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Abstract

A comparison between experimental and calculated mutual diffusion coefficients is presented for the
methanol-n-hexane mixture, around the coexistence line. For the experimental data, we used previous reported
values, as well as our own measurements performed with the Taylor dispersion technique between 288 and 313
K, for several concentrations. For theory, we used the mean-field kinetic variational theory, i.e., the exact van
der Waals theory. We reproduced the experimental values, in a semiquantitative way. The mean-field theory
uses attractive interaction parameters which can be estimated when the binary system is classified according to
the Scott and van Konynenburg scheme used for classifying binary phase diagrams. As a by-product, our
method can give a mean-field theory spinodal curve prediction. q 1998 Elsevier Science B.V. All rights
reserved.
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1. Introduction

There are very few mixture models which can be handled almost without approximations, giving
explicit equations which relate the molecular parameters of the binary mixture to the mutual diffusion

Ž .coefficient, D, MDC . One of these is the van der Waals binary mixture model. In previous reports
w x w x1,2 , we demonstrated this in the framework of the mean-field kinetic variational theory 3 . There,

w xthe MDC was related to the classification scheme devised by van Konynenburg and Scott 4–6 to
study fluid phase equilibria in binary systems. The link between the MDC and fluid phase equilibria
can be traced to the fact that MDC is equal to the free energy curvature of the binary mixture,
modulated by a compressibility factor and other factors related to the dynamics of two-particle
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collision. The free energy curvature in a binary mixture is also responsible for the specific
characteristics of the equilibrium phase diagrams. Our final formula has a practical advantage; the
explicit dependence of the tail contribution is handled in such a way that the structure of the equations

Ž . w xis the same as that given in the revised Enskog theory for hard-spheres RET 7,8 . This makes the
task of developing numerical solutions for calculating MDC’s easier. In particular, comparisons
between the mean-field kinetic variational theory and the RET are very simple using our framework,

w xsince we only need to turn off the tail contributions to recover the MDC as given in the RET 8 .
From the experimental point of view, the concentration dependence of the MDC over the whole

concentration range is not easily obtained, although there are many applicable experimental tech-
Ž .niques. However, understanding the shape of a D vs. X mole fraction of component 2 diagram on2

molecular terms is a difficult issue. The shape depends on many molecular parameters, apart of those
variables that determine the thermodynamic state: density, concentration, and temperature. Here is
where our method can be of help. In our model, the D vs. X can be explicitly calculated, so we can2

understand how the different molecular parameters affect such diagrams.
In particular, we have shown that our method predicts, in a semiquantitative way, the concentration

behavior of the MDC over the whole concentration range, for homogeneous binary mixtures of types I
w xand II by the Scott and van Konynenburg scheme 1,2 . This work is a step further in that direction. It

is not common to find predictions of MDC’s in the literature when a coexistence line is present, since
many predictive methods cannot deal with phase transitions. The aim of this paper is to show the
capability of our method to predict the MDC of the system methanol-n-hexane around the coexistence
line. Of course, we are not trying to give the correct behavior of D close to the consolute point, since
mean-field theories give only classical critical exponents. Our procedure can also give a spinodal
curve prediction. This well defined spinodal curve exists only in the mean-field case. Other methods
for describing non-equilibrium, one-phase states do not yield a unique spinodal curve. Nevertheless, it
is useful to employ the mean-field description with caution since it provides a simple basis for
characterizing metastable behavior, predicting a sharp distinction between metastable and unstable
states.

w xThe MDC of the methanol-n-hexane system has been measured by Clark and Rowley 9 as a
function of composition at five temperatures, with a temperature-jump cell and a Gouy interferometer.
They also report the critical exponent. However, only two temperatures were evaluated below the
consolute temperature in their study. Therefore, additional temperatures measurements are needed to
make a comparison with theory below the consolute temperature. We report additional measurements
below the consolute point in both the methanol rich region and the n-hexane rich region.

The outline of the paper is as follows. In Section 2, we review the KVT I, i.e., the van der Waals
theory of transport processes, as well as the most important features of the Scott and van Konynen-
burg scheme. In Section 3, we will present an experimental section, and in Section 4 the results and a
discussion.

2. Theory

2.1. Kinetic theory for the Õan der Waals mixture

More than a century ago, van der Waals developed a simple model which was capable of
describing the main properties of realistic fluids. In modern language, a rigorous formulation can be
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Ž . SŽ . LŽ . Sgiven by writing the molecular pair interaction in the form V r sV r qg V g r , where V
refers to the short-range reference system, while V L is the long-range part of the potential, with range
gy1. If the properties of this model are analyzed in the limit of g™0, the van der Waals equation and

w xthe Maxwell equal-area construction is obtained 10 . The van der Waals theory has also been
developed to predict fluid phase equilibria in binary mixtures, revealing a rich variety of behaviors
which account for most of the types of fluid phase equilibria observed in actual mixtures, in a

w xqualitative way 4–6 . This model has also been used to understand many related phenomena such as
w x w x w xthe theory of capillarity 11 , nonuniform fluids 12 , interphase properties 13 , density fluctuations

w x w x w x14 , mutual diffusion coefficients 1,2 , and thermal diffusion factors 15 .
w xThe kinetic variational theory, first obtained by Karkheck et al. 3 , is defined by a set of coupled

nonlinear mean-field kinetic expressions. These equations were derived for a system of particles
interacting through a pair potential consisting of a hard-sphere part plus a smooth but, otherwise
arbitrary attractive tail. The set of equations for the two single particle distribution functions defined

Ž . Ž .in a binary mixture, f r ,Õ ,t , is1,2 , are given by:i 1 1
2E E 1

RET ` HS <� 4qÕ P f r ,Õ ,t sC f , f q H d r n r ,t g r ,r nŽ . Ž . Ž .Ž . Ý1 i 1 1 i j r ) s 2 j 2 i j 1 2 k12 i jE t E r m1 i js1

=
E E

tailw P f r ,Õ ,t 1Ž . Ž .i j i 1 1E r E Õ1 1

Ž . Ž .where f r ,Õ ,t is the average number of particles of component i with mass m , at the positioni 1 1 i
Ž . HSŽ � 4.r , at the velocity Õ , and at time t. n sH dÕ f r ,Õ ,t . The g r ,r n ’s are the radial1 1 i 1 i 1 1 i j 1 2 k

distribution functions of a binary hard-sphere mixture and w tail are the attractive tails. The collisioni j
RETŽ .term C f , f has exactly the form which appears in the revised Enskog theory introduced by vani j

w xBeijeren and Ernst 7 .
Ž . Ž .The Kac limit can be found using the mean field terms of Eq. 1 s ™0, g ™0 . Then, kinetici j i j

equations for the f can be obtained that embody the exact thermodynamic description of a systemi

interacting with a potential consisting of a hard-sphere core and an infinitely weak long-range
w xattraction, i.e., the van der Waals interaction 3 . We shall call this theory KVT I.

Explicit expressions for the transport coefficients up to the Navier–Stokes level can be directly
obtained by expanding the heat, the momentum and the mass fluxes to linear order in the gradients
w x Ž . Ž0. w x1,2 . This is done by solving Eq. 1 in the Kac limit, in the form f s f 1qF through thei i i

Chapman–Enskog development. Here, the f Ž0. are the local Maxwell distribution functions, andi
w xF ;OO=. The thermal conductivity and the viscosities are identical to those given in the RET 8 . Thei

w xdiffusion and thermal diffusion coefficients exhibit an explicit dependence on the tail strength 1,2 .
w xFollowing the method of solution presented in Refs. 1,2 , the independent mass flux relative to the

local center of mass velocity can be obtained, in a binary system, by substituting the solution for the
f to the first order in the gradients into the expression:i

J r ,t s dÕ m Õ yu f r ,Õ ,t .Ž . Ž . Ž .Hi 1 1 i 1 i 1 1

The final result is as follows:
2 2r P E ni j jŽ .Ž1. kJ sy 1yd d E y E 2Ž .Ž .Ý Ýi jL i ,0 k j k L2 ž /2n P E rLjs1 ks1



( )R. Castillo et al.rFluid Phase Equilibria 150–151 1998 797–805800

where the J Ž1. are the macroscopic mass fluxes, to the first order in the gradients, relative to the locali
n Em2 i icenter of mass velocity, d is a Kronecker delta, and P sÝ E , where E s .Ž . ž /jL i js1 ji ji kT E n j T ,nk/ j

Those functions P should not be confused with the pressure.i

In binary mixtures, there is only one independent diffusion coefficient. The phenomenological
ph Ž .expression for the mass flux J relative to the local center of mass velocity, is1,2 , under thei

Ž . w xcondition of no external forces, thermal and mechanical equilibrium =Ts=ps0 , is 16,17 :

2
ph CMJ sy 1yd D =r 3Ž .Ž .Ýi L j i j j

js1

Ž . CMIn Eq. 3 , r is the mass density of component j, T is the temperature, and D are the mutualj i j
Ž .diffusion coefficients in the center of mass reference system. Eq. 3 has been written in such a way

that all the gradients occurring therein are independent. The choice of the component L is arbitrary
CM w xand, although it is not explicitly stated the D depend upon the choice of L 16,17 .i j

Ž . Ž .Comparing Eqs. 2 and 3 allows us to obtain the expression for the MDC of the van der Waals
w xbinary mixture in the KVT I, as follows 1,2 :

2r P1 1CM Ž1.D s d E y E . 4Ž .Ý11 1,0 k1 k L2 ž /2m n P1 Lks1

Ž . Ž j.In Eq. 4 , the d are the coefficients that appear in the Sonine polynomial expansion. They1,0
Ž .depend on the hard core part only. The tail contribution in Eq. 4 comes through the chemical

potential. In order to obtain practical results, one restricts the number of Sonine polynomials in the
expansion. We shall adopt here the convention, usually called the Nth Enskog approximation, so only

w x Ž .the first N Sonine polynomials are taken into account. For details see Refs. 1,2 . Eq. 4 can be used
for calculating the MDC in binary mixtures, but if one is interested in comparisons with experimental
MDC’s of actual mixtures, we need to make a transformation, since the measured MDC’s are

Ž Õ.measured relative to the mean volume velocity D . Therefore, this relationship for binary mixtures
Õ Ž . CMis given by D s r Õ D , where Õ is the partial specific volume of component 2. For details, see2 11 2

w xRef. 1,2 .

2.2. The Scott and Õan Konynenburg scheme

A very useful classification scheme was devised some time ago by van Konynenburg and Scott
w x4,5 , who used the van der Waals equation in a systematic way to study the fluid phase equilibria of
binary mixtures. They characterized the mixtures by three dimensionless parameters:

a a a 2 a a22 11 11 12 22
y y q2 2 2 2b yb b b b b b b22 11 22 11 11 11 22 22

js , zs , Ls .a a a a11 22 11 22b qb22 11 q q2 2 2 2b b b b11 22 11 22

The van der Waals constants a and b for the mixture depend on mole fraction x , as follows:m m i

a Ý x x a , and b sÝ x x b .m 1 j i j m i j i j
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The constant a and a measure the attractive forces between pairs of molecules of the pure11 22

components 1 and 2, respectively, and a is the corresponding parameter for the interaction between12

molecules 1 and 2. The constants b are the size parameters for the pure components and for mixedi j
w xpairs, respectively. Here, in agreement with the Scott and van Konynenburg convention 4,5 , we have

Ž .used the cross-size parameter as b s b qb r2.12 11 22

On the basis of the selected parameters L and z , and the P–T diagrams resulting from their
calculations, van Konynenburg and Scott grouped fluid phase equilibria diagrams into five types, see
w x4,5 . The diagrams were distinguished mainly by the configuration of the critical lines and the
three-phase lines on the P–T graphs. They recognized a sixth type of diagram that occurs in some
aqueous systems, but it was not among those predicted by the van der Waals equation. This scheme is
useful since it gives a qualitative description of the properties of the liquid mixtures while it very
rarely yields non-physical results. Therefore, a very natural extension of the work of van Konynen-

w xburg and Scott is to use this scheme to describe the behavior of the MDC 1,2 .

3. Experimental section

3.1. Instrument design and operation

The Taylor dispersion technique is based on the spreading, by the joint action of convection and
molecular diffusion, of an injected binary-mixture pulse in a laminar flowing stream of the same
mixture at slightly different composition. Under adequate conditions, the pulse concentration profile
will eventually become Gaussian, and the center of gravity of the profile will move with the mean
velocity of the laminar flow. The theory for the development of an ideal equipment to measure

w xMDC’s using this method was revised by Alizadeh et al. 18 . Furthermore, they presented detailed
criteria for the design of a practical instrument for measuring MDC’s. In the present paper, we
followed that work to design a measuring instrument. The details of our instrument were presented in

w xRef. 19 .
w xAlizadeh et al. 18 derived expressions for the fixed-volume MDC for an ideal instrument, in terms

2Ž . Ž .of the first t and second s temporal moments of the distribution of the dispersed pulse. These
expressions can be written as:

1q2z a2Ž . 0ÕD s ,
z 48tid

where

1r2
2 2 4 2 22s y t q t q4 t s½ 5id id id id id

zs qdz .28 t y4s� 4id id

Here, a is the capillary radius, and dz is a correction due to the use of weaker condition on the0
w xdiffusion time. For details, see Refs. 18,19 .

w xIn addition, Alizadeh et al. 18 derived a set of corrections for this ideal instrument that account
for the deviations of a practical instrument. They found that the ideal moments have to be corrected
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2 2 2 2according to ts t qÝd t and s ss qÝds , where t and s denote the experimentallyexp i exp i exp exp
2determined moments, and the d t and the ds are the corrections to be applied. For details, see Refs.i i

w x18,19 .
2The values of t and s were determined with a nonlinear fitting program of the digitizedexp exp

Ž .values from a differential refractometer Waters 402 . This instrument was used to determine the
temporal shape of the injected pulse, in the region where it has a linear response, to the concentration
difference between the cells. Data acquisition was carried out using a data acquisition board
Ž .PC-LabCard, Advantech and a Printaform PC. The diffusion coefficient obtained corresponds to the
mole fraction concentration given by:

X sX qd X .1r 1 f 1

where X is the flowing-stream composition, and d X is a small correction described in Refs.1 f 1
w x18,19 .

4. Results and discussion

In Table 1, we present some results for the MDC’s of the methanol-n-hexane system at two
temperatures and n-hexane mole fractions. All temperatures are below the consolute temperature. We
followed the common practice of employing the reproducibility of the results of a series of
experiments, under nominally identical experimental conditions, as a measure of the precision of the

2observations. Hence, we determined the values of t and s and after considering the mentionedexp exp

corrections, we obtained a mean precision better than "1.5%. Taking into account several uncertain-
ties related to the cross-section area and the length of the diffusion tube, etc., the overall accuracy of
the reported diffusion coefficients is estimated to be of "2.5%. At 313.1 K, we also measured the
MDC at infinite dilution to compare our measurements with those reported values due to Clark and

w xRowley 9 . The two values are within the experimental error.
In order to make the numerical calculations, it is necessary to define the set of parameters to be

used in the mean-field theory. We have used the following set: m , m , a , b , L, j , z , n, T , and1 2 22 22

Table 1
Experimental results

Õ 9 2Ž . Ž .Temperature K n-Hexane mole fraction D =10 m rs
6288.15 5.7116=10 1.86

0.05159 1.32
0.90307 1.62
0.95026 1.96
0.9996 5.45

293.15 0.00003 2.30
0.05171 1.60
0.90269 1.57
0.9545 2.21
0.9971 5.71
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w xX . Once this set is given, the other interactions parameters can be obtained 1,2 . In particular, the2

cross interaction parameter a :12

1yj 1yL
a s a .12 221qj 1qz

With the theory developed above, the MDC was calculated for the methanol-n-hexane binary
mixture as a function of the concentration and temperature, in the ninth Sonine approximation. When
predictions for actual fluids are done, it is difficult to obtain a reliable set of interaction parameters.
Here, an initial set of parameters was estimated as follows: each component was modeled as a

Ž .hard-sphere of diameter s L–J length , plus an attractive L–J tail. The a ’s and b ’s can beii ii
w xestimated through standard formulas 20 . The parameters L and z were selected to fall into type II

phase diagrams of the van Konynenburg and Scott scheme, since the mixture probably belongs to that
type. Thus, the initial set of interacting parameters was modified for the 313 K mixture, so one can
obtain the experimental shape of the DÕ vs. X diagrams. In this way, we arrived to a final set of2

interacting parameters. Since, our main interest was to understand how the different parameters affect

Fig. 1. Comparison between experimental and calculated MDC’s. Top panel: 313.1 K, middle panel: 303.1 K, and lower
panel: 293.1 K.
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Fig. 2. 3D plot of calculated MDC’s using the kinetic variational mean field theory vs. T and n-hexane mole fraction. In this
Ž .plot we included the coexistence line continuous line . The spinodal curve can be seen as the first points where the MDC’s

vanish on the isotherms.

the DÕ vs. X diagrams, we were not interested in developing a procedure to obtain the best set of2

parameters that match the experimental data. Fig. 1 presents a comparison between our experimental
w xdata, some experimental values of Clark and Rowley 9 , and our calculations. The agreement is quite

good and semiquantitative mainly in the hexane-rich region. Here, we used the same parameters
obtained for the 313 K mixture, except for the b ’s which were increased a little bit to match theii

experimental values, since the hard-core must be temperature dependent.
In Fig. 2, we present a 3D plot of our kinetic mean field predictions for the methanol-n-hexane

Ž .system for a small range of temperatures 283–318 K . Here, the coexistence line was also included.
Inside this coexistence line, we can find the geometric locus where the MDC’s reach the value

Õ Ž . ÕD s0, the spinodal curve curvature of the free energys0 . Inside the spinodal curve, we set the D
equal to zero to avoid misinterpretation. As expected, our actual calculations gave negative values for
the MDC’s. This is in agreement with the point of view of a mean field theory where diffusion inside
the spinodal curve must help to nucleate a new phase.
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