The thermal diffusion factor of the van der Waals binary mixture
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The explicit dependence of the thermal diffusion factor with respect to composition and interaction
parameters for the van der Waals binary mixture is obtained in the framework of the mean-field
kinetic variational theory and in the scheme of Scott and van Konynenburg. Here, we present a
numerical study where the global behavior of the thermal diffusion factor is described in terms of
molecular masses, sizes, and interaction parameters, along the phase diagram of this model mixture.
This numerical study allows us to understand what molecular parameters modify the sign of the
thermal diffusion factor. In addition, a comparison is made between the thermal diffusion factor
coming from the van der Waals mixture and from the hard-sphere mixturel9%y American
Institute of Physicg.S0021-960807)51019-1

I. INTRODUCTION study the TDF of binary mixtures. There are few model mix-
Glures for which theory can be handled almost without ap-

. . . Broximation, and at the same time they could give explicit
with a thermal gradient. It may occur in both the gaseous an . . . ;
equations relating molecular properties, in particular attrac-

the liquid mixture. As a result of the thermal gradient, com- .o forces, to thermal diffusion. One of those model mix-

posmon_gradlents_ subsequently appearin _the T"'X“”e' Thost%res, as will be shown here, is the van der Waals binary
composition gradients produce ordinary diffusion. A steady

. . . : .. ’mixture. Therefore, here we will study the thermal diffusion
state is finally reached in which the separating effect arisin : . S
e 2 or van der Waals mixtures through the mean-field kinetic
from thermal diffusion is balanced by the remixing effect of

) o : .-~ variational theory(KVT 1).1® Points of interest will be to
ordinary diffusion. As a consequence, partial separation is
understand the effect of molecular masses, short-range forces

observed and described by the thermal diffusion factor . S .
. . molecular volumes and attractive potential interactions on
(TDF). Experimental results have shown in most of the case . -
e TDF. Of course, we will try to understand the origin of

a “normal” behavior, i.e., the heavier species in the COIdthe change of sign of this property.

region and the lighter species in the hot region. Also, there . .
2 . . D The phenomenological expression for the mass J[US(
are systems with “abnormal” behavior, where the situation . .
(relative to the local center of mass velocity 1,2), under

'S. the ppposﬂe. Typical values fog the TDF, disregarding thethe condition of no external forces and mechanical equilib-
sign, lie in the range of 0.3 to *f Although, they tend to fium (Vp=0), is"18

infinity at the critical point of the mixture. Absolute values

between 10 and 100 have been measured in the vicinity of 2

the critical regior. IN=—> (1-6,,)DFMVp;—pD{V InT. (1)
Thermal diffusion in liquids was first reported by =1

Ludwig® and studied in detail by Sor&tFor the case of Here, we will confine ourselves to binary mixtures. In Egs.

gases, it was predicted independently by Endkdtend by (1),  is the mass density, is the temperaturd) ;™ are the

Chapmart? and later confirmed with the experiments of mutual diffusion coefficients, anB are the thermal diffu-

Chapman and Dootsdri.The phenomenological description sjon coefficients. Equationd) have been written in such a

of the thermal diffusion process is provided by the irreversyyay that all the gradients occurring therein are independent.

ible thermodynamics in the linear regirtfealthough isotope  The choice of the componehtis arbitrary, and although it is

separation has been a famous application of thermal diffunot explicitly stated, theDi(J?M and theD] will depend upon

sion, the variety of systems studied is quite low. Therefore, ithe choice of. 1718

is a property quite unknown. In particular, the influence of  As mentioned, the property more often used to describe

molecular parameters on this transport property is not cleagnermal diffusion in a binary mixture is the TDE, which
since very few models can be explicitly developed to givejs gefined at stationary states as '

the TDF in terms of molecular parametér®y far, the most

Thermal diffusion is the transport of matter associate

interesting property of the TDF is the origin of its sign, and Vi P1
how this is related to thermodynamic states and to molecular : P2
parameters of the mixture. =" TN T 2
The purpose of this paper is to present a new method to %=0
with aq,+ a»;=0. The TDF is invariant to the change of
30n leave from Instituto de Fisica, UG. reference systertenter-of-mass or center-of-voluime
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Molecular simulations have been done to obtain thermaphase equilibria in binary mixtures, revealing a rich variety
diffusion coefficients and TDFs for Lennard-Jones liquid of behaviors accounting for most of the types of fluid phase
mixtures?®?° although most of the studies are focused onequilibria shown by actual mixtures, in a qualitative viay’
method developments. Systematic studies probably start withihis model potential has also been used to understand a long
the work on isotopic mixtures using nonequilibrium molecu-list of related problems such as the theory of capillafity,
lar dynamics due to Kincaidt al?* and Hafskjoldet al??In  nonuniform  fluids?® interphase properti€S, density
the former study, the authors studied isotopic binary mix-fluctuations’* and the mutual diffusion coefficieft.
tures of particles interacting through the Lennard-Jones/ As mentioned, our point of departure to study the TDF
spline potential. They found that the dependence of the TDIof the van der Waals mixture is the KVT§.As we shall see,
on the mass ratio in the mixture is very similar to that givenexplicit expressions for the thermal diffusion coefficient and
by the Enskog theory. In the later study, the authors prefor the TDF can be obtained without approximations, in
sented a study of the TDF for isotopic binary mixtures inter-terms of molecular parameters. To obtain the TDF, we also
acting through a switched Lennard-Jones potential. Theyieed the mutual diffusion coefficient for the van der Waals
found that for a stationary temperature gradient and, as mixture. This can be obtained in the framework of the KVT
consequence, for a concentration profilg: The potential |, too.3? Quite recently, we presented a comprehensive study
energy flux is small. PThe lighter component prefers the hot of the mutual diffusion coefficient for van der Waals binary
side of the system.)3The ratio of intermolecular energy mixture obtained with the KVT 1. There, we made a numeric
transfer to kinetic energy flux increases as the density instudy devoted to understanding the dependence of the mutual
creases. This ratio also increases from the hot to the colgiffusion coefficient in the binary mixture on molecular sizes
region in the system. The last feature is consistent with thend interaction parameters. Moreover, we related the mutual
increasing of the collision rate as density increases. In adddiffusion coefficient to the classification scheme devised by
tion, they found that the contribution of the lighter compo- Scott and van Konynenbu®?’ to study in a systematic way
nent to the energy flux is predominantly kinetic energy, andhe phase equilibria of binary systems. With this classifica-
this contribution increases from the cold to the hot side. ThQion, those authors were able to reproduce most of the known
contribution of the heavier component to the energy flux istypes of fluid-fluid phase equilibria observed in actual fluid
predominantly intermolecular energy transfer through momixtures. In modern language, this classification scheme re-
lecular interactions, and it increases from the hot to the colgies on curvature of the free energy. The free energy curva-
side. ture of a binary mixture is responsible for the specific char-

Most of the models developed to understand the TDFacteristics of the equilibrium phase diagrams. The
come out from kinetic theory. The Chapman-Enskog solumultiplicity of phases and the connectivity of their associated
tion of the Boltzmann equation yields an accurate descriptioritical points are determined by the form of the spinodal
in the dilute gas I|m|t7'3 Calculations based on the Boltzmann surfaces(free energy Curvatupe())_ The link between the
equation indicate that TDF is very sensitive to the intermo-mutual diffusion coefficient and the fluid phase equilibria
lecular potential. For moderate and high density fluid mix-was possible, since this coefficient in the KVT I is equal to
tures the revised Enskog thedRET) for hard-spheres has a the free energy curvature of the binary mixture, modulated
prominent place, since it can give explicit calculations.hy a compressibility factor, and other factors related to the
Kincaid, Cohen and Lopez de H&fousing RET made a dynamics of two-particle collision. Therefore, a global be-
comprehensive numerical study of the TDF for the hardhavior of the mutual diffusion coefficient for the van der
sphere binary mixture. The most striking difference found bywaals mixture was obtained on the same basis as in the case
those authors, between the low-dens{§oltzmann and of phase diagram®.
high-density regime, is that the region of mass ratio-diameter  The link between phase equilibria and thermal diffusion
ratio plane for which thexy, is strictly positive or negative, coefficient can not be done clear-cut, as in the case of the
as a function of composition, is much smaller at high densimutual diffusion coefficient, because, as it will be shown
ties. Also, a, is not a monotonic function of the mole frac- pelow, there are two terms in the expression of the thermal
tion, at higher densities. diffusion coefficient, but only one is related to the attractive

More than a century ago, van der Waals developed &ajl through the chemical potential. However, for the TDF
simple model which turned out to be extremely fruitful for the situation is a little bit different due to its relation with the
describing the main properties of realistic fluids. In modernmutual diffusion coefficient. We will use along with the nu-
language, a rigorous formulation can be given by writing themerical study given below the parameters devised by Scott
molecular pair interaction in the form: and van Konynenburg to describe the different types of be-

_\S L havior of the TDF in the binary mixture. As will be shown

VIO =VAD) + V), ® below this practice is useful.
where VS refers to the short-range reference system, while  The outline of the paper is as follows. In Section Il, we
V! is the long-range part of the potential, with range!. If review the KVT I, i.e., the van der Waalsian theory of trans-
the properties of this model are analyzed in the limit ofport processes, as well as the most important features of the
vy—0, the van der Waals equation, combined with the Max-Scott and van Konynenburg scheme. In that section, we will
well equal-area construction, is obtainf@Besides, the van present the derivation of an expression for the thermal diffu-
der Waals theory has been developed to understand fluision coefficient and for the TDF, in the KVT I. In Section I,
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we will present the results of our numerical study and aThey are the same functionals of the local number densities

discussion. {n,}, as in the case of a binary mixture in nonuniform equi-
librium.
Il. THEORY Explicit expressions for the transport coefficients up to

the Navier-Stokes level can be directly obtained by expand-
ing the heat, the momentum and the mass fluxes to linear
The kinetic variational theory, first obtained by order in the gradients. This is done by solving E@$.in the
Karkhecket al,'® is defined by a set of coupled nonlinear Kac limit, in the form f;=f%[1+®;] through the
mean-field kinetic equations given below. Those equation€hapman-Enskog development. Here, ﬂﬁ‘@ are the local
were derived for a system of particles interacting through avlaxwell distribution functions, and;~ (V). The thermal
pair potential consisting of a hard-sphere part plus a smoothonductivity and the viscosities are identical to those given
but otherwise arbitrary attractive tail. The set of equations foin the RET®* The diffusion and thermal diffusion coeffi-
the two single particle distribution functions defined in acients exhibit an explicit dependence on the tail strength, as
binary mixturef;(r,,v,,t), (i = 1,2) are the following: we will show below.
We will limit our derivation to the case of the thermal
J J . . . . L L
—+v;- }f (r,vont) diffusion of a binary mixture. Here, an explicit derivation to
Jt or obtain this coefficient will be presented on the basis of the
12 procedure developed by Lopez de Haatoal®* for the case
=CRET(f; f, )+ > dron;(ry,t) of hard spheres. The starting point for our discussion will be
M =1 Jrip>a the linearized integral equations for tH€'s in Ref. 16:

A. Kinetic theory for the van der Waals mixture

2

J
HS, |
X g (rl,rzl{nk})—so“’" vy i(ruvad), @ 3 gﬁy”ff(’)fdvzf}@f de(e-v)O(e-v;))
=1

wheref;(r,,vq,t) is the average number of particles of com- )

ponenti (with massm;) at the positionr,, at the velocity X[@j(va) +Pi(vy) = Pj(va) = Pi(vy)]

vy, and at timet. n;= fdv,f;(r,,vq,t).
The Kac limit,

(P|tjall_ lim 73V|J(7r) 5
y—0

ﬁnTC 5/2
+—[Ci—5/2]

n
=ff°>[<v1—u>~ —d

0

— Ju
+ZCiCi:

ar

8w i

can be done in the mean field terms of E®. (o;; —0, o
a®. ( ij x| 1+ 512 IJy,JnJrnJ

g;j—0). Kinetic equations for thé; can be obtained that
embody the exact thermodynamic description of a system
interacting with a potential consisting of a hard-sphere core
and an infinitely weak long-range attraction, i.e., the van der
Waals interaction. We shall call this theory KVT I. The col-
lision term CRET(f; ,f;) has exactly the form of that which 9 pHS i
appears in the revised Enskog theory introduced by van XE u

Beijeren and Ernst®

L +2/3C?-3/2)

} ®

The y;; are the contact vaIues og” , Ci=v(m;/2kT)

RET, — 2
C (fi’fj)—jzl qu dVZJ de(e-v;))O(e-v;i) X (vp—U), m;=m;+m;, andCC C.C+(U3)CH. T is
Hs the unit dyadic andi the local velomtyk is the Boltzmann

X[gij (ryra+oe{md)fi(ry,vy,t) constantd,=d"S+d!, where
X fi(ry,v5, ) =g S(ror— oijel{ng) 45— (/) B(a,uiHS) m, aPHS+ 9 InT
Xfl(rlavlvt)f](r]_vVZ!t)] (6) ar P or ar

Here, v;;=v;—V; is the relative velocity between two par- 4o 2 m

ticles with velocitiesv; andv;, respectively.e is a unit vec- x| 1+ ?2 TIYiin; m—'“ 9)

tor directed along the line of the centers from the particle of =1 !

component to the particle of componerntupon collision, 444
and® is the Heaviside step function; andv; denote the

velocities of the restituting collision, which are connected to . m; JP
those of the direct collision; andv; by the relations di=(ni/n)B 22 ajj 7— Dol (10
Vi=Vit2M;i(vii- e € v =vi—2M;j(vij- €)e, ™ Heren= 32 .n;,p=3%.nm =322_,p;, B=1/(kT). The

whereM;;=m; /(m;+m;). Theg (r1r2|{nk}) s are the ra- temperature isT=(3/2nk) '=2_, [dv;(1/2)m;(v;—u)?f;,
dial distribution functlons of a blnary hard-sphere mixture.and the pressure B=P"S+ P!, where
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2

27
PHS=KT n+—2

3= (11

3
o-ijyijninj
and

Ptzz aijninj (12)
W|th aij :fV” (r)dr.

The chemical potentials are expressed (8¢T,{n;})
—,u,I -l—,u,I , Where

22 ajjn;

i,j=1

13

and ,u,” is the chemical potential for componeintn a bi-
nary mixture of hard spheres.

As mentioned, Egs(8) can be solved with the same
method developed for the hard-sphere mixture presented Where Eji=(ni/kT)(dui/onj)rn,

8207
2 2
) P: an;
L__ Pi i an;j
W=, (- 6,9{2 (Ek, EkL) "
2 (K[ 2
pi di’ B
sz n ,-21[ 2oy y) L
2
m dlogT
P _ Al
X + —yo
(19

where theJ(") are the macroscopic mass fluxes to the first
order in the gradients relative to the local center of mass

velocity, pbIl 377n crIJ , and

=2 Eji, (20)

i Those functionsP;

Ref. 34, with some appropriate changes. Hence, to follow théhould not be confused with the pressure.

derivation given there, we will define some variables:

2
87 M
Ki=|1+ ?le adyin, m" (14)
8w Mii
3 ij
K 1+1_5 ”yl]njm_” s (15)
PHS 472 Mii
m_|q__ " 3yv.n 2N
Ki=|1-—=+ 3]_21 oRYiin; — (16)
Now, Egs.(8) can be written in the following form:
2
> o,Jy,,f<°>f dv2f§°>f de(e-vij)O(ev;))
i=
X[ D (vy) +Di(vi) —Dj(vo) —Di(vq)]
0) oinT n
:fi (Vl_u)' Kl[C|_5/2:| +Rdi
I
0
+K/[2C,C ] +2/3K”[C2 3/2]— u 17

Equations(17) are the same as equatio(®ba of Ref.
34. The only difference relies on the definitiondf, where

In binary mixtures, there is only one independent diffu-
sion coefficient as well as one independent thermal diffusion
coefficient. Comparing Eq$1l) and(19) allows us to obtain
expressions for the coefficients of interest here, for the van
der Waals mixture in the KVT I, as follows:

(a) The thermal diffusion coefficient:

Pi : dg.k()) : my
Di= 2np|J ‘n le (nk 5k1+29bk1 mkjykJ)
EkL
Z np(a‘p,+2pbp, :jypj) —ag“]. (21)

As far as we know, this is the first derivation of the
thermal diffusion factor in the KVT I.
(b) The mutual diffusion coefficient?

22 dfy
(c) The thermal diffusion factor can be obtained using
Egs.(21) and(22) in Egs.(2) in the following form3*24
ajj = kri—Krj, (23

where
2

2, (1-8,0)D"pjkrj=pDf

DCM

2m n<g (22

P
)| Exj— EkL

the tail contribution is included. Hence, following the
method of solution presented there, the independent mag1d
flux in a binary system under the condition of no external
forces, i.e., mechanical equilibrium can be obtained. This
mass flux, relative to the local center of mass velocity, can be
obtained substituting the solution for tligto the first order

in the gradients into the expression

2
kr= 2 9jL) Pjnjkr;

2
Z 5I]+2pr]MI]yIJ)

||Mm

‘]i(rlat):f dvam;(vy—u) fi(rq,vy,t). (18 In both Egs.(21) and (22) the af" and thed{) are the
coefficients that appear in the Sonine polynom|al expansion
The most relevant steps of the derivation are presentediven by Eqs(A8). They depend on the hard core part only.

in Appendix A. The final result is as follows: The tail contribution in Eqs(21) and(22) comes through the
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chemical potential Eq$13) and(20). In our derivation, the interaction between molecules 1 and 2. The constantare
explicit dependence of the tail contribution is handled inthe size parameters for the pure components and for mixed
such a way that the structure of the equations given in Refpairs, respectively. Here, in agreement with the Scott and
34 for the case of hard spheres using RET is conserved. Thisan Konynenburg conventidii,we have used the cross size
is quite useful, in particular, for making comparisons be-parameter as
tween KVT | and RET. Since we need only to turn off the _
tail contribution to recover the TDF and the mutual diffusion 212~ (Pt b22)/2. (28)
coefficient as they are given in the RET. In order to obtain ~ On the basis of the selected parameterand{, and on
practical results, one restricts the number of Sonine polynothe P-T diagrams resulting from their calculations, Scott and
mials in the expansion. We shall adopt here the conventionan Konynenburg grouped fluid phase equilibria diagrams
usually called theNth Enskog approximation, i.e., only the into five types(see Fig. 1. The diagrams were distinguished
first N Sonine polynomials are taken into account. For detailgnainly by the configuration of the critical lines and the three-
see Appendix B. phase lines on the P-T graphs. They recognized a sixth type
Equations(22) can be transformed, straightforwardly, of diagram that occurs in some aqueous systems, but it was
into the expression previously derived by Karkhetkall®  not among those predicted by the van der Waals equation. In
in terms of the Helmholtz free energy per volumg. the diagrams of types | and Il, the gas-liquid critical line is
continuous between the critical points of the pure compo-
nents, G and G. In the diagrams of type Il, there is a
B. The Scott and van Konynenburg scheme liquid-liquid phase separation bounded by a three-phase re-

Studies of fluid phase equilibria have shown that theredion LLG and a liquid-liquid critical line LL. These two
are continuous transitions between phase diagrams that el{?€s intersect an upper critical end point. In the diagrams of
hibit gas-liquid, liquid-liquid, and gas-gas phase separationdYP€ IV, the liquid-liquid-gas three-phase region is bounded
Critical lines are often observed to change continuously fronf20ve and below by critical end points. In the diagrams of
one type of the phase separation to another. When the lindype I, IV and V, the gas-llqmd critical line is divided into
representing a single degree of freedguare-component va- WO branches. In the diagrams of type IV and V, the branch
por pressure curves, three-phase lines, critical lines, ate. of the gas-liquid critical line originating in £terminates in

plotted on P-T diagrams, the resulting graphs fall naturally®" Upper critical end point, while the branch originating in
into several different categories, providing a convenient baCe M1S€S to @ maximum pressure and passes continuously into

sis for classification of the fluid phase equilibria. a liquid-liquid critical line, terminating in a lower critical end
A very useful classification scheme has been devise§0iNt- In the diagrams of type IV, there is a second liquid-

some time ago by Scott and van Konynenbffrgsho used liquid phase separation at lower temperatures, with a critical

the van der Waals equation in a systematic way to study thin€ ending in a second upper critical end point. Finally, in

fluid phase equilibria of binary mixtures. They characterizedN€ diagrams of type Iil, the branch of the critical line origi-
the mixtures by three dimensionless parameters: nating in G, rises to high pressures, sometimes passing
through maximum and minimum pressures and/or a mini-

_ bay—byy (24 UM in temperature.
"~ byytbyy’ The usefulness of the above scheme relies on the fact
that it gives a qualitative description of the properties of the
42 8n liguid mixtures, and very rarely yields non-physical results.

b3, bi; The fluid phase of binary mixtures can be qualitatively dis-
Cay ay (29 cussed in terms of interaction parameters and changes of
b_ilJr b_'ﬁz thermodynamic properties near the critical points. Therefore,

a very natural extension of the work of Scott and van
a;;  2a;, an Konynenburg is to use this scheme to describe the behavior

lel_ b11b22+ bT22 of the mutual diffusion coefficient and of the TDF of binary
A= 2, g . (26) miégures. The former has been presented quite recently by
5{1 + 92_2 us

For £=0, is related to the difference in critical temperatures|||. THE THERMAL DIFFUSION COEFFICIENT
or pressures of the pure components, ani related to the

molar heat of mixing. The van der Waals constaatsand A. Definition of parameters

b, for the mixture depend on mole fraction, as follows: The TDF was calculated for van der Waals liquid binary
mixture through Eqs(23) as a function of the concentration,
an=> XiX;aj , andb,,= >, XiXjhjj . (27)  for different thermodynamic states. Here, we will present a

numerical study to understand the influence of each param-
The constant®,; anda,, measure the attractive forces eter of the model mixture on the TDF. Both the thermal
between pairs of molecules of the pure components 1 and 2jffusion and the mutual diffusion coefficients were calcu-
respectively, andy, is the corresponding parameter for the lated in the ninth Sonine approximation. We also present a

J. Chem. Phys., Vol. 106, No. 19, 15 May 1997
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FIG. 1. Classification of Scott and van Konynenbu@j.Values of A and{ defining the main regions of similar phase diagranodified form Ref. 26 The

shield region is not showrib) Sketches of the pressure-temperature projections of the six possible types of fluid phase equilibria exhibited by binary mixtures
[modified from K. E. Gubbins, K. S. Shing, and W. B. Street, J. Phys. CB&n5473(1983]. The vapor-pressure curves of pure components are shown as

solid curves. The gas-liquid-liquid three-phase lines are shown as dash-dot, and the gas-liquid and liquid-liquid critical lines are shown dashed. The U and L
are upper and lower critical end points, respectively.

comparison between the predictions of the REa@rd-sphere  a,,= —1.305 LAt mol™ 2, b,,=49.79 L mol'}, T=168 K,
mixture) and of the KVT I(van der Waals mixtupeto deter- n=2.03x 107 L. They will remain fixed unless otherwise
mine the effect of the attractive tail on the TDF. explicitly mentioned.

There are several sets of parameters that can be used to
define a binary mixture under study. We have used the fol-
lowing set: B. The thermal diffusion factor in the van der Waals

mixture
my, My, @y, by, A, €, ¢, n, T, and X,. 29
b e Tam T2 &< 2 @9 With the theory developed above, the TDF was calcu-

Once this set is given, the other interactions parameters caated for several binary liquid mixtures with the aim of un-

be obtained with the following equations: raveling the complex relation between the TDF and the mo-
[1-¢] lecular parameters of the mixture that determine its behavior.
b11=1—b22, (30) The molecular parameters, &, and{ were selected to fall
[1+¢] into the different phase diagram typ@sV) of the Scott and
[1-¢][1- &) van Konynenburg scheme. Some of our results are discussed
allzm mazz, (31) below. . .
In Figs. 2 and 3, we present,, versus the mole fraction
[1-&][1-A] of component 2 X,) for all the fluid mixtures types of the
a12=m mazz- (32 Scott and van Konynenburg scheme. Those calculations

were done for three mass ratios of the components in the
Interpretation of the calculations is easier, if some of themixture (m;/m,=0.25,1, and 4). Also, we included calcu-

above mentioned parameters are fixed for most of the calcuations for the hard-sphere binary mixture. The hard-sphere
lations. As a final goal, we shall use the procedure presentethlculations just correspond to turn the attractive tails off. In
here to understand the concentration dependence of the TDgeneral, the mass ratio is the most important parameter for
for actual binary mixtures. Therefore, we fixed some paramédetermining the sign oft,,. This will be more clear below.
eters close to that of simple fluids, like argon, to obtain somd-or m;/m,=0.25 «,, is negative, form;/m,=1 a,, is
feeling about the influence of each parameter in actual mixelose to zero, and fam,/m,=4 «,, is positive no matter if
tures. The fixed parameters arg=m,=6.6335<10 2> g,  there are or there are not attractive tails. Actually, our calcu-
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FIG. 2. a;, versus the mole fraction of component 2 for van der Waals FIG. 4. ay, versus the mole fraction of component 2 for van der Waals
mixtures of types (upper panel Il (middle panel, and Il (lower panel of mixtures of types I(upper panel{=0.2, £&=0; A=-0.101, A=-0.2

the Scott and van Konynenburg schemng, is presented for three mass O, A=-0.3 A), Il (middle panel(=0.2,¢=0; A=0.11, A=0.20,
ratios of the components in the mixtuney, /m,=0.25, 1, and 4. Calcula- A=0.3 A) and Il (lower panel,{=0.58,¢=0; A=0.1, A=0.2 O,

tions for the hard-sphere binary mixture were also included for the same\ =0.3 A) of the Scott and van Konynenburg scheme. Here, we present
mass ratiosm; /m,=0.25(HS O, VWO), 1 (HS A, VW V), 4 (HS ¢, VW how the diagrams are affected when the paramétécross interactionis

+). varied. In all those cases; /m,=1.

lations show that the mass fraction does not determine the
shape of thex;, vs X, diagram, but it puts a level for the

15 r T . — . T . sign. The attractive tails only modify the trend imposed by
10 } i the mass ratio. When the mass ratio is close to one, the
| $0-0=0=0—0-0—0—0—0—0—0—0—0—0—0—0=0=0=¢ _ attractive tails do not modify in this scale range the shape of

the diagrams. But, at greater mass ratios, the change due to
the attractive tails is more important. For types | and V
(A<0), theaq, vs X, diagrams present a curvature always
in the sense of decreasing the absolute value of the TDF. On
the contrary, for types Il, Ill, and IVA>0) the curvature of

the a4, vs X, diagrams moves in the direction of increasing
the absolute value ofr;,. The mass ratio dependence of
a1, obtained with the KVT | is inherited from the hard-
sphere model, as it is given in the RET. As mentioned in the
Introduction, Kincaidet al?! have shown in their molecular
simulations for particles interacting through Lennard-Jones/
spline potential that the mass ratio dependence;ois very
similar to that given in the RET. This suggests that in our
procedure we have captured the correct mass ratio depen-
dence ofa4,. The lack of symmetry in Figs. 2 and 3 is due
FIG. 3. ay, versus the mole fraction of component 2 for van der Waalsto the molecular parameters used to define properly the dif-

mixtures of types IMupper pangand V (lower pane) of the Scott and van  ferent mixture types of the Scott and van Konynenburg
Konynenburg schemex,, is presented for three mass ratios of the compo-

nents in the mixture. Calculations for the hard-sphere binary mixture wereSCher_ne'
also included for the same mass ratios, /m,=0.25 (HS O, VW O), Figures 4 and 5 present how the TDF V§q{agram§ are
1 (HS A, VWV), 4 (HS ¢, VW +). affected when the parametdr (cross interactionis varied.
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0-8-B-0-8 - B-N-B-N-N-D-N-B-A-D-A-A-1 e Y-V-V-V-V-V-VVV"
1 1 V-V VY
sEVV .
2r L L ]
1 1 N 2
_ . ] A 1 . i 1 A
s 2L i 10
1F = 5 u
0
-
2 |- - A
2 . 1 . 1 . 1 . 1 . A/
-10 . | s 1 . 1 s 1
0.0 0.2 04 0.6 0.8 1.0
X, 5L .

FIG. 5. a;, versus the mole fraction of component 2 for van der Waals
mixtures of types IMupper panel{=0.58,¢=0; A=0.01501, A=0.0250,
A=0.035A) and V (lower panel,{=0.58,£=0; A=—0.10, A=-0.20,

A=-0.3 A) of the Scott and van Konynenburg scheme. Here, we present A/

how the diagrams are affected when the paramétécross interactionis -10 . LA 1 . ) A 1 A

varied. In all those casas; /m,=1. 0.0 0.2 04 0.6 0.8/ 1.0
x2

In all those cases, the mass ratio was f'xefj equal t‘? 1 and tl‘l‘ler'G. 6. a4, versus the mole fraction of component 2 for the typésgper
paramete=0. The hard-sphere calculations fag, in all  panel, (=02, A=-0.2, ¢=0; a,,=—0.5 O, ay=—1.3053 O,
those cases give a vanishiag, no matter what the concen- ay=-3 A, a,=-5 V), Il (middle panel,{=0.2, A=0.2, £=0;
tration is. Actually, this is a test for our algorithms. A hard- 82~ ~0.5 [, a,=-1.30530, a5,=-3 A), and Il (lower panel,

' : : =0.58,A=0.2, £=0; a,=—0.5 0, a,=—1.30530, ay=—3 A) of
sphere bmary mixture of components of the same size an e Scott and van Konynenburg scheme, showing the influence of the pa-

masses is actually a monocomponent S_y5tem- Thus, the TDEmetera,, (interaction between particles of component B all those
must be zero. For most of the cases in the van der Waalssesn, /m,=1.

systems, the cross interaction lowers thg vs X, diagrams
to negative values. Although, in absolute valdemodifies
the TDF vs % diagrams in a lesser extent than the masssan der Waals mixtures, the greater thethe loweraq,. A
ratio. Actually, the attractive tails change only the shape ofthange of sign can be reached for a negatjvdn each
the diagrams. The sign of modifies the curvature of the mixture type, moves the diagrams almost in a parallel way.
diagrams in most of the concentration rangdesx0 makes For some concentrations, usually close to the region rich in
the a4, vs X, diagrams convexé(zalzlaxg < 0) andA>0 one component, the attractive tail can make the TDF in the
makes the diagrams concavé?{,/9X5>0). Although, it ~ van der Waals case greater than zero. It is clear from the
could be an inversion in the regions of the mixture rich inrange of variation ofx;, shown in the diagrams of Figs. 8
one of the components. In the latter case, the largeiAthe and 9 that{ modifies thea,, diagrams less tha and
the larger the curvature of the diagrams. This is difficult toa,,. Also here, thea;, vs X, diagrams of types | and V
see in Fig. 5 due to the scale, but, changing the scale, this f@esent a convex curvature for most of the concentration
quite clear. range.
Figures 6 and 7 present the influence of the parameter The dependence of the TDF vs Miagrams or€ can be
a,, (interaction between particles of componentdh the  obtained from Figs. 10 and 11. The dependence otth®n
TDF vs X, diagrams. Those figures show a strong sensitivitythe parameteg is important, since it can change its sign at
to the molecular interaction parameters. This parameter different concentrations of the binary mixture, as well as the
also lowers the TDF to negative values. The more negativehape of the diagrams. For comparison, Figal@resents
a,,, the lower the TDF. As beforé) modifies the concavity the TDF for the hard-sphere binary mixture with the appro-
of the a1, vs X, diagrams A <0 (types | and Y makes them priate diameter ratio to give the sarfevalues as those used
convex andA>0 (types Il, lll, and IV) makes them con- for the van der Waals systems. In all the mixture types, the
cave. As in the previous case, the test for the hard-spheratractive tails modify thex;, vs X, diagrams in a very simi-
mixture (turning off the attractive tailsgives a vanishing lar form. Comparing the van der Waals mixture and the hard
a5 in all the concentration range. sphere-mixture, the general feature is the lagethe lower
The dependence of the TDF dncan be seen in Figs. 8 «,,, for most of the concentration range. At lar§ethere is
and 9(mass ratio=1 and¢=0). In most of the cases for the a depression in the diagrams for the van der Waals case.
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FIG. 7. a,, versus the mole fraction of component 2 for the typegupper FIG. 9. a;, versus the mole fraction of component 2 for the typegupper
panel,{=0.58, A=0.025;a,,= — 0.5 1, a,,=—1.30530, a,,=—3 A) panel,A=0.015,£=0; {=0.580, {=0.610, {=0.64A), and V (lower

and V (lower panel,{=0.58, A=—0.2; a,,= — 0.5, a,,= —1.30530, panel,A=-0.2,£=0; (=0.58, {=0.70, ¢{=0.8 A) of the Scott and
a,=—3 A, a,,=—5 V) of the Scott and van Konynenburg scheme, show- van Konynenburg scheme. We present here the dependence of the TDF on
ing the influence of the parametej, (interaction between particles of com- the parametet. In all those casems; /m,=1.

ponent 2. In all those casem,; /m,=1.

16 ————— 2 . T T
A - 2
048 - . 1 - -
O—-O-Q-, 3 0
8 0.0 Fo=p=2= o
B \&&&&ég:g:u\nﬂﬂ_n_n_n_ . 4L
08 A\A\XIXZXZX:Q:R:X:&&:& )
-1.6 . | . L 1 ) 1 R L 2 1 L 1 1 . {
08| i
0.0
08 Etﬂ;ﬁsﬂsﬁiﬁsg:& ] ! Nww_i,v/v/
=] :EE “H-H-RA-R-RA=R= EE: - " 1 s 1 2 1 N 1 .
1.6 . L . L OSBERRReRERE d 1 2o.o 02 04 06 08 1.0
0.0 0.2 0.4 0.6 0.8 1.0 x
X, 2

FIG. 10. «,, versus the mole fraction of component 2, where the depen-
FIG. 8. a, versus the mole fraction of component 2 for the typéspper dence of the TDF on¢ can be obtained §=0.157 0, £=0.489 O,
panel,A=-0.2,£=0; ¢=0.10, {=0.20, {=0.3 A), Il (middle panel, £=0.777A, £€=0.947V). (a) Upper panel, hard-sphere binary mixture with
A=0.2, £=0; ¢(=0.1 0, ¢=0.20, (=03 A), and Ill (lower panel, the appropriate diameter ratios to give the s@malues as those used for
A=0.2, §=0; ¢(=0.5801, ¢=0.7 O, {=0.8 A) of the Scott and van the van der Waals systemgb) Middle panel, mixtures of type |
Konynenburg scheme. We present here the dependence of the TDF on thd=-0.2, {=0.2) (c) Lower panel, mixtures of type Il X=0.2,
parameter. In all those cases, /m,=1. {=0.2). In all those cases, /m,=1.
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2 — homogeneous equations. The solution for EdS) can be
made unique using the following conditiofts:
1 L. -
. X f 1O, dv, =0, (Ala)
8-t G500
4L Vw\’?\gfgjgzcg:@;@zg‘g: o-g-o-o-0-0-0-8 | s
Al 21 f1%d;m;V;dv; =0, (A1lb)
2 ' 1 . 1 L 1 R 1 R =
S
r ,g:Z:Z_ , .21 f(Od,;m,Vidv;=0. (Alc)
T =
50 ge0-0=0=1
Q‘—ea& ~5=6=6 :2:5/ _n:g_n—n—n—n—ﬂ—ﬂ Here,V;=v;—u.
1 A—A A . Equations(17) are linear in the gradients of the macro-
l\V"T ' . . scopic quantities of different tensorial character, hence it is
2 ' ' ' ' ' possible to write theb; as**®
1F i
alnT au d
. e-C = nd;=—A-— ——Bi——+H--u- kZ DX.dy. (A2)
5 -8 N-o-0-0-0-0
p _@’\?\g\ﬂj 2,5(’%’@/ i Here, we will restrict our derivation to obtain the TDF at
VgV~ constant pressure. This can be performed by substituting
2 P S T R S Egs.(A2) into f;=f{®[ 1+ ®,], and the results must be sub-
0.0 02 0.4 06 08 10 stituted into the mass flux Eq$18). Therefore, an expres-
X, sion for the mass flux in the first order of the gradients can be

written in the form
FIG. 11. a,, versus the mole fraction of component 2, for types Il
(A=0.2, {=0.58), IV (A=-0.025 (=0.58), and V A=-0.2, n_ alnT
¢{=0.58) of the Scott and van Konynenburg scheme, where the dependence Ji dV AV, f r
of the TDF on¢ can be obtainedé=0.1570, £é&=0.4890, ¢=0.777 A, !
£=0.947V). In all those casem,; /m,=1.

;nn“dvIE DX.V ]d| (A3)

?\Iow, the task is to calculate the integrals in the mass flux
Egs.(A3). If Egs. (A2) are substituted into Eq$17), those
integrals can be obtained through the following equatitns:

In summary, we have presented a detailed model t
study the behavior of the TDF in binary mixtures. With this
model, TDFs of liquid mixtures were calculated explicitly in
terms of the molecular parameters. Now, we have a clearer
idea of how the different molecular parameters affect the S . .0(

5|k

a1, VS X, diagrams. Certainly, this is quite complicated. The 2 #Iij(Dk) =— n—'
I

- &) Vi, (A4)
procedure followed here can be used to correlate experimen- '~ P

tal data for actual mixtures. There are many actual systemghere

well characterized within the Scott and van Konynenburg

scheme, where an estimate for the interaction parameters can N

be obtained, in particular foA. We have just started to (D )_Tnjf fdajvj(evii)@(e'v”)

correlate some systems with good success. The appropriate
combination of those effects determines the signags.

This work is underway and will be presented shortly.

X 1262(D/*+ D/ ~Df'~ D).

If Egs. (A4) are multiplied by a vectoM, and integrated
over velocities, then after summing ovierone can obtain
APPENDIX A: SOLUTION TO THE INTEGRAL expressions for Eq$A3), in terms of the bracket integrafs:
EQUATION FOR ®;

Equations(17) are a set of two linear inhomogeneous E 2 N JI”(Dk)M dv,
integral equations for th@;. Those equations are soluble if 1=1j=1
the inhomogeneous part of the integral equations is orthogo- 1
nal to the solutions of the homogeneous equations. However, =[Df,M;]=— n_f FiOVie M dvy . (A5)
the only solutions for the homogeneous equations are the K
conserved quantities in a binary collision. Those conservetlere, the conditions to obtain a unique solution were used.
guantities are indeed orthogonal to the inhomogeneous palt particular, for the casMizD! andM;=A, the integrals
of Egs.(17). Hence, one can find the solutions and they aregiven in Eqs.(A5) are equal to those appearing in E43).
fixed, apart from a linear combination of solutions for the Thus, Eq.(A3) can be written in the form
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p alnT &
J=2 [D] Al——+ 2 [Df.Djld, (A6)
i =1

R. Castillo and J. Orozco: The thermal diffusion factor of a mixture

An explicit expression for the bracket integrals can be

obtained in terms oDik(Vi) andA(V)), if we take into ac-
count two facts. First, the integral operator of E(fE7) are
isotropic in the velocity space, thus tw andA are isotro-
pic tensors in that space, i.e.,

Di{(V;)=D{(V))V
AV)=AV)V;

(A7a)
(A7b)

Second Dk and A can be expanded in terms of the Sonine

polynom|als in the following way*>®

m; < m;V,
DI(V)= 372 d >S§52( zm) (A8a)
A(V)) = == WS ai o MiVi (A8b)
2kT&, 77872 2kT )

whered®) anda; are the Sonine coefficients, asg} are the
Sonine polynomials.

To calculate the bracket integrals given in E46), we
need to substitute Eq§A7) and (A8) into Eqg. (A5). Then,
this result must be multiplied bg{?) . A working expression

can be found if the orthogonality properties of the Sonine

polynomials are used, as well as conditidgAd). (See Ref.
34 for details) The bracket integrals fobX and A can be
written in terms of the Sonine coefficients in the form

| 2 (i)
[Di,Al=za0’, (A9a)
k R 3 (k)
Equations(A6) can be written as
;9 InT °
J<1>—5r'][ ay) o~ 2, db ] (A10)

Finally, using the condition

S
> di=
i=1
the expression fod; at constant pressure, can be given as

S )aInT

n 4
L3 2, oivinMy | 5

_ I
n '5’(7

+

)

and the Gibbs-Duhem equations, EGs10), can be handled
in the form given in Eqs(19).

APPENDIX B: EXPLICIT EXPRESSIONS FOR THE
SONINE COEFFICIENTS

Substituting Eqs(A9) and (A5) into (A4) enables us to
obtain the Sonine coefficients given in Eq21) and (22).
(See Ref. 35 for detailsThe equations obtained are

2 N-1
S S Apdl- (5 ﬂ)ao, (B1a
=1 d=0 ha 25 p| P
2 —_
4 n;

pq =" """k

JZ Z a)'=¢ i Kidp. (B1b)
where
2
8 m;
_ 3 i

K|—1+§7TJ21 O-IJyIJnJ—mI-f—mJ

Here, the indexes are defined so that1,2 and
p=0,1,...,N—1. HereN denotes thé&th Enskog approxi-
mation. An expression for thAi"jq can be given as

1/2 S
(B2)
with
BRY =[Sf)(C)CMV, S (C)CHV ],
and
BRY' =[S)(C)CH?v,SF)(C)CHV T,

The bracket integralg ];; and[ ]i; are defined as follow®

o2
[F,G]{;ﬁjJfdedvjdvi(e-vij)@(e.vij)f§°>f§°>

XGi[Fi—F/],

ok’
[F,G]E’J:#fffdedvjdvi(e-vij)(a(e-vij)f§°>f}°>
il
xGi[Fj—Fj’],
where

o=y (83)
Equations(B1) are a set of linear equations. Those can
be solved in theNth Enskog approximation to find the So-
nine coefficientsd{¥y andaf’. The coefficients can be ob-
tained numencally solvmg theNX N determinant. The
Bracket integrals given ifB2) can be found through the
transformation(B3). Under this transformation, the bracket
integrals of Eqs(B2) are identical to the bracket integrals of
a dilute gas of hard spheres. They can be solved using the
results of Ref. 36:
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12

i
|
-

S(rts+n+t+1)!
n=0 $=0 m=0 {=0r=0 (n+t+1)!rls!

I'(pt+tg—2s—2n—m-r—q+1/2)
(p—m—=s—n)l(qg—m—=s—n)!(1-r—t)!m!

1 1+n—-r—t
XB{yM{TrY
XM}ip-%—q+t—2m—25—n)(Mij_Mji)(m+r+2$)'

12

2KT(m;+m;)
2 I J 1/2 1/2
* (— M (i YaM (P12

BEY' =207, o
it

, F(p+g—-2n—-t+1/2) @
=050 (p—n)l(g—m!(1-t)! "7

with
_@nttr ) o (ke
nt o2t (2n+1)! nit!
(2):w_£5 S,
ntT2tr(2n+ 1)1 2 “nottor
Here,M;; =[m;/(m;+m;)], andw=min(p,q).
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