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In the framework of the mean-field kinetic variational theory, a numerical study is presented to 
understand the concentration dependence of the mutual diffusion coefficient in terms of molecular 
sizes and interaction parameters for the van der Waals binary mixtures of types II, III, IV, and V, in 
the scheme of Scott and van Konynenburg. This work is an extension to the study for systems of 
type I presented by us quite recently. In addition, the behavior of the mutual diffusion coefficient of 
the van der Waals mixture is compared with that of the hard-sphere mixture and for the case of 
systems of type II, with experimental data of actual systems: water/n-propanol, n-hexane/acetone, 
and n-heptane/acetone. The mutual diffusion coefficients for the last two systems were determined 
by us with the Taylor dispersion technique. The mutual diffusion coefficients for the systems 
n-hexane/acetone and n-heptanelacetone are reported here at 298.15 and 303.15 K, respectively, 
along all the concentration range. The explicit model used here allows us to obtain an explanation 
about the role played by the variables that determine the concentration dependence of the mutual 
diffusion coefficient for actual systems. 

I. INTRODUCTION 

There are very few model mixtures for which theory can 
be handled, almost without approximations, to give explicit 
equations relating the molecular parameters to the mutual 
diffusion coefficient (MDC). One of these is the van der 
Waals binary mixture. In a previous paper’ (hereafter re- 
ferred to as I), we obtained explicit expressions for the MDC 
for the van der Waals mixture in terms of molecular param- 
eters in the framework of the mean-field kinetic variational 
theory. Our final formula was the same as that given by 
Karkheck et al.,2 but our procedure had an additional practi- 
cal advantage. The explicit dependence of the tail contribu- 
tion was handled in such a way that the structure of the 
equations was the same as that given in the revised Enskog 
theory (RET) for hard-sphere systems.3 This made easier the 
task of developing numerical solutions to calculate the MDC. 
In particular, comparisons between the mean-field kinetic 
variational theory and the RET are very simple within our 
framework, since we only need to turn off the tail contribu- 
tion to recover the MDC as given in the RET. Moreover, in I, 
the MDC was related to the classification scheme devised by 
Scott and van Konynenburg4 to study fluid phase equilibria 
in binary systems in a systematic way, and the global behav- 
ior of the MDC for systems of type I was studied. The link 
between the MDC and fluid phase equilibria can be traced to 
the fact that the behavior of the MDC is equal to that of the 
free energy curvature of the binary mixture, modulated by a 
compressibility factor, and other factors related to the dy- 
namics of the two-particle collision.‘T2 On the other hand, the 
free energy curvature in a binary mixture is also responsible 
for the specific characteristics of the equilibrium phase 
diagrams.4 

In this paper, a numerical study is presented to under- 
stand the effect of molecular sizes and interaction parameters 
on the concentration dependence of the MDC for the van der 
Waals binary mixtures of types II, III, IV, and V in the 

scheme of Scott and van Konynenburg. Moreover, we shall 
show that this procedure can be very useful to predict the 
most important features of the MDC versus concentration 
curves for actual systems. This paper is a natural extension 
of our work for mixtures of type I,’ that allows us to obtain 
a complete picture of the way in which the interaction pa- 
rameters modify the behavior of MDC in the van der Waals 
mixture. In particular, the parameter A (difference in attrac- 
tive forces between like and unlike pair of molecules), and 
the parameter 5 (size difference between unlike pair of mol- 
ecules) are the parameters that mainly determine the global 
behavior of the MDC. 

Another important theory developed to understand trans- 
port properties in liquid mixtures is the RET, since it is a 
kinetic theory for hard-sphere fluids beyond the low density 
limit, that can give explicit calculations.3.5 The first computer 
simulation studies to test the predictions for the MDCs given 
in the RET have been presented quite recently by 
Erpenbeck.6-8 This author has studied equimolar mixtures 
having a diameter ratio of 0.4, a mass ratio of 0.03, at vol- 
umes in the range 20 to 1.7 times the close-packed volume. 
He found that the MDC drops monotonically to roughly 0.75 
of the RET values when the density is increased. Notwith- 
standing those studies, it is still an open question to what 
extent the RET can correctly predict the MDC for binary 
mixtures of hard spheres. More simulation studies are needed 
to understand the contribution of correlated motion to the 
MDC in hard-sphere mixtures. 

Simulations in binary liquid systems with a somewhat 
realistic intermolecular model potential are scarce. The best 
model potential studied has been the Lennard-Jones 
potential.‘-l4 The works here were first devoted to develop- 
ing accurate techniques,a-” then to studying the role of cross 
correlation in equimolar mixtures,‘* and in the last works’3”4 
to studying how the particle volumes and the interaction 
strengths affect the MDC for equimolar mixtures. The results 
indicate that the MDC is very sensitive to the particle vol- 
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umes and to the interactions strengths, particularly to the 
cross parameters, but from those simulations it is difficult to 
obtain a clear picture of the role played by the molecular 
parameters. 

An outline of the paper is as follows. In Sec. II, we 
review the most relevant points of the theory presented in 
our earlier paper’ on which the present work is based. Sec- 
tion III is devoted to presenting a numerical study to under- 
stand how the different parameters involved in the van der 
Waals theory affect the concentration dependence of the 
MDC for systems of type II, III, IV, and V. For determining 
the usefulness of our approach to predict MDC of actual 
systems, experimental data for binary systems are needed. In 
this paper, we shall restrict our study to make comparisons 
for actual systems of type II only. The experimental data 
were obtained from the literature and from direct experimen- 
tal determinations using the Taylor dispersion technique. In 
Sec. IV, we present the experimental procedure used to ob- 
tain the MDCs for the systems n-hexane/acetone and 
n-heptane/acetone. In Sec. V, calculations are presented for 
three actual systems belonging to the phase diagrams of type 
II, along all the concentration range: n-hexane/acetone, 
n-heptanelacetone, and water/n-propanol. These calculations 
are compared with experimental data and with calculations 
performed with the RET. 

yielded a useful way to describe the global behavior of MDC 
on the same basis as the phase diagrams.“*’ This was the 
case for the systems of type I studied in I. We shall show 
below that this procedure is also useful for studying the 
MDC of the remaining phase diagram types in the Scott and 
van Konynenburg convention. 

The specific details to obtain explicit expressions for the 
MDC were presented in terms of molecular parameters in I. 
Our final formula was the same as that given by Karkheck 
et al.,2 but our procedure had the practical advantage of giv- 
ing the tail contribution in such a way that the structure of 
the equations was the same as that for the case of hard 
spheres. Therefore, the task of developing numerical solu- 
tions for calculating the MDC of van der Waals mixtures 
followed the same line of reasoning as the method presented 
by Lopez de Haro et aL3 for the RET. The results were ex- 
cellent. Here, we shall follow the same procedure used in I to 
study the systems of type II, III, IV, and V. 

.l 

The macroscopic isothermal isobaric mass diffusion co- 
efficient DF;“’ for a binary system is explicitly defined by the 
relation 

Ji= - i ( 1 - SjL)DFjrn’mj g nj , (1) 
j=l 

II. THEORY 

A. Kinetic theory 

where the Ji” are the macroscopic mass fluxes to the first 
order in the gradients, relative to the local center-of-mass 
velocity. The present paper will follow the notation given 
in I. 

Relevant among the kinetic equation approaches to liq- 
uid state are the mean-field kinetic variational theories.‘5-18 
Their development is an extension to include the case of 
particles interacting through a pair potential consisting of a 
hard-sphere core and an arbitrary soft attractive tail. One 
kinetic equation of this family, where the Kac limit can be 
successfully done, has been derived by Karkheck et aL2 
maximizing the entropy with certain simple constraints. We 
call this theory KVT I.‘3’6 In this theory, the ratio of the 
generic two-particle distribution function to the product of 
the two one-particle functions is the pair distribution func- 
tion, gyS(r’ ,r,ln), of a hard-sphere system in inhomogeneous 
equilibrium.2*‘5 The result is a kinetic equation that embodies 
the exact thermodynamic description of a system interacting 
with a potential consisting of a hard-sphere core and an in- 
finitely weak long-range attraction, i.e., the van der Waals 
interaction.” 

In binary mixtures there is only one independent diffu- 
sion coefficient.*’ Equation (1) has been written in such a 
way that all the gradients occurring there are independent. 
The expression for the MDC for the van der Waals binary 
mixture in the KVT I, as shown in I, can be written as 

where 

2 

j=l 

2 

Pi= C Eji, 
j=l 

(3) 

The kinetic mean-field theory with the abovementioned 
limit can yield an expression for the MDC that exhibits a 
dependence on the tail strength. The expression for the MDC 
within this formalism is given in such a way that it can be 
related to the curvature of the free energy of the binary 
mixture.“* The free energy curvature in a binary mixture is 
also responsible for the specific characteristics of the equi- 
librium phase diagrams. Those characteristics for this model 
mixture have been classified in a scheme devised by Scott 
and van Konynenburg.4 This scheme allowed these authors 
to reproduce most of the known types of fluid-fluid phase 
equilibria observed in actual binary fluid mixtures. The rela- 
tion between the free energy curvature and the MDC has 

and the d’,“fb are the coefficients that appear in the Sonine 
polynomial expansion. For details see I. In order to obtain 
practical results, one restricts the number of Sonine polyno- 
mials in the expansion. We adopted here, as in I, the conven- 
tion usually called the Nth Enskog approximation, i.e., only 
N Sonine polynomials are taken into account. The depen- 
dence on the tail contribution in Eq. (2) comes through the 
chemical potential. The coefficients d’,ib depend on the hard 
core part of the interaction only. Expression (2) is useful to 
make comparisons between the KVT I and the RET, since we 
only need to turn off the tail contribution to recover the 
MDC given in the RET. 

Equation (2) can be used for calculating the MDC in 
binary mixtures, but if one is interested in comparisons with 
experimental MDCs of actual mixtures, some additional cal- 
culations are needed. From the experimental point of view, 
the natural MDCs are those given relative to the mean vol- 
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ume velocity. Therefore, a transformation is needed. The re- 
lationship between the MDC for a binary mixture relative to 
the local center-of-mass velocity DSi”’ and to the mean vol- 
ume velocity Dy , is given by 1.21 

D’;,=(p/“)D;‘r’, (4) 

where Q is the partial specific volume of component 2. For 
details see Ref. 1. 

B. The Scott and van Konynenburg scheme 

The classification scheme devised some time ago by 
Scott and van Konynenburg4 used the van der WaaIs equa- 
tion of state in a systematic study of fluid phase equilibria. 
They characterized the mixtures by three adimensional pa- 
rameters: 

(54 

5=(% -g /($ +gJ 
--s +$j /(z +z). 

bl lb22 
(54 

For t=O, 5 is related to the difference in critical temperatures 
or pressures of the pure components, and A is related to the 
molar heat of mixing. The van der Waals constants a, and 
b, for the mixture depend upon mole fraction xi as 

Cl,= i XiX;aij 9 b,= i xixjbij a (6) 
ij ij 

The constants a iI and a22 measure the attractive forces 
between pairs of molecules of the pure components 1 and 2, 
respectively, and ai2 is the corresponding parameter for the 
interaction between molecules 1 and 2. The constants b,, , 
b22, and b ,2 are the size parameters for the pure components 
and for mixed pairs, respectively. Here, in agreement with 
the Scott and van Konynenburg convention,4 we have used 
for the cross interaction 

(5’4 

b,2=(b,,+bd2. (7) 
Scott and Van Konynenburg4 distinguished in the (A,{) 

space five different regions, where fluid phase equilibria dia- 
grams can be grouped according to the configuration of the 
critical lines and the three-phase lines on the P-T diagram. 
They recognized a sixth type of diagram, but it was not 
among those predicted by the van der Waals equation. For 
details see Ref. 19 or Fig. 1 presented in I. 

III. MUTUAL DIFFUSION COEFFICIENTS FOR 
SYSTEMS OF TYPE II-V 

For several van der Waals liquid binary mixtures, the 
MDCs were calculated through Eqs. (2) and (4) in the third 
Sonine approximation. They were denoted by D ii ; the index 
u will be used when it is necessary only. The parameters of 
the liquid mixtures were selected to fall into the diagrams of 
the type II, III, IV, and V of the Scott-van Konynenburg 
classification scheme. In this section, we shall present a nu- 
merical study to understand the influence of each parameter 

on the MDC. Moreover, several calculations for hard-sphere 
mixtures are presented to show the difference between the 
RET and the KVT I predictions. 

There are several sets of parameters that can be used to 
define a binary mixture under study. We have used the fol- 
lowing set: m,, m2, a22, b,,, A, 6, l, n, T, and X2. Once this 
set is given, the other interaction parameters can be obtained 
with the following equations: 

b JPtlb22 
l1 [l+l] ’ (8) 

[l-51 11-a 
w=[l * [I+.$]2 b227 (9) 

[l-51 [l-Al 
Q=[l+[] 

.- 
[1+5] a22* (10) 

To make the interpretation of the obtained results in this 
numerical study easier, some of the abovementioned param- 
eters are fixed for all the calculations. As a final goal, we 
shall use the procedure presented here to understand the be- 
havior of the concentration dependence of the MDC for ac- 
tual binary mixtures. Therefore, we selected the fixed param- 
eters close to that of simple fluids, like liquid argon. These 
fixed parameters are rnr=rn,=6.6335~10-~~ g, 
a,,=--1.305 L2 at mole2, b2,=49.79X10M3 L mOl-‘, 
T= 168 K, and n=2.03X 1O22 L-‘. 

Several tests showed that the calculated coefficients with 
respect to the mean volume velocity have the property22 
0;: i = Dq2. The selection of the most convenient Enskog ap- 
proximation to be used in this procedure was discussed in I. 
The calculations reported here will be in the third Enskog 
approximation. 

The effect of the parameter A on the MDC is presented 
in Figs. 1 and 2. Here, all the calculations were done at t=O. 
The results presented in these figures are quite reasonable, 
since A measures the preference of the molecules of the sys- 
tem to interact with unlike molecules and to blend them. 
Therefore, for systems of the type II, III, and IV (A>O, Fig. 
1) we observe a decrease in the capacity of diffusion. The 
larger the A the lesser diffusion. On the contrary, for systems 
of type V (A<O, Fig. 2) the MDC increases as the A de- 
creases. This last result is the same as that found for systems 
of type I, also with A<O, presented in our previous paper I. 
For comparison, in Figs. 1 and 2, we have included calcula- 
tions for hard-sphere mixtures obtained by turning off the 
interaction tails. As is clearly presented in Figs. 1 and 2, 
hard-sphere theory cannot give any of the features obtained 
with the van der Waals model. 

The effect of changing the tail interaction between par- 
ticles of the same species in the fluid mixture modifies the 
D, i -X2 diagrams in an important way. As an example of 
this effect, we present Figs. 3 and 4. In these figures several 
calculations for van der Waals binary mixtures corresponding 
to the diagrams of types II, III, IV, and V are presented, 
where the value of a22 has been varied. All these calculations 
were done at [=O. As the interaction between like-molecules 
is increased (u22 more negative) systems of types II [Fig. 
3(a)], III [Fig. 3(b)], and IV [Fig. 4(a)] lose their capability 
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FIG. 1. The effect of the parameter A on the mutual diffusion coefficient for 
the van der Waals mixtures II, III, and IV (A>O). (a) Upper panel: type II 
(5=0.3 and c=O); (b) middle panel: type III ((=0.58 and c=O); (c) lower 
panel: type N (5=0.58 and .$=O). HS denotes calculations for hard-sphere 
mixtures (RET). 

to diffuse. For systems of type V [Fig. 4(b)] we found the 
opposite. Qualitatively, our interpretation is as follows: Since 
A measures the preference of the molecules of the system to 
interact with unlike molecules, the molecules in the mixture 
will prefer depending on the sign of A, to be mixed (A<O) or 

12 
A = --.2 -t-.4 u-6 *-.l *c-,05 

10 - 

8- 
7 
9 
x 6- 
2 

4- 

2- 

0 
0 0.1 082 083 0.4 0.5 0.6 0.7 0.8 0.9 1 

x2 

FIG. 2. The effect of the parameter A on the mutual diffusion coefficient for 
the van der Waals mixtures V (h<O). Type V (<=0.58 and t=O). HS de- 
notes calculations for hard-sphere mixtures (RET). 

a- 

? 6- 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 

X2 

FIG. 3. The mutual diffusion coefficient for van der Waals binary mixtures 
of types II and III (A>O), where the value of ass has been varied. (a) Upper 
panel: type II (A=O.l, 5=0.3, and [=O); (b) lower panel: type III (A=O.4, 
%=0.58, and t=O). HS denotes calculations for hard-sphere mixtures (RET). 

demixed (h>O) no matter what the value of a22. Therefore, 
systems of types II, III, and IV have a tendency to lower their 
capacity to diffuse. On the contrary, systems of type V in- 
crease their capacity to diffuse. However, in addition to the 
conditions imposed by the value of A, as the interaction be- 
tween molecules of compound 2 is increased, the system 

IO 

6- 

ati=* -.s +-mos x-3 -3 

‘? 
0 

6- 

x 
g 4- 

2- o-----A 
0 0.t 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

x2 

FIG. 4. The mutual diffusion coefficient for van der Waals binary mixtures 
of types N (A>O) and V (AcO), where the value of ass has been varied. (a) 
Upper panel: type IV (A=O.O16, 5=0.58, and t=O); (b) lower panel: type V 
(A=-0.2, 5~0.58, and &O). HS denotes calculations for hard-sphere mix- 
tures (RET). 
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‘0 I ai t 0.2 t 0.3 1 44 I as I a6 I a7 , 0.8 , 0.9 I 

X2 

FIG. 5. The effect of the molecular volume on the D,,-Xz diagrams. (a) 
Upper panel: hard-sphere mixture (RET); (b) middle panel: van der Waals 
mixture of type I (A= -0.2 and {=O); (c) lower panel: van der Waals mix- 
ture of type II (A=O.l and 5=0.3). 

responds to the concentration fluctuations in promoting dif- 
fusion in the sense that the molecules of compound 2 can be, 
as far as possible, close together. Therefore, in systems of 
types II, III, and IV, the MDC falls down as the uz2 interac- 
tion is increased. For the particular parameters used in the 
calculations for the systems of types II, III, and IV, the sys- 
tems of type III are the most affected. Since they have the 
lower cross interaction fzi2, as can be seen from Eq. (10). 
The minima of the D ii -X2 curves shown in Figs. 3 and 4(a) 
move toward the region rich in compound 2, since the inter- 
action between molecules of compound 2 is a little bit stron- 
ger than between molecules of compound 1. For the systems 
of type V [Fig. 4(b)] the interpretation is more involved. 
Here the value of A asks the system for increasing the dif- 
fusion; on the other hand, the increasing values of u22 push 
in the opposite direction. In this particular example, at low 
values of u22, all seems to indicate that the cross interaction 
Q i2 wins over the like-molecules interactions Uii. But at 
some extreme values of u22 the diffusion begins to decrease. 
Figure 4(b) shows this contest between interactions. For val- 
ues uI2 a little bit below -3, the D,, -X2 diagrams start 
their drop. In Fig. 4(b), only the calculations for uz2= -5 are 
presented. In this case, the MDC grows with the mole frac- 
tion of compound 2 in a way suggesting that the system 
facilitates the departure of molecules of species 1, during the 

'0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

X2 

FIG. 6. The effect of the molecular volume on the D i , - Xa diagrams. (a) 
Upper panel: van der Waals mixture of type III (h=0.4, (=0.58); (b) middle 
panel: van der Waak mixture of type IV (h=0.016 and 5=0.58); (c) lower 
panel: van der Waals mixture of type V (A=-0.2 and 5=0.58). 

concentration fluctuations, making it possible to leave the 
system richer in compound 2. 

The effect of molecular volume will be discussed now. 
The effect of changing the molecular volume in the van der 
Waals mixtures of types II, III, IV, and V can be obtained 
from Figs. 5 and 6. In Figs. 5 and 6, the MDCs for several 
binary systems as a function of the concentration are pre- 
sented for four values of 8 (0.157, 0.489, 0.777, and 0.947). 
In all these calculations the number density is constant. In 
Figs. S(a) and 5(b), calculations for hard-sphere mixtures and 
for van der Waals mixtures of type I (A= -0.2, c=O) were 
included to make comparisons. This will help us to give a 
complete picture of the effect of the molecular volume on the 
MDC. Thus, in Fig. 5(a) calculations without tail interactions 
are presented. Our interpretation for this case follows from 
our earlier discussion in I: At low 6, the MDC decreases as 
the concentration of the larger component (2) goes to 1. 
Since the number density was a constant the mixture has less 
molecules of component 1, thus the larger molecules do not 
have enough room to diffuse. Therefore, the larger molecules 
block their motion themselves; like a cage effect. At greater 
values of 5, the D , , -X2 diagrams suggest’ that the diffusion 
process increases due to the motion of small molecules 
through the free space left by the larger molecules, and at 
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FIG. 7. The effect of the parameter 5 on the concentration dependence of the 
MDC for systems of types II, III, and N (~00). (a) Upper panel: type II 
(A=O.l and &O); (b) middle panel: type III (A=O.4 and [=O); (c) lower 
panel: type N (A=O.O16 and t=O). HS denotes calculations for hard-sphere 
mixtures (RET). 

some large values of 6 a maximum in the D, i -X2 diagram 
is observed 

In general, the MDC of the van der Waals mixtures in- 
creases with the parameter 6, and the D , , -X2 diagrams 
have the same concentration dependence pattern. This sug- 
gests that diffusion through the holes left by the larger mol- 
ecules is as important as in the hard-sphere system [Fig. 
5(a)]. Therefore, the situation for van der Waals mixtures is 
much more complicated, since we have two effects compet- 
ing: the volume asymmetry and the attractive tail interac- 
tions. At low 5, the effect of the interaction between different 
molecules, determined by the sign of A, is dominant. There- 
fore, the MDCs for the systems of types II, III, and IV 
(~00) are little below that of the hard-sphere system for the 
same values of 6. Just the opposite occurs for systems of 
types I and V (A<O), in agreement with the sign of A. At 
higher e, although the main trend of the D 1 1 -X2 curves of 
the hard-sphere system is inherited by the van der Waals 
systems, the interaction can completely change these curves. 
In our particular examples for the van der Waals systems 
shown in Figs. 5 and 6, a minimum in the D 1 1 -X2 is ob- 
served as the 5 becomes larger. Our interpretation for these 
calculations is as follows: As we mentioned for the hard- 
sphere system, the diffusion process increases as the param- 

IO 
5 = -38 +.6 “.65 *.8 

8 
t 

a, 
‘9 6 
x 
6 4 - HS 

0 0.4 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
x2 

FIG. 8. The effect of the parameter 5 on the concentration dependence of the 
MDC for systems of type V (A=-0.2 and &=O). HS denotes calculations 
for hard-sphere mixtures (RET). 

eter 5 increases due to the motion of small molecules through 
the free space left by the larger molecules. For van der Waals 
mixtures this seems to be the same. But, when the attractive 
tails are turned on in these particular examples the interac- 
tion u22 is more important than the interactions a, i and a i2. 
See Eqs. (9) and (10). Therefore, the motion of the small 
molecules (1) through the free space left by the larger mol- 
ecules (2) is reduced, since the large interaction between 
molecules of type 2 tends to make them closer, thus leaving 
less room for intermixing. As the concentration of molecules 
2 is so large the larger molecules do not have enough room 
to diffuse, they block their motion themselves as in the hard- 
sphere system. Therefore, the MDCs at these concentrations 
are very close to that of the hard-sphere system. 

Figures 7 and 8 show the dependence of the D,, -X2 
diagrams on the parameter 5 for van der Waals mixtures of 
types II, III, IV, and V. Here, the main trend follows from A. 
Systems of types II, III, and IV (A>O, Fig. 7) present a lower 
diffusion than the hard-sphere system obtained by turning off 
the attractive tail potential. Here, it is clearly shown that the 
larger the parameter A the lower the MDC. For systems with 
A<O, i.e., systems of type V, the diffusion process is in- 
creased with respect to the hard-sphere system. This behav- 
ior agrees with the fact that A measures the preference of the 
molecules of the system to interact with unlike molecules 
and to blend them. Within this major trend, the variation of 
parameter 5 that measures the relative strength of the inter- 
action between particles 2 with respect to particles 1 is not 
very important. As expected, for systems of type V presented 
in Fig. 8, our calculations suggest that as the interaction be- 
tween particles 2 begins to grow the diffusion process begins 
to decline, in spite of the negative value of A. 

IV. EXPERIMENT 

In this section, the experimental details to obtain the 
MDCs in the systems acetone/n-hexane and acetoneln- 
heptane along all the concentration range are presented. 
These data will be used to test the predictions of the van der 
Waals model in Sec. V. 
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TABLE I. Mutual diffusion for the system n-hexanelacetone at 298.15 K. TABLE II. Mutual diffusion for the system n-heptanelacetone at 303.15 K. 

Acetone mole fraction Dy, X lo9 (m* s-l) Acetone mole fraction D’;, X lo9 (m* s-‘) 

0.9997 4.28 0.9986 4.23 
0.7419 2.17 0.7541 1.75 
0.5016 1.81 0.4936 1.87 
0.2479 2.25 0.2417 2.28 
3.7533x 10-4 3.10 2.3673X 1O-4 4.25 

A. Instrument design and operation 

The Taylor dispersion is based on the dispersion of an 
injected binary mixture pulse in a laminar flowing stream of 
the same mixture at slightly different composition, by the 
joint action of convection and molecular diffusion. Under 
proper conditions, the pulse concentration profile will even- 
tually become normal, and the center of gravity of the profile 
will move with the mean velocity of laminar flow. The 
theory for the development of an ideal equipment to measure 
MDCs with this method is reviewed by Alizadeh er a1.23 Fur- 
thermore, they presented detailed criteria for the design of a 
practical instrument. The details of our instrument were pre- 
sented in Ref. 24. 

series of experiments, under nominally identical experimen- 
tal conditions. We determined the values of fexp and o&, as 
mentioned above, and after doing the corrections discussed 
in Refs. 23 and 24, we obtained a precision of 2.5%. 

V. CALCULATIONS FOR ACTUAL MIXTURES OF THE 
TYPE II 

Alizadeh et aZ.23 derived expressions for the first (r) and 
second (2) temporal moments of the distribution of the dis- 
persed pulse for an ideal instrument, and a set of corrections 
to this ideal instrument in order to include practical limita- 
tions. They found that the ideal moments have to be cor- 
rected according to 

r= Tcxp + ~ Ski and (T’ = a~~,+ C Sb? 1) 01) 

where r;,, and r&, denote the experimentally determined 
moments, and Sti and 84 are corrections to be applied to 
them. For details see Refs. 23 and 24. 

The values of iexp and o& were determined with a non- 
linear fitting program of the digitized values corresponding 
to the analog signal of a differential refractometer, in the 
region where it has a linear response to the concentration 
difference between the cells. The acquisition of data were 
performed with a data acquisition board (PC-Lab Card 
812PG. Advantech, Co. Ltd.), and a Printaform PC. 

B. Materials and precision 

For determining the usefulness of our procedure to pre- 
dict MDCs for actual mixtures of type II, several coefficients 
D';, were calculated and compared with experimental data 
for three binary systems along all the concentration range. 
This test is possible, if experimental MDCs are provided for 
mixtures previously classified as belonging to the diagrams 
of type II, in the Scott and van Konynenburg convention. 
Here, the systems under study were the following: 
n -propanollwater, acetone/n -hexane, and acetone/n -heptane. 
The high pressure phase equilibria of these systems show a 
continuous gas-liquid critical line between the critical points 
of the pure components,25,26 in addition to the presence of 
liquid-liquid inmiscibility at relatively low temperatures. 
Acetone/n-hexane has a consolute point at 234 K?7 and 
acetone/n-heptane at 245.5 K;27 n-propanollwater has an es- 
timated consolute point at 250 K by extrapolation.27 We per- 
formed the calculations for these systems with the interaction 
parameters presented in Table III. The results are shown in 
Fig. 9 for several mole fractions. The experimental data for 
acetone/n-hexane and acetone/n-heptane were obtained by 
us as mentioned in Sec. III. The experimental data for 
n-propanollwater were obtained from Ref. 28. Here, the au- 
thors also used the Taylor dispersion technique. 

As expected, when predictions for actual fluids are per- 
formed, the most difficult problem is to obtain a reliable set 
of interaction parameters. Here, an initial set of parameters 

Heptane, hexane, and acetone of 99% purity were sup- 
plied by J. T. Baker Co. and Aldrich. Analyses by gas chro- 
matography gave a value better than 99.9% purity. The bi- 
nary mixtures were prepared with an estimated error in the 
quoted mole fractions to be less than 1 X 10e4. Special care 
was taken to degas the binary mixtures in an ultrasonic 
cleaner, without inducing concentration changes, to prevent 
bubble formation during the experiment. 

TABLE III. Parameters for the actual mixtures. 

Measurements of MDCs were carried out in mixtures of 
n-hexanelacetone and n-heptanelacetone, along the range of 
concentration, at 298.15 and 303.15 K, respectively. The re- 
sults are shown in Tables I and II. It is difficult to estimate 
the precision involved in the determination of MDCs by the 
technique described above. Hence, we followed the common 
practice of employing the reproducibility of the results of a 

n-Hexane( l)/acetone(2) n-Heptane( l)/acerone(2) 

a22 15.0 10.0 
b 22 130.0 135.0 

: 
0.08 0.1 
0.35 0.30 

5 -0.44 -0.45 

Water( l)/propanol(2) 

a22 
bzz 
A 

: 

17.0 
245.0 

0.01 
-0.55 

0.70 
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FIG. 9. Comparison between experimental mutual diffusion coefficients 
(EXP), calculations using the van der Waals model (VW), and the hard- 
sphere theory (HS) for n-hexane/acetone (2) at 298.15 K (upper panel), 
n-heptanelacetone (2) at 303.15 K (middle panel), and water/n-propanol (2) 
at 298.15 K (lower panel). 

was estimated as follows: Each component was modeled as a 
hard sphere of diameter (+ (Lennard-Jones length parameter), 
plus an attractive Lennard-Jones tail. The Uii’S and bii’S can 
be estimated through standard formulas.29 The Lennard- 
Jones parameters, (+ and e, were obtained from Ref. 30. The 
cross interactions were selected in such a way that the binary 
mixtures always fall into the region of the A-5 diagram cor- 
responding to the diagrams of type II (see Fig. 1 in I). Since 
our main interest was to understand how the different param- 
eters affect the D, 1 -X2 curves, we were not interested in 
developing a procedure to obtain the best parameters that 
match the experimental data. Moreover, it is not known to 
what extent the correlated motion affects the MDC. There- 
fore, any intent of quantitative fitting can be misleading. 
Thus, the initial set of interacting parameters was modified 
for each mixture, in such a way that one can obtain the form 
of the experimental D , 2 - X2 curves. In this way, we arrived 
at the final set of interacting parameters given in Table III. 
One important point to mention is that the initial and the final 
sets of parameters are very close. 

Figure 9 presents calculations for the systems 
n-propanolfwater, acetone/n-hexane, and acetone/n-heptane 
along all the concentration range. In these three examples, 
we clearly see how the van der Waals model qualitatively 

Castillo, Garza, and Dominguez: Diffusion coefficients for mixtures 

predicts the same concentration behavior as does the experi- 
mental data. The only feature that our model cannot properly 
describe is a thin peak reported in the n-propanoYwater sys- 
tem close to X2= 1. We cannot explain this. But this reason is 
probably related to the fact that the van der Waals mixture is 
still too rough to deal with actual mixtures. 

The different capability of the van der Waals model and 
of the hard-sphere model to predict the MDCs of actual mix- 
tures can be compared. In Fig. 9, calculations for the MDCs 
given in the RET were also included in the third Enskog 
approximation. The hard-sphere diameters were exactly the 
same as those used for the van der Waals calculations, and 
Eq. (7) was used to define the volume cross interaction. The 
actual difference between the van der Waals and the RET 
calculations is the tail interaction. In general, the hard-sphere 
calculations cannot give the proper curvature shown by the 
experimental D 1 1 -X2 curves. 

In summary, here and in our previous paper I, we have 
presented a complete scheme to understand the behavior of 
the MDC. In our model, the MDCs of liquid mixtures can be 
explicitly calculated. Moreover, we can understand how the 
different parameters affect the D t t -X2 diagrams. On the 
other hand, the procedure we have followed can be used to 
correlate experimental data of actual mixtures, which re- 
quires very little input while still yielding reasonable quali- 
tative good results. As we have shown, systems of types I’ 
and II can be described by our method. Future work must be 
addressed to determine the usefulness of our procedure to 
explain the MDC for systems of types III, IV, and V, and to 
implement this scheme for barodiffusion and thermal diffu- 
sion. This work is underway and will be published shortly. 
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