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Abstract. We present a critical assessment of the diffusing wave spectroscopy (DWS) technique for obtain-
ing the characteristic lengths and for measuring the loss and storage moduli of a reasonable well-known
wormlike micelle (WM) system. For this purpose, we tracked the Brownian motion of particles using DWS
embedded in a Maxwellian fluid constituted by a wormlike micellar solution made of cetyltrimethylam-
monium bromide (CTAB), sodium salicylate (NaSal), and water. We found that the motion of particles
was governed by the viscosity of the solvent at short times and by the stress relaxation mechanisms of
the giant micelles at longer times. From the time evolution of the mean square displacement of particles,
we could obtain for the WM solution the cage size where each particle is harmonically bound at short
times, the long-time diffusion coefficient, and experimental values for the exponent that accounts for the
broad spectrum of relaxation times at the plateau onset time found in the 〈∆r2(t)〉 vs. time curves. In
addition, from the 〈∆r2(t)〉 vs. time curves, we obtained G′(ω) and G′′(ω) for the WM solutions. All the
DWS microreological information allowed us to estimate the characteristic lengths of the WM network. We
compare our DWS microrheological results and characteristic lengths with those obtained with mechanical
rheometers at different NaSal/CTAB concentration ratios and temperatures.

PACS. 82.70.Uv Surfactants, micellar solutions, vesicles, lamellae, amphiphilic systems, (hydrophilic and
hydrophobic interactions) – 82.70.Dd Colloids – 83.10.Pp Particle dynamics – 83.60.Bc Linear viscoelas-
ticity

1 Introduction

Cationic surfactants in aqueous solutions in the presence
of anionic benzyl hydrophobic moieties spontaneously self-
assemble into long cylindrical, semiflexible micellar ag-
gregates. Utilization of wormlike micelles (WMs) covers
a wide spectrum of applications ranging from fracture flu-
ids and drag reducing agents to templates for material sys-
tems [1]. The possibility of using “smart” WMs is exciting
and promising [2]. The response of a fluid with wormlike
aggregates to mechanical perturbation is viscoelastic [3,
4]. In the semidilute regime, where surfactant concentra-
tion is between the overlap concentration and a concentra-
tion where the mesh size, ξ, is larger than the persistence
length, lp, the linear rheology is dominated by reptation
and by reversible breaking and recombination of the WMs.
Two relaxation times related to these mechanisms τrep and
τb, respectively, control the dynamic response. In these so-
lutions, breaking time is shorter than reptation time [5].
Consequently, the relaxation modulus G(t) measured in
stress relaxation experiments follows a Maxwellian behav-
ior G(t) = G0 exp[−t/τM ]. Here, G0 is the plateau mod-
ulus related to the entanglement density of the micellar
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mesh and τM is a relaxation time equal to the geometric
mean of τrep and τb [6]. This behavior is indeed so gen-
eral that it is now admitted that a single relaxation time
in the linear mechanical response is a strong indication of
the wormlike character of self-assembled structures.

The response of any material to shear excitations is
characterized by a complex shear modulus G∗(ω) that de-
termines the stress induced on a material upon application
of an oscillatory shear strain at a frequency ω. The real
part of G∗(ω), the storage modulus G′(ω), is in phase with
the applied shear strain. The imaginary part of G∗(ω), the
viscous or loss component of the stress G′′(ω), is in phase
with the shear rate γ̇. Regularly, G∗(ω) is determined
using mechanical rheometers, where viscoelastic proper-
ties are measured by application of strain while measur-
ing stress or vice versa. However, in the last fifteen years,
different techniques have been developed, usually named
microrheology techniques [7], where micron-sized probe
particles are embedded into the fluid to locally measure
the viscoelastic response of the soft material. The response
can be measured either by actively manipulating the probe
particles or by passively measuring the mean square dis-
placement (〈∆r2(t)〉) of them, where the bulk mechanical
susceptibility of the fluid determines the response of the
probe particles excited by the thermal stochastic forces
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which lead to Brownian motion. 〈∆r2(t)〉 can be related to
G∗(ω) by describing the motion of the particles with a gen-
eralized Langevin equation incorporating a memory func-
tion to take into account the viscoelasticity of the fluid. In
this way, the particle fluctuation spectrum can be used to
measure the relaxation spectrum of the fluid. Here, in con-
trast to mechanical rheometers, there is no strain applied
on the material during the measurement. This is partic-
ularly useful in complex fluids where even small imposed
strains can cause structural reorganization of the mate-
rial and can change their viscoelastic properties. Various
methods have been used to measure the displacement fluc-
tuations of the embedded particles, such as video track-
ing [8–10] and diffusing wave spectroscopy (DWS) [11–13].
In the latter, dynamic light scattering (DLS) is used to
measure the 〈∆r2(t)〉 of the probe particles.

In a DWS experiment, a laser beam strikes a slab
formed by a turbid suspension made of the liquid under
study and of the probe particles. The temporal autocor-
relation function (ACF) of a small fraction of the light
that passes through the slab is measured. The transport
of light through the slab is treated as a diffusive process
and photons are treated as random walkers, with a random
walk step length equal to the transport mean free path l∗

and a resultant diffusion coefficient D = vl∗/3, where v
is the speed of light in the suspension. The diffusion ap-
proximation is valid for calculating transport of light only
over distances longer than l∗ [14]. When scattering is not
isotropic, which is the case for particle sizes close to and
larger than the photon wavelength, the random walk step
length is longer than the photon mean free path length l.
These lengths are connected by l∗/l = 2k2

0/〈q
2〉, where

k0 = 2πn/λ is the photon wave vector in the solvent, λ
is the laser wavelength in vacuum, n is the effective index
of refraction in the sample, and 〈q2〉 represents the angle
average for the squared scattering vector for a typical scat-
tering event experienced by the photon in the medium. l∗

is a constant parameter that enters in the DWS analysis
and has to be determined independently.

DWS microrheology was used for the first time in
solutions of wormlike aggregates by van Zanten and
Rufener [15]. They showed that experimentally observed
〈∆r2(t)〉 of polystyrene microspheres (diameter 0.966µm)
embedded in an aqueous solution of cetyltrimethylammo-
nium bromide (CTAB) and KBr is well described, at long
times by Brownian particles moving in a Maxwell fluid.
Maxwell parameters were of the same order of magnitude
as those obtained by mechanical rheology for similar sys-
tems; experimental details of the DWS technique were not
given. Cardinaux et al. [16] studied concentrated aque-
ous solutions of hexa-ethylene glycol mono n-hexadecyl
ether (C16E6) that self-assemble in WMs at high sur-
factant concentration, using a combination of single- and
multi-speckle DWS with polystyrene microspheres of two
diameters (0.75µm and 1.5µm). Here, the authors have
to use a factor of 1.52–2 of unknown origin to obtain a
quantitative agreement between microrheology and clas-
sical rheometry. Bellour et al. [17] studied the aqueous
solutions of hexane sulfonate cetyltrimethylammonium
(CTAC6SO3) and heptane sulfonate cetyltrimethylammo-

nium (CTAC7SO3). These authors measured 〈∆r2(t)〉 for
embedded polystyrene particles (diameter 535 nm) in the
semidilute regime and recognized three different regimes
for the motion of the particles: a) At short times, the parti-
cles diffuse freely in the solvent with a Brownian dynam-
ics, b) at intermediate times, 〈∆r2(t)〉 remains constant
for a given time interval, and c) at longer times, the mo-
tion again becomes diffusive. Here, the long-time diffusion
coefficient corresponds to the macroscopic viscosity of the
solution. They were able to describe the entire 〈∆r2(t)〉
curve with an appropriate expression over 10 decades in
time. They found a good agreement between the rheolog-
ical parameters measured with DWS and those measured
with mechanical rheology.

The purpose of this paper is to make a critical assess-
ment of the DWS technique for obtaining the characteris-
tic lengths and for measuring the loss and storage moduli
of a reasonable well-known WM system. For this purpose,
we tracked the Brownian motion of particles using DWS
embedded in a Maxwellian fluid constituted by a worm-
like micellar solution made of cetyltrimethylammonium
bromide (CTAB), sodium salicylate (NaSal), and water.
We found that the motion of particles was governed by the
viscosity of the solvent at short times and by the stress re-
laxation mechanisms of the giant micelles at longer times.
From the time evolution of the mean square displacement
of particles, we could obtain for the WM solution the cage
size where each particle is harmonically bound at short
times, the long-time diffusion coefficient, and experimen-
tal values for the exponent that accounts for the broad
spectrum of relaxation times at the plateau onset time
found in the 〈∆r2(t)〉 vs. time curves. In addition, from
the 〈∆r2(t)〉 vs. time curves, we obtained G′(ω) and G′′(ω)
for the WM solutions. All the DWS microreological infor-
mation allowed us to estimate the characteristic lengths of
the WM network. We compare our DWS microrheological
results and characteristic lengths with those obtained with
mechanical rheometers at different NaSal/CTAB concen-
tration ratios, R = [NaSal]/[CTAB], and temperatures.

2 Diffusing wave spectroscopy

DWS is a multiple scattering technique, where 〈∆r2(t)〉
of probe particles is measured using time correlation
functions. The time-averaged intensity ACF g(2)(τ)t =

〈I(τ)I(0)〉t/〈I(0)〉2t , where 〈. . .〉t denotes time average, is
obtained by collecting the scattered intensity from a single
speckle over a sufficiently long collection period. The time-
averaged field ACF, g(1)(τ)t = 〈E(0)E∗(τ)〉t/〈|E(0)|2〉t,
is related to the measured g(2)(τ)t through the Siegert

relation: g(2)(τ)t = 1 + β|g(1)(τ)t|
2, where β is an instru-

mental factor determined by collection optics. Time aver-
age is well defined if scattering properties of the medium
are stationary. Within the diffusion approximation used
in DWS for light transport in turbid media, 〈∆r2(t)〉 of
a representative tracer particle is related to the ensemble
averaged field ACF g(1)(τ)e = 〈E(0)E∗(τ)〉e/〈|E(0)|2〉e,
where 〈. . .〉e is an average over the ensemble of speckles.
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When all the scattering particles suspended in the medium
are free to explore the same local environment during
the course of a measurement, the scattering process is er-
godic, and time-averaged and ensemble-averaged correla-
tion functions are identical. In this case, all speckle fluc-
tuation histories are equivalent and the traditional time-
averaged DWS approach is valid.

2.1 Temporal intensity fluctuations of light

DWS theory connects temporal field fluctuations of the
scattered light emerging from a turbid suspension to the
dynamics of the particles embedded in the suspension.
Here, photon path lengths are typically distributed over
large distances and detected photons have been scattered
many times at all possible angles. For the case in which
all photons travel the same path length s along the sam-

ple g(1)(τ, s) = exp[−
2k2

0
〈∆r

2(τ)〉(s/l∗)
6 ]. However, the mea-

sured ACF includes contributions from a distribution of
path lengths, P (s), and the result of the measurement is
the weighted average [12]:

g(1)(τ) =

∫ ∞

0

P (s) exp

[
−

k2
0〈∆r2(τ)〉

3l∗
s

]
ds. (1)

Equation (1) can be evaluated exactly [14] for the trans-
mission of a plane wave through a slab of thickness L ≫ l∗

and infinite transverse extent, made of the scattering par-
ticles immersed in the liquid, using

g1(τ) =

L/l∗+4/3
α∗+2/3 [sinh[α∗x] + 2

3x cosh[α∗x]]

(1 + 4
9x2) sinh[ L

l∗ x] + 4
3x cosh[ L

l∗ x]
. (2)

Here x = [k2
0〈∆r2(τ)〉]1/2 and α∗ = z0/l∗; z0 is the dis-

tance into the sample from the incident surface to the
place where the diffuse source is located. Therefore, mea-
suring the intensity ACF g2(τ) allows us to obtain g1(τ)
using the Siegert relation. If l∗ and α∗ are known for the
system, 〈∆r2(t)〉 can be obtained using equation (2).

Estimation of α∗. α∗ = z0/l∗ can be estimated from
a DWS experiment by fitting the intensity ACF for the
back scattered light coming from a colloidal suspension
made of particles of the same size as those to be used in
the fluid to be investigated [18]. The intensity ACF can
be given by

(g2(t) − 1)pol = β exp

[
−2γpol

√
6t

τ

]
. (3)

Here, the subscript pol is used to indicate the polarization
detection used in the experiment, V V for parallel and V H
for cross polarization. Here, τ = (k2

0D)−1 is the relaxation
time and D is the diffusion coefficient, and γpol = α∗

pol +

2/3. As D is known, α∗ ≡ 〈α∗〉 = (α∗
V V + α∗

V H)/2 can be
determined by fitting the intensity ACF.

2.2 Brownian motion and microrheology in a Maxwell
fluid

The standard Langevin description for a particle of mass
m immersed in a complex fluid undergoing Brownian mo-
tion has been modified to include viscoelastic effects [19],
using a time-dependent memory function:

m
dv

dt
(t) = −

∫ t

0

ζ(t − t′)v(t′)dt′ + fR(t). (4)

Here, v(t) is the particle velocity and fR(t) denotes the
random Brownian or thermal forces acting on the parti-
cle. ζ(t) is the Maxwellian fluid time-dependent memory
function that accounts for both energy loss and storage
upon deformation. The ability to store energy upon defor-
mation changes the temporal correlations of the stochas-
tic forces acting upon the particle at thermal equilibrium,
since the suspending medium must satisfy the fluctuation
dissipation theorem 〈fR(t) · fR(0)〉 = kBTζ(t); kB is the

Boltzmann constant. If we assume η̃(s) = ζ̃(s)/6πa, where
s is the frequency in the Laplace domain and a is the par-
ticle radius, the relation between G̃(s) and 〈∆r̃2(s)〉 can
be written as [19]

G̃(s) =
s

6πa

[
6kBT

s2〈∆r̃2(s)〉
− ms

]
. (5)

Using the unilateral Fourier transform, Fu{〈∆r2(t)〉}(ω),
and neglecting the second term of equation (5), an expres-
sion for the viscoelastic modulus as a function of frequency
can be obtained:

G∗(ω) =
1

πa

kBT

iωFu{〈∆r2(t)〉}(ω)
. (6)

Several procedures have been followed by different au-
thors [15,19,20] to determine Fu{〈∆r2(t)〉}(ω). In our
case, numerical inversion of equation (2) allowed us to
obtain 〈∆r2(t)〉, where g1(τ) is calculated from the exper-
imental curve g(2)(τ) using the Siegert relation. Instead of

making any transformation of 〈∆r2(t)〉 vs. t curve, we first
fitted the curve to a model curve proposed by Bellour et
al. [17], for describing 〈∆r2(t)〉 over 8-10 decades in time
for colloidal particles in Brownian motion embedded in a
WM solution. The model curve is given by

〈∆r2(t)〉 = 6δ2

(
1 − e

−(
D0

δ2
t)α

)1/α (
1 +

Dm

δ2
t

)
. (7)

Here, 6δ2 is the value of 〈∆r2(t)〉 at the plateau, D0 is the
diffusion coefficient for particles in the solvent at infinite
dilution and Dm is the diffusion coefficient for the parti-
cles for long times. To obtain the real and complex com-
ponents of G∗(ω), we calculated the Laplace transform of
the computed fitting curve and after transforming s → iω
(analytic continuity), we introduced it in equation (6).

3 Experimental section

Materials. Cetyltrimethylammonium bromide (CTAB;
> 99%) was purchased from Fluka Chemie gmbH (Ger-
many) and sodium salicylate (NaSal; 99.5%) from Sigma-
Aldrich (MO, USA). All of them were used without further
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Fig. 1. Schematic diagram of the DWS instrument. A laser
beam is sent through a filter and a beam expander (BE). Af-
terwards the beam is deviated depending on the kind of ex-
periment to be done by a mirror (M). In the case of l∗ mea-
surements, the beam is sent into the sample and the scattered
light is collected by the integrating sphere. In the case of DWS
measurements, the beam is sent into the sample (S) that is
in a temperature-controlled bath (TB). The scattered light is
collected, with the aid of an achromatic doublet (AD) and a
beam splitter (BS), by a couple of photomultipliers in cross
correlation and by a CCD camera to make multispeckle DWS.

purification. Polystyrene microspheres of different diame-
ters were used as tracers in DWS experiments (Bangs Labs
Inc, USA). Glass cells were supplied by Hellma GmbH
(Germany) and by Starna cells Inc (USA) with different
optical paths (2mm to 4mm) and different cross sections
(3.0×4.2mm and 2.8×3.7mm). Water was milli-Q water
(Nanopure-UV, USA; 18.3MΩ).

Instrument. Our DWS setup is a home-made instru-
ment shown schematically in Figure 1. A laser beam (Co-
herent Innova 300, Coherent Inc, USA) is filtered and sub-
sequently expanded to avoid sample heating and to assure
plane wave approximation. The beam is sent at normal
incidence on a square cell where the WM solution sam-
ples with the 800 nm diameter microspheres that multiply
scatter light are placed. The scattered light is collected
by photomultiplier tubes (Thorn EMI, England) through
polarizing maintaining optical fibers from OZoptics Inc
(USA). Signals are converted into TTL pulses using ALV
preamplifiers (ALV GmbH, Germany) and processed by an
ALV/5000E multi-tau correlator (ALV GmbH, Germany)
to obtain the intensity ACFs; most of our work was done in
transmission geometry. An integrating sphere (Oriel New-
port, USA) is also included in our instrument to obtain l∗

for colloidal suspensions. In addition, we included a CCD
camera to make multispeckle DWS in transmission geome-
try. Multiply scattered light is collected by a pair of achro-
matic doublets (Edmund Optics Inc., NJ, USA), which
image the transmitted light 1 to 1 on a plane where a di-
aphragm is placed to control the speckle size [21]. A TM-
6710CL Pulnix CCD camera (JAI Inc., USA) is located
at ca. 20 cm from the diaphragm. Images are acquired at
120 fps by a BitFlow R64 frame Grabber (BitFlow Inc.,
MA USA) and real time processed with a Pentium IV PC
running at 2.8MHz. The time ACFs were calculated using
the algorithm proposed by Viasnoff et al. [21]. Time over-

lap between DWS and multispeckle DWS is around 4 or-
ders of magnitude and measurement times about 18000 s.

Sample preparation. The CTAB/NaSal/water micellar
solution is in a good approximation a Maxwell fluid at
low and intermediate frequencies [3]. All micellar solution
samples were prepared by weight, where the CTAB con-
centration was maintained constant at ∼ 0.1M and the
NaSal concentration was varied from ∼ 0.04M to 0.4M
to sweep several R values. Because micellar solution vis-
cosity is high at room temperature and to avoid colloidal
agglomeration, we followed a two-step procedure. In the
first step, water, CTAB and NaSal were mixed. Solutions
were left for 48 hours to relax. In the second step, the sam-
ples placed in sealed cells to avoid water evaporation were
heated to 50 ◦C to reduce viscosity. Then, microspheres
in water suspension (10%) were added while stirring the
samples. Stirring was maintained for 20 minutes and sub-
sequently samples were sonicated for another 15 minutes
to assure a homogeneous dispersion. Samples were allowed
to relax for 14 days at 30 ◦C. To avoid interparticle in-
teractions, as well as hydrodynamic correlation, particle
volume fractions ranged between 0.013 and 0.016.

Transport mean free path. We used a precise method
to obtain l∗ from transmittance and reflectance measure-
ments of the samples to be investigated, using an inte-
grating sphere. This method is described elsewhere [22].
Just to assess the quality of our l∗ measurements for col-
loidal suspensions of particles with different sizes, we cal-
culated l∗ using Mie scattering theory following the pro-
cedures developed by several authors [23–25]. The agree-
ment between l∗ measured using the method employing
the integrating sphere and l∗ calculated with Mie scatter-
ing theory is excellent. There is just a 3.8% mean deviation
between theory and experiment. Also, we measured l∗ us-
ing DWS in transmission geometry for suspensions where
the properties of the particles are known. Here, g1(τ) was
obtained for water suspensions made of particles with a
known diameter and refractive index (1.59 at 514.5 nm).
In this case, microspheres moving in Brownian motion fol-
low the Einstein equation for hard-spheres corrected for
concentration [26], i.e. D = (kBT/6πηwa)(1 − 1.83φ +
0.88φ2) = 〈∆r2(τ)〉/6t, where ηw is the water viscosity.
Therefore, using this 〈∆r2(τ)〉 and the known values for a
and L allowed us to calculate l∗ as a free parameter fitting
the experimental g1(τ). The mean deviation between the
measured l∗ using the integrating sphere and DWS was
less than 2.5%.

Rheometric measurements. They were carried out in
a cone-plate cell (4 ◦, diameter 40mm) with controlled
temperature using a Bohlin Gemini HRnano rheometer
(Malvern, UK). Oscillatory strain amplitude was 0.1.

4 Results and discussion

In this section, we present the results for the 〈∆r2(t)〉
as a function of time for microspheres embedded in the
WM solutions using DWS. From these curves, we obtained
several parameters useful to understand the worm-micelle
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Fig. 2. Typical curve for the 〈∆r2(t)〉 as a function of time.
Open squares correspond to 〈∆r2(t)〉 obtained from numerical
inversion of the light intensity ACF (shown in the inset) ob-
tained by DWS. The continuous line corresponds to the best-fit
curve using the model given by Bellour et al. [17]. The mathe-
matical expressions correspond to the factors in the model that
dominates at those time scales.

network in the CTAB/NASal/water system, which can be
compared with those obtained with other techniques. In
addition, the elastic and loss moduli for the WM solu-
tions as a function of frequency were calculated from the
〈∆r2(t)〉 for different NaSal/CTAB ratios and tempera-
tures. These moduli are compared with those obtained
with mechanical rheometric measurements. The DWS mi-
crorheological data allowed us to estimate the character-
istic lengths of the MWs and to compare them with those
obtained with other techniques.

4.1 Mean square displacement in a solution of
wormlike micelles

Figure 2 shows a typical mean square displacement curve
vs. time (more than eight orders of magnitude) for 800 nm
diameter microspheres dispersed into a micellar solution of
the system CTAB/NaSal/water. The experimental points
are the result of numerical inversion of equation (2), where
g1(τ) came from a DWS experiment. The light intensity
ACF that originated these 〈∆r2(t)〉 is shown in the inset.
Multispeckle DWS in transmission geometry was used to
assure that sampling was ergodic. To get the rheological
parameters for the WM solutions to be shown below, in-
stead of making the Laplace transform on the experimen-
tal points coming from the numerical inversions, first, we
fitted them with the model proposed by Bellour et al. [17]
for describing the mean square displacement of colloidal
particles in a WM fluid (Eq. (7)); afterwards, the Laplace
transformation was done on those best-fit functions. In
our procedure, we left as free parameters δ, Dm and α;
since D0 corresponds to diffusion in pure water. The best-
fit function for the 〈∆r2(t)〉 data is also shown in Figure 2
as a continuous line; we can observe that the fitting is ex-
cellent. We observe in this figure three different regimes
for the motion of particles, which are shared by all mi-

Table 1. Fitting parameters for the 〈∆r2(t)〉 for different val-
ues of R and temperature.

R 6δ2 (nm2) Dm (nm2/s) α T (◦C)

0.4 71.1 0.19 0.26 20

0.4 84.4 0.51 0.26 22

1.0 51.2 8.72 0.24 22

1.0 49.9 20.11 0.26 25

1.5 54.6 2.51 0.25 20

1.5 56.0 3.68 0.25 22

1.5 47.7 10.84 0.25 25

2.0 34.1 0.58 0.23 20

2.0 35.4 0.81 0.23 22

2.0 41.7 2.33 0.24 25

4.0 46.8 8.07 0.24 22

cellar solutions [15–17]. At short times, there is a regime
where 〈∆r2(t)〉 is almost a linear function of time, at in-
termediate times 〈∆r2(t)〉 remains constant for a given
time interval (a plateau), and at longer times 〈∆r2(t)〉 is
again a linear function of time. These regimes are present
in our micellar system no mater the NaSal/CTAB ratio
or the temperature.

The model given by equation (7) was originally
thought for Brownian particles harmonically bound
around a stationary mean position, as a consequence

〈∆r2(t)〉 = 6δ2(1 − e
−(

D0

δ2
t)

), where the particle’s ampli-
tude of the motion, i.e. the cage size δ, is related to the
plateau modulus G0 = kBT/(6πaδ2); this can be easily ob-
tained substituting 〈∆r2(t)〉 in equation (5). However, this
cage where particles are momentarily trapped fluctuates
due to the breaking/reptation process. Thus, the particles
are bound to their mean position on time scales smaller
than the longest characteristic time of the micellar system,
τM = ηm/G0 [6], where ηm is the long-time viscosity of the
system. Therefore, to get 〈∆r2(t)〉 = 6Dmt at long times,

it was proposed that 〈∆r2(t)〉 = 6δ2(1−e
−(

D0

δ2
t)

)(1+Dm

δ2 t).
However, this expression did not describe correctly the
dynamics at the plateau onset time, because dynamics of
the particles exhibits a very broad time relaxation spec-
trum [17]. This leaded to include the parameter α as shown
in equation (7), where α = 1 indicates monoexponential
relaxation; the smaller α the larger relaxation spectrum.

Table 1 summarizes the fitting parameters for the
〈∆r2(t)〉 of microspheres dispersed in the different micel-
lar solutions where R and temperature were varied. The
first thing to be noticed is that the α values for our sys-
tem are very close to those found for the WM solutions
of CTAC7SO3 [17]. Therefore, in both systems, the dy-
namics of the particles at the plateau onset time shows a
similar broad relaxation spectrum. δ2 values for all the
micellar solutions are on the average close to 8.7 nm2.
In Table 1, we present 6δ2 values that are more useful
for interpretation. The 6δ2 values for micellar solutions
at R = 0.4 are to some extent larger than the 6δ2 av-
erage, 〈6δ2〉, for all the micellar solutions studied here
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Fig. 3. (Colour on-line) Universal curves for different time
scales. a) 〈∆r2(t)〉/6δ2 vs. D0t/δ2, subdiffusive regime with a
slope of 2/3. b) 〈∆r2(t)〉/6δ2 vs. Dmt/δ2, diffusive regime with
a slope of 1. Inset shows the overlap between DWS (Hollow,
grey symbols) and Multispeckle DWS (solid, red symbols) ex-
perimental points.

(〈6δ2〉 ∼ 52.1 nm2). On the contrary for R = 2, the
6δ2 values are slightly below that average. To compare
our cage size results with those obtained for the case of
WMs in the CTAC7SO3/water system at different sur-
factant concentrations, we fitted and interpolated the 6δ2

values given in reference [17]. For a surfactant concen-
tration similar to that used in our solutions (∼ 3.6%),
6δ2 ∼ 51 nm2 was obtained for CTAC7SO3. This value
agrees well with our 〈6δ2〉. The diffusion coefficient for
long times, Dm = kBT/6πaηm, is dominated by the long-
time viscosity. As is well known, viscosity as a function
of R presents two maximums (∼ R = 0.6 and R = 1.24)
and one minimum (∼ R = 1.02) [27–29]; the behavior of
Dm follows this trend but in a inverse form. As temper-
ature increases Dm also increases because ηm decreases
with temperature following an Arrhenius behavior [30].

In Figure 3a, we present the 〈∆r2(t)〉 rescaled by the
cage size of the colloidal particles, 6δ2, vs. time, which is
rescaled by the longest relaxation time of the Rouse modes
in the Zimm model τR = δ2/D0, i.e., 〈∆r2(t)〉/6δ2 vs.
D0t/δ2. Here, we show that no matter the NaSal/CTAB
ratio or the temperature, we get a universal behavior for
t ≪ τR where particles are moving in a sub-diffusive mo-
tion, which follow 〈∆r2(t)〉 ∼ t2/3 for more than a decade
in good agreement with the Zimm model [31,32]. In Fig-
ure 3b, an equivalent scaling could give also a universal
behavior for long times. Here, 〈∆r2(t)〉 is rescaled by 6δ2

and time by the longest characteristic time of the micel-
lar system τM = δ2/Dm. In the same way as before, no
matter the values of R or of T a universal curve is ob-
tained; however here, the slope of this universal curve is
one, according to equation (7) for long times.

In Figures 4a and b, we present the elastic (real part)
and the viscous (imaginary part) components of the com-
plex modulus G∗. Figure 4a shows G′ and G′′ for R = 1.5
at different temperatures: 20 ◦C, 22 ◦C and 25 ◦C, and Fig-
ure 4b shows the same variables when the ratio is var-

ied, i.e., R = 0.4, 1.0 and 2.0 and temperature is con-
stant 22 ◦C. As we can observe from Figures 4a and b,
the agreement between those moduli obtained using DWS
and those using mechanical rheometry is quite well, at low
and intermediate frequencies. When using micron-sized
probes, probe and solvent inertial effects are negligible up
to frequencies of ω ∼ 105 rad/s−1. Therefore, DWS mi-
crorheology achieves a bandwidth far beyond that of con-
ventional rheometers allowing to observe two crossovers,
as can be observed in Figures 4a and b. As is well known,
our fluid is constituted by WMs. Here, stress relaxation oc-
curs via reptation and scission. In the fast breaking limit,
this stress relaxation leads to a single relaxation time and
to a Maxwellian behavior at low and intermediate frequen-
cies. The plateau modulus and the relaxation time can be
obtained from the first crossover. On time scales shorter
than the breakage time of micelles, the Maxwellian stress
relaxation process is essentially frozen and the micelles
can be regarded as semiflexible chains. Therefore, in the
high-frequency regime stress relaxes via intramicellar pro-
cesses: First dominated by the Rouse-Zimm modes and
then by the internal relaxation of individual Kuhn seg-
ments. In this frequency range, G∗ exhibits a power law
behavior, G∗ ∼ ων , with the exponent ν changing from ap-
proximately 5/9 in the Rouse-Zimm regime to 3/4, where
internal bending modes of Kuhn segments dominate. The
change occurs around a critical frequency ω0 correspond-
ing to the shortest relaxation time in the Rouse-Zimm
spectrum. One important feature to be pointed out is
about the local minimum of G′′(ω). This is usually better
defined in DWS microrheology than in mechanical rheom-
etry. As a consequence in Cole-Cole plots, G′′ vs. G′, the
corresponding frequency for this minimum is more accu-
rately determined with DWS microrheology (see inset in
Fig. 4a). This is important for estimating the characteris-
tic lengths of the WM solution, as shown below.

The comparison of mechanical rheological data from
different authors in WM systems is not an easy task. In
these systems measurement protocols play a central role.
In particular, it is well known that cell geometry, cell pa-
rameters, sample preparation, and even different reactive
stocks have been described as factors that could introduce
large deviations in WM rheology. In particular, it is impor-
tant to note that mechanical rheology measurements of G0

for different nominally identical samples have an error bar
∼ 20%; for relaxation times the error bar is ∼ 5%. As we
will see, DWS microrheology seems to share some kind of
these problems (WM sample preparation, probe particle
dispersion). So, this has to be considered when DWS mi-
crorheology and mechanical rheology are compared. In Ta-
ble 2, we present a typical example of the plateau modulus
and the relaxation time obtained from the first crossover
(intermediate frequencies) in the G′ and G′′ vs. ω plots
determined using DWS microrheology and those obtained
with a mechanical rheometer. Although the agreement be-
tween them is good, it is not excellent. For the Maxwell
relaxation times, microrheology and mechanical rheology
give numbers of the same order of magnitude, with a sim-
ilar dispersion to the relaxation times obtained between
different authors using just mechanical rheology. In all the
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Fig. 4. The elastic, G′, and the viscous, G′′, components of the complex modulus for the CTAB/NaSal/water system at different
temperatures and fixed W = 1.5 (a). Inset: Cole-Cole plot from DWS microrheology (line: best fit for Maxwell model). b) At
different W values and fixed T = 22 ◦C.

Table 2. Plateau modulus and Maxwell relaxation time at T = 22 ◦C.

Plateau modulus, G0 (Pa) Maxwell relaxation time, τM (s)

R Microrheology Rheometry Microrheology Rheometry

0.4 38.7 28.9 70.2 82.6

1.0 63.5 60.2 0.9 1.4

1.5 58.3 58.5 1.8 2.0

2.0 90.5 67.2 6.5 9.2

4.0 68.0 45.7 1.0 0.5

cases, the higher temperature, the lower relaxation time
for all R values. This is a reliable feature observed in relax-
ation times when mechanical rheology is used varying tem-
perature. DWS microrheology usually overestimates G0,
although it follows the same trend as R is varied. The best
agreement between rheology and microrheology occurs
around R ∼ 1–1.5. At larger R values, the difference gets
worse. One possible reason for this behavior is that the
large quantity of free ions (Sal−) in the solution, not incor-
porated into the micelles, could modify the mobility of the
Brownian particles or even the topology of the WMs [33].

With the obtained DWS microrheological results, it
is possible to estimate the most important characteristic
lengths in the CTAB/NaSal WM solution. It is important
to mention that theory developed for WMs is far from be-
ing complete, however it could be interesting to evaluate
using approximate relations, the characteristic lengths in
the system under study here as R and temperature are
varied. We present these estimated characteristic lengths
in Table 3. The mesh size, ξ = (kBT/G0)

1/3 [31,34], for
our micellar solutions is in the range of 35–45 nm. Using

our mechanical rheological data, ξ ranges from 39–53 nm.
The microrheological derived mesh size agrees well with
reported values in the literature, where we can find val-
ues of ξ = 40nm for R = 2 [35], and ξ = 45nm for
R = 2 and R = 1.5, at 25 ◦C [36]. As we can ob-
serve, ξ is little bit lower than the reported values, since
G0 is overestimated in DWS microrheology. The persis-
tence length of the WMs can be deduced directly from
ω0 ≈ kBT/8ηml3p [37], which is the frequency, where the
exponent ν, in G∗(ω) ∼ ων , changes from 5/9 to 3/4 as
mentioned above. Our values for lp, ranging from 29 to
45 nm, are of the same order of those found by other au-
thors for the same system. For example, lp = 23.5 nm as
given by Nettesheim and Wagner [35] and lp = 36–38 nm
in the dilute regime as given by Berret [3]. In general, lp
is not sensible to R [3] and CTAB concentration [35]. The
contour length of the WMs, LC , can be obtained from
the equation G′′

min/G0 ≈ le/LC as given by Granek and
Cates [38]. It is important to note that G′′

min/G0 is much
less than 0.1 for most of our cases [38], therefore this ra-
tio produces relatively good values for le/LC . Here, le is
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Table 3. Characteristic lengths for the CTAB/NaSal/water system at different R values and temperatures obtained using DWS
microrheology.

R T (◦C) ξ (nm) G′′

min (Pa) ω0 (s−1) lp (nm) le (nm) LC (nm)

0.4 20 45 0.48 10176.7 36 51 4865

0.4 22 47 0.66 5383.8 45 49 2782

1.0 22 40 5.09 129583.3 34 75 933

1.0 25 40 6.97 19078.5 30 48 455

1.5 20 41 2.36 19618.8 29 51 1282

1.5 22 41 3.39 19555.6 29 52 884

1.5 25 39 5.33 19912.6 29 47 612

2.0 20 35 2.46 19865.3 29 39 1517

2.0 22 35 3.04 19805.1 29 40 1216

2.0 25 37 3.96 19521.0 29 44 869

4.0 22 39 5.57 13931.8 33 46 408

the contour length between two entanglements, which is

computed using le ≈ ξ5/3/l
2/3
p [38] and G′′

min is the mini-
mum in the G′′ vs. ω plot. le from our DWS data ranges
between 39–75 nm. In particular, for the case of R = 2,
our le values ranges from 39–44 nm, which is smaller than
le = 55nm reported in reference [35] using mechanical rhe-
ology. The underestimation for ξ is probably the reason
behind our low DWS le values. LC ranges from approxi-
mately 400 nm to 4800 nm depending on R and T values.
The larger the temperature, the smaller LC . This length
gives us an order of magnitude of the size of the WMs in
this system. In particular, for R = 2 using dynamical rhe-
ology, Lc = 1600 nm [35], in contrast, using DWS our val-
ues range from 869–1517 nm depending on temperature.

We consider that the underlying reason of the good
agreement between mechanical rheometry and DWS mi-
crorheology is because the relevant micellar solution scale
lengths in the micellar solution, as the mesh size, entan-
glement length, etc. are not larger than the probe particle
radius. Thermal motion of a single particle reflects the
viscoelastic properties of its environment on roughly the
scale of the probe particle radius, since this is the length
scale on which the strain-field around the particle decays,
and how such a perturbation propagates into the system
depends on the characteristic lengths of the material in
relation to the probe size. DWS experiments with differ-
ent probe diameters (0.5–3µm) have been reported in the
literature [17].

5 Conclusion

We employed diffusing wave spectroscopy to probe the
motion of particles embedded in semi-dilute solutions of
WMs in the system cetyltrimethylammonium bromide,
sodium salicylate, and water. We showed that the mo-
tion of particles is governed at very short times by the
viscosity of the solvent and by stress relaxation mecha-
nisms in the micellar network at longer times. We ob-
tained from the mean square displacement of particles vs.
time curves, the viscoelastic properties of the system at

different CTAB/NaSal ratios and temperatures. We made
a critical evaluation of the DWS technique for obtaining
the characteristic lengths and for measuring the loss and
storage moduli in a reasonable well-known WM system.
In general, DWS microrheology results agree relatively
well with mechanical rheometry results and they show
the same kind of data dispersion. Although, DWS allows
to reach high-frequency values for the rheological moduli,
which is not possible to do with standard rheometers.
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