburg and Scott33 grouped fluid phase equilibria dia- 
grams into five types, see Fig. 1. As we can see in this 
figure, the diagrams were distinguished mainly by the con- 
figurations of the critical lines and the three-phase lines on 
P-T graphs. They recognized a sixth type of diagram that 
occurs in some aqueous systems, but it was not among 
those predicted by the van der Waals equation. In the di- 
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agrams of types I and II, the gas-liquid critical line is 
continuous between the critical points of the pure compo- 
nents, C, and Cs. In the diagrams of type II, there is a 
liquid-liquid phase separation bounded by a three-phase 
region LLG and a liquid-liquid critical line LL; These two 
lines intersect at an upper critical end point. In the dia- 
grams of type IV, the liquid-liquid-gas three-phase region 
is bounded above and below by critical end points. In the 
diagrams of type III, IV, and V, the gas-liquid critical line 
is divided into two or three branches. In the diagrams of 
type IV and V, the branch of the gas-liquid critical line 
originating in Cp terminates in an upper critical end point, 
while the branch originating in C, rises to a maximum 
pressure and passes continuously into a liquid-liquid crit- 
ical line, terminating in a lower critical end point. In the 
diagrams of type IV, there is a second liquid-liquid phase 
separation at lower temperatures, with a critical line end- 
ing in a second upper critical end point. Finally, in the 
diagrams of type III, the branch of the critical line origi- 
nating in C, rises to high pressures, sometimes passing 
through maximum and minimum pressures and/or a min- 
imum in temperature. 

The usefulness of the above described scheme lies in 
that it gives a qualitative description of the properties of 
the liquid mixtures, and very rarely yields non-physical 
results. Then, the fluid phase behavior that occurs in bi- 
nary mixtures can be qualitatively discussed in terms of 
interaction parameters and changes of thermodynamic 
properties near the critical points. Therefore, a very natu- 
ral extension of the work of van Konynenburg and Scott is 
to use this scheme to describe the behavior of diffusion 
coefficients of binary mixtures.@ 

IV. MUTUAL DIFFUSION COEFFICIENTS FOR 
SYSTEMS OF TYPE I 

The MDCs for several van der Waals liquid binary 
mixtures were calculated through Eqs. (21) and (22), in 
the third Sonine approximation. They were denoted by 
DK. The parameters of the liquid mixtures were selected to 
fall into the diagrams of type I, of the van Konynenburg- 
Scott classification scheme. Here, we will present a numer- 
ical study to understand the influence of each parameter on 
the MDC. Moreover, several calculations for hard spheres 
are presented to clearly show the difference between the 
RET and the KVT I predictions. 

There are several sets of parameters that can be used to 
define a binary mixture under study. We have used the 
following set: m, , ml, az2, bz2, A, 6, 5; n, T, and X,. To 
make easier the interpretation of the results obtained in 
this numerical study, some of the mentioned parameters 
are fixed for most of the calculations. As a final goal, we 
shall use the procedure presented here to understand the 
behavior of the concentration dependence of the MDC for 
actual binary mixtures. Therefore, we selected the fixed 
parameters close to that of simple fluids, like liquid argon. 
These fixed parameters are m,=6.6335x 1O-23 g, a22 
= 1.305 L2 at molm2, b2,=49.79X 10m3 L mol-‘, T= 168 
K, n=2.03 X 1O22 L-‘. Changes in these parameters will be 
explicitly mentioned. 

1 A 
CI + -& 

1.2 - 
q/m =2 

2 
d 

4 l- 
0 .A A 

m,/m 7 5 
\ 

2 

2 
0.6 - k A A i 
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- .2 
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FIG. 2. The mutual diffusion coefficient as a function of the order N of 
the Enskog approximation for three values of the mass ratio ml/m2, and 
four mole fractions (A= -0.2, t=O, and (=O). 

A first test of the theory was to show that the calcu- 
lated coefficients, with respect to the mean volume velocity, 
have the property4’ that 0; = 0;. For this test, we calcu- 
lated these diffusion coefficients along all the concentration 
range in the third Enskog approximation. The deviations 
between them never were greater than 0.01%. 

Calculations with Eq. (21) are in the Nth Enskog ap- 
proximation, i.e., we are taking into account N Sonine 
polynomials in Eq. (Al 1). Hence, our second test was 
devoted to determine the most convenient Enskog approx- 
imation to be used in our calculations. Figure 2 shows the 
dependence of the MDC with the Enskog approximation 
for several mass ratios, and mole fractions (c=O, g=O, 
A= -0.2). As we can see in Fig. 2, it is not necessary to 
calculate MDCs to an Enskog approximation greater than 
the third, since the error introduced is negligible. The cal- 
culations reported here will be in the third Enskog approx- 
imation. 

Our next calculations were addressed to study the de- 
pendence of the MDC on the molecular mass. Here two 
hypothetical binary systems at several concentrations were 
studied (Xi denotes mole fraction of component i). The 
first one was made up of hard spheres, and the second one 
was made up of van der Waals molecules of type I (A = 
-0.2, g=O, c=O). In both systems, the molecular volume 
was the same, as well as the temperature and the number 
density. Thus, the only difference between these two sys- 
tems was the tail interaction. We studied these systems for 
three mass ratios, ml/m2=0.25, 1, and 4, but with a re- 
striction: The total mass, ml + m,=6.6335 X 1O-23 g, 
should be a constant (in this case we changed the specified 
value for m2 to fulfill the conditions required for this cal- 
culation). In Fig. 3, the calculations for the MDCs for 
both systems are presented, for each mass ratio. As we can 
see there, when the system is modeled as hard spheres the 
MDC is almost constant with respect to concentration 
changes. The total mass is the same for each case, whereas, 
there is an effect due to the asymmetry in the mass. The 
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FIG. 3. The mutual diffusion coefficient as a function of the concentration 
(mole fraction) and the mass ratio ml/m*. Here the total mass of the 
involved molecules is constant. The three upper lines are for van der 
Waals mixtures (A= -0.2, [=O, and E=O), and the three lower lines 
correspond to hard-sphere mixtures. 

more asymmetric the system, the higher the MDC. As far 
as we know, this effect has not been detected in the few 
simulation studies devoted to mutual diffusion in hard- 
sphere mixtures.23’24 The mass asymmetry behavior of the 
hard-sphere system is inherited by the van der Waals sys- 
tem. Here the MDC has a maximum at the middle of the 
concentration range due to the cross interaction. That will 
be discussed below. Figure 3 shows an additional test for 
our calculations, the curves corresponding for the ratios 
0.25 and 4, are symmetric under a m,um, interchange. 

Other interesting effects related to the mass are pre- 
sented in Figs. 4 and 5. As above, we compared MDCs 
from a hard-sphere system and from a van der Waals sys- 
tem. The results for the hard-sphere system are presented 
in Fig. 4, and in Fig. 5 those for the van der Waals system. 
Now, we fixed the mass ratio (m1/m2=0.8, 1 and 1.25) 
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FIG. 5. The mutual diffusion coefficient for van der Waals mixtures 
(A=-0.2, <=O, and c=O) as a function of the concentration (mole 
fraction) and the mass ratio ml/m 2. Here the total mass of the involved 
molecules is not constant. m = m, + rn; , with rn; = am2. 

and varied the total mass. The total mass was varied ac- 
cording to the formula m = ml + m;, with rni = am2, 
where a can take the values 0.5, 1, and 1.5. In Fig. 4, as 
expected, the MDC goes down as the total mass of the 
molecules involved in the diffusion processes increases. 
This is particularly clear for the ratio m,/m,= 1; here we 
have the same ratio, but the total mass is different (m 
=m2,2m2,3m2). In the same way as before, when the tail 
interaction is included the same pattern of the hard-sphere 
case is obtained, but modified by the tail interaction. It is 
difficult to assure that this mass behavior of the MDC is 
the correct one. Computer simulations on hard-sphere 
mixtures do not help us to obtain a definite answer in this 
direction, since workers in this field have been interested in 
the diffusion of a single hard sphere in a hard-sphere 
fluid,48,49 or in other related topics.23924 For other potential 
models, simulations have been performed for particles of 
equal mass.29-31 For actual systems, there are specific stud- 
ies to understand the effect of the molecular weight on the 
MDC5’ Usually, they conclude that the diffusion coeffi- 
cients decrease with the molecular weight. But in general, 
they include several effects at the same time, as volume 
effects and interaction effects. Hence, the actual aid of ex- 
perimental data for understanding the role of the molecu- 
lar mass is limited. 

1 o-- ’ I I I I l pJ /M,,= I.251 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1 

x2 

FIG. 4. The mutual diffusion coefficient for hard-sphere mixtures as a 
function of the concentration (mole fraction) and the mass ratio m,/m,. 
Here the total mass of the involved molecules is not constant. m = m, 
+ rn; , with rn; = amz. 

In Fig. 6, the effect of the cross interaction A on the 
MDC is presented for two mass ratios. Here the larger the 
cross interaction with respect to the interaction between 
like molecules (A is more negative), the larger the MDC. 
As mentioned in Sec. I, MDC measures the rate at which 
concentration fluctuations in the solution approach their 
equilibrium values. The decay of these fluctuations, to ob- 
tain the equalization of the concentration throughout the 
binary mixture, takes place by direct change of the com- 
position of every small portion of the fluid. Thus the results 
presented in Fig. 6 are quite reasonable since A measures 
the preference of the molecules of the system to interact 
with unlike molecules, and to blend them. In Fig. 6, the 
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FIG. 6. The effect of the cross interaction on the mutual diffusion coef- 
ficient for the van der Waals mixture (c=O and {=O) for two mass 
ratios. The three upper lines are for m,/m,=0.5 and the three lower lines 
are for ml/m, = 1. 

D,, -X, curves have a maximum at X,= l/2, because the 
mean interaction in the mixture has a maximum there, see 
Eq. (24) and (23~) for c=O. The described behavior can 
not be obtained with a hard-sphere system. Moreover, in 
Fig. 6 we can see how the total mass effect aids to increase 
the maximum of the Dll -X, curves. The MDC is larger 
for lighter particles. 

The effect of changing the tail interactions between the 
particles of the fluid mixture can modify abruptly the D,, 
--X2 diagrams. As an example, we present in Fig. 7 four 
different van der Waals binary mixtures corresponding to 
the diagrams of type I, where the value of al2 has been 
varied. The parameters defining these binary mixtures are 
A=O, c=O, [=0.3, and m,/mz= 1. Here it is very clear to 
see how the D,,-X, curves are modified as the value of 
the interaction parameter u22 is increased. Figure 7 sug- 
gests that, as uz2 is increased, the system losses its capabil- 

6 
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FIG. 7. The mutual diffusion coefficient for four van der Waals binary 
mixtures, where the value of urs has been varied. The parameters defining 
the binary mixtures are A=O, {=O, 5‘=0.3, and m,/m,= 1. 
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FIG. 8. The effect of the molecular volume on the mutual diffusion 
coefficient-concentration (mole fraction) curves. (a) Hard-sphere mix- 
ture. (b) van der Waals mixture with m,/m,= 1 (A= -0.2 and C=O). 
(c) van der Waals mixture with m,/m,=OS (A= -0.2 and C=O). 

ity to diffuse. Qualitatively our interpretation is as follows: 
For A =0, there is not enough cross interaction ai2. Thus, 
the mixture does not have a particular preference to mixing 
or demixing. However, as the interaction between mole- 
cules of compound 2 increases, the system response to the 
concentration fluctuations is to promote diffusion in the 
sense that the molecules of compound 2 can be, as far as 
possible, close together. Probably, this is the reason for 
which the minimum of the D,, -X, curves moves to the 
region rich in compound 2. After this minimum, the MDC 
grows with the mole fraction of compound 2 to facilitate 
the departure of molecules of species 1, during the concen- 
tration fluctuations, making possible to leave the system 
richer in compound 2. 

The effect of the molecular volume can be obtained 
from Fig. 8. In Fig. 8(a), the MDCs for several binary 
hard-sphere systems as a function of the concentration are 
presented, for four values of {=0.157, 0.489, 0.777, and 
0.947. In all these cases the number density is constant. 
Here the MDC increases with the parameter 5. This sug- 
gests that the diffusion process increases due to the motion 
of small molecules through the free space left by the larger 
molecules. At low 6, we can see that the MDC decreases as 
the concentration of the larger component (2) goes to 1. 
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the mutual diffusion coefficient using the KVT I (VW) and the RET 
(HS). 

Since density is constant, the mixture has less molecules of 
component 1, thus the larger molecules have not enough 
room to diffuse. They block their motion themselves, like a 
cage effect. At greater values of 6, Fig. 8 (a) suggests that 
the diffusion of small molecules goes through the free space 
left by the larger molecules, and it can find a maximum at 
some specified concentration. 

In Fig. 8(b), we have almost the same system as before 
in Fig. 8(a), i.e., have the same molecular volumes and l 
values, but now the molecules have tail interaction (A = 
-0.2, c=O). Here as before the higher 6, the higher 
MDC. This suggests that, diffusion through the holes left 
by the larger molecules is as important as in the hard- 
sphere system. Whereas, the situation in this case is more 
complicated, since we have two effects competing, the vol- 
ume asymmetry and the cross interaction. At low 6, the 
effect of the tail is dominant. But, at higher 6 both com- 
peting effects change completely the D,,--X2 curve. It is 
quite suggestive in Fig. 8(b) that, the minimum in the 
curve corresponding to 6=0.947 occurs in the same region 
where the hard-sphere system has a maximum, due to the 
diffusion of the small molecules through the holes left by 
the larger molecules. When the attractive tails are turned 
on, the cross interaction between larger and smaller mole- 
cules must be more effective than at other concentration 
regions, probably due to the geometrical disposition of the 
hard cores. In this way the unexpected minimum of this 
curve can be explained. In Fig. 8(c) we present the same 
calculation as in Fig. 8 (b) , but for another mass ratio. The 
trend is similar although the MDCs are larger, since the 
total mass in this case is less than in the case shown in Fig. 
8(b). 

Figure 9 shows the dependence of the MDC on the 
parameter g for a van der Waals mixture of type I. Here it 
is clear that as the parameter [ increases the MDC in- 
creases too, although, the effect of varying [ is not very 
important. For comparison, we also present the same kind 
of calculations for a hard-sphere system obtained by tum- 
ing off the attractive tails in the van der Waals mixture. 

-VW 

+HS 

m EXI 

I I I I _1 
0 0.2 0.4 0.6 0.8 1 

FIG. 10. Comparison between experimental mutual diffusion coefficients 
of hexane/heptane(2) (EXP) at 298.15 K, calculations using the van der 
Waals model (VW), and the hard-sphere theory (HS). 

V. CALCULATIONS FOR ACTUAL MIXTURES 

To evaluate the usefulness of our procedure in the case 
of actual binary mixtures, the MDCs of several mixtures 
were calculated. This test is possible only if experimental 
MDCs are provided for mixtures previously classified as 
belonging to the diagrams of type I in the van Konynen- 
burg and Scott convention. Those selected were four? 
H20/D,0,16 hexane/heptane,15 toluene/hexane,” and 
benzene/hexane.52 We performed calculations for those 
systems and the results are shown in Figs. 10-13 for sev- 
eral mole fractions. The interaction parameters used for 
these calculations are presented in Table I. 

As expected, when predictions for actual fluids are per- 
formed, the most difficult problem is to obtain a reliable set 
of interaction parameters. Here an initial set of parameters 
was estimated as follows: each component was modeled as 
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FIG. 11. Comparison between experimental mutual diffusion coefficients 
of H,O/D,O(Z) at 298.15 K (EXP), calculations using the van der 
Waals model (VW), and the hard-sphere theory (HS). 
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FIG. 12. Comparison between experimental mutual diffusion coefficients 
of toluene/hexane(2) at 298.15 K (EXP), calculations using the van der 
Waals model (VW), and the hard-sphere theory (HS). 

a hard sphere of diameter u ( Lennard-Jones length param- 
eter), plus an attractive Lennard-Jones tail. The Q’S and 
b,‘S can be estimated through standard formulas.46 The 
Lennard-Jones parameters, (T and E, were obtained from 
Ref. 53. Since, our main interest was to understand how 
the different parameters affect to the D, 1 -X2 curves, we 
were not interested in developing a procedure to obtain the 
best parameters that match the experimental data. More- 
over, it is not known to what extent the correlated motion 
affect the MDC. Therefore, any intent of quantitative fit- 
ting can be misleading. Thus, the initial set of interacting 
parameters are modified for each mixture, in such a way 
that one can obtain the form of the experimental D,,--X2 
curves. In this way, we arrived to the final set of interacting 
parameters given in Table I. The cross interactions were 
selected in such a way that the binary mixtures ever fall 
into the region of the A< diagram corresponding to the 
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FIG. 13. Comparison between experimental mutual diffusion coefficients 
ofbenzene/hexane(2) at 293.15 K (EXP), calculations using the van der 
Waals model (VW) and the hard-sphere theory (HS). 

Hexane( 1 )/heptane(2) WV 1 )/D@(2) 

30.0 4.05 
319.0 26.23 

-O.cOl 0.0 -0.001 0.0 
0.1 0.004 

Benzene(l)/hexane(2) Toluene( I)/hexane(2) 

a22 18.0 18.0 
b 22 261.0 261.0 

t -0.001 -0.53 -O.COl -0.45 
E 0.13 0.05 

diagrams of type I (see Fig. 1). One important point to 
mention is that, the initial and the final sets of parameters 
are very close. 

The different capability of the van der Waals model 
and of the hard-sphere model to predict the MDCs of ac- 
tual mixtures can be compared. In the Figs. 10-13, calcu- 
lations for the MDCs given in the RET were included, also 
in the third Enskog approximation. The hard-sphere diam- 
eters were exactly the same to those used for the van der 
Waals calculations, and Eq. (25) was used to define the 
volume cross interaction. The actual difference between the 
van der Waals and the RET calculations is the tail inter- 
action. 

Figures 10 and 11 present calculations for hexane/ 
heptane and for of H,O/D,O, respectively. In both cases 
along all the concentration range. These examples suggest 
that the volume of the hard core interaction rules the be- 
havior of the MDCs, since the cross interactions are almost 
zero. It is important to mention that our procedure pre- 
dicts better the experimental data than the rough hard- 
sphere mode1.15Y’6 

Figure 12 presents calculations for toluene/hexane and 
Fig. 13 for benzene/hexane. In both cases along all the 
concentration range. We clearly see how the van der Waals 
model predicts qualitatively the same behavior as does the 
experimental data. For the case of toluene/hexane, the 
agreement with the experimental data is excellent. In gen- 
eral, the hard-sphere calculations cannot give the proper 
curvature shown by the experimental D,, --X2 curves. 

In summary, the results shown in this paper are en- 
couraging. Here we have presented a model with attractive 
interaction where the MDC of binary liquid mixtures can 
be explicitly calculated. Moreover, within this model one is 
able to explain how the different parameters affect this 
coefficient. On the other hand, the procedure we have fol- 
lowed can be used to correlate experimental data of actual 
mixtures, and it requires very little input while still yield- 
ing reasonable qualitative good results. This procedure can 
be helpful to understand the MDC behavior of the remain- 
ing mixtures of the van Konynenburg Scott diagram. This 
study is underway and will be published shortly. 
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APPENDIX A: SOLUTION TO THE INTEGRAL 
EQUATIONS FOR 4q 

Equations ( 16) are a set of two linear inhomogeneous 
integral equations for the pi. These equations are soluble if 
the inhomogeneous part of the integral equations are or- 
thogonal to the solutions of the homogeneous equations. 
However, the only solutions of the homogeneous equations 
are the conserved quantities in a binary collision. These 
conserved quantities are indeed orthogonal to the inhomo- 
geneous part of Eqs. ( 16). Hence, one can find the solu- 
tions and they are fixed, apart from a linear combination of 
the solutions of the homogeneous equations. The solution 
of Eqs. (16) for the Qi can be made unique by using the 
following conditions:54*55 

I fjO’Qi dv[=o, C-41) 

i J f~‘O’QimiVi dVi=O, 
i=l 

t-42) 

i J f~“‘@imiV~ dVi=O. 
i=l 

(A31 

Here, Vi=Vl -u. 

Equations ( 16) are linear in the gradients of the mac- 
roscopic quantities of different tensorial character, hence it 
is possible write the @i as21T54p55 

@i=-i Ai* $1, T+Ji:E-jfig .u 
( 
s 

+ c Df’*dk . (A41 
k=l 

Here we will restrict our derivation to obtain the MDC at 
constant temperature and pressure. This can be performed 
by substituting Eq. (A4) into fi=fFO’ [I +~i], and the 
result must be substituted into the mass flux Eq. ( 17). 
Therefore, a expression for the mass flux in the first order 
of the gradients can be written in the form 

)I d k * (A51 

Now, the task is to calculate the integrals in the mass flux 
Eqs. (A5). If Eqs. (A4) are substituted into Eqs. ( 16), 
these integrals can be obtained through the following equa- 
tions:55 
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j-W 
X (D,k’+DF’+Df+D:)d<dVj=-k 

I 

where 

I.@) =a 
IJ I tlflj I I 

~j8(E^'Vij)(E^'Vij)fi(O)f~) 

X (D:‘+Dr’+DF+D,k)dCdVj. C-47) 

An expression for Eqs. (A5) can be obtained, in terms of 
the bracket integrals,55 if Eqs. (A7) are multiplied by a 
vector M, then integrating over velocities and summing 
over i 

s 

s 

i;l j$l ylij(Dk)Mi dvi 

Here the conditions to obtain a unique solution were used. 
In particular, for the case where M,=Di’) the integrals 
given in Eq. (A8) are equal to those appearing in Eq. 
(A5). Thus, Eqs. (A5) can be written in the form 

k$l n,lDI”,Dj’)ldk]. (A91 

A explicit expression for the bracket integrals can be 
obtained in terms of Djk’ (Vi), if we take into account two 
facts. First, the integral operators of Eqs. ( 16) are isotro- 
pic in the velocity space, thus the Df are isotropic tensors 
in that space, i.e., 

D~(vl--u)=D:(I~~--uI)(v~-u). (AlO) 

Second, Df can be expanded in terms of the Sonine poly- 
nomials in the following way:21y54y55 

D!k’(V.) = 1 1 2 $ d~,~‘S$$( miVF/2kT), (All) 

where d$’ are the Sonine coefficients, and S$;‘, are the 
Sonine polynomials. 

To calculate the bracket integrals given in Eq. (A9), 
we need to substitute Eqs. (AIO) and (Al 1) into Eq. 
(A8). Then, this result must be multiplied by S$. A 
working expression can be found if the orthogonality prop- 
erties of the Sonine polynomials are used, as well as con- 
ditions (Al )-( A3 ) . (See Ref. 21 for details. ) The bracket 
integrals for DC ‘) can be written in terms of the Sonine 
coefficients in the form 

[D(k) D!“] = -? d!k’ 
I ’ I 2 I,0 * 

Equation (A9) can be written as 
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av 
*i=q. TPs 1, 

where Mi is the total mass of compound i. Then, Eq. (Cl ) 
can be handled in the form 

((3) 

Since pi=/-Li( T,ni), the derivative in Eqs. (C2) can be 
written the following form: 

dpi a~i/an,+a~j/anz(n,/nl> -= 
dP aP/dn , + aP/an2 ( n2/n, ) 

, i=1,2. (C3) 

+,/an, and aP/ank can be calculated from Eqs. (9) and 
( lo), and ( 12) and from the hard-sphere expression of the 
chemical potential.& 
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