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Abstract Function in proteins largely depends on the

acquisition of specific structures through folding at physi-

ological time scales. Under both equilibrium and non-

equilibrium states, proteins develop partially structured

molecules that being intermediates in the process, usually

resemble the structure of the fully folded protein. These

intermediates, known as molten globules, present the fac-

ulty of adopting a large variety of conformations mainly

supported by changes in their side chains. Taking into

account that the mechanism to obtain a fully packed

structure is considered more difficult energetically than

forming partially ‘‘disordered’’ folding intermediates,

evolution might have conferred upon an important number

of proteins the capability to first partially fold and—

depending on the presence of specific partner ligands—

switch on disorder-to-order transitions to adopt a highly

ordered well-folded state and reach the lowest energy

conformation possible. Disorder in this context can repre-

sent segments of proteins or complete proteins that might

exist in the native state. Moreover, because this type of

disorder-to-order transition in proteins has been found to be

reversible, it has been frequently associated with important

signaling events in the cell. Due to the central role of this

phenomenon in cell biology, protein misfolding and aber-

rant disorder-to-order transitions have been at present

associated with an important number of diseases.
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Introduction

Although for many years now human disease has been

directly related with specific anomalies in protein–protein,

protein–DNA and protein–RNA interactions, in the near

future such accumulated knowledge will require expansion

in order to take the next technological step with the

application of many proteomic concepts to patient-oriented

therapies [1]. Recently in this regard, an important number

of diseases have been associated with problems specifically

related with protein folding. The concept of protein folding

is directly related with the process of reversible disorder-

to-order transitions, by which an unfolded polypeptide

chain folds into a specific functional native structure [2, 3].

Although for a long time it was thought to be only a the-

oretical concept, it was only recently that it became clear

that incorrectly folded proteins might be related with the

development of disease. From that time, conformational or

protein-folding diseases have been divided basically into

two groups. The first, includes errors in the genetic blue-

print that leads to incomplete or incorrectly folded proteins

directly affecting function; classical examples of this group

comprise malfunction of p53 as a critical tumor suppressor

protein directly related with cancer [4, 5] and specific

alterations in diseases such as cystic fibrosis [6] and sickle

cell anemia [7]. The second group, which is made up to

excessive quantities of incorrectly conformed proteins
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causes the formation of multimolecular structures or

plaques with the property of altering normal cell function.

Such alterations, known as amyloidosis, are found in

diseases like Alzheimer disease [8], Creutzfeldt–Jakob

disease [9], Parkinson disease [10], and type II non-insulin-

dependent diabetes mellitus [11]. Although in all of the

previously mentioned diseases, protein aggregates or

plaques are known to be constituted of amyloid fibrils

polymerized as beta-sheet structures, important factors

involved in the process dealing first with formation and

propagation, and second with their stability are far from

being understood in vivo.

Physicochemical approach

For folding into a native state, unfolded polypeptide chains

require the intervention of weak interactions. Driven by

hydrophobic interactions, a polypeptide chain begins to

fold when placed in an aqueous medium, and rapidly

becomes a molten globule followed by an important release

of latent heat. Stabilization of the molten globule is

achieved mainly through the distribution of hydrophobic

residues away from the water matrix. On the other hand,

because the polar residues contained in a protein develop

hydrogen bonds with the water network as well as with

each other, a-helices and b-sheets can be formed when

bonds switch between molecules. It has been calculated

that such bonds might be in the order of 10-12 s, very

similar to those we find in water itself. The random equi-

librium can be shifted toward one of these conformations

by means of two stages: a fast stage, during which the

unfolded polypeptide becomes a molten globule; and a

slow stage, in which the molten globule slowly transforms

into a fully folded form or native state [12]. These two

stages in protein folding can be illustrated by a ‘‘folding

funnel’’, during which due to a small change in entropy

with a large loss of energy, a molten globule evolves into

the native state (Fig. 1) [13, 14]. Although the process is

extremely efficient, there is always the possibility that this

accurate mechanism might fail, and the possibility of

finding a protein folded into a non-native state becomes a

reality [15]. Proteins that follow this pathway might present

transiently stable conformations, promoting their interac-

tion with other molecules and facilitating the fact that they

might form amorphous oligomers and end in a state of

aggregation. Aggregation does not arise from a random coil

state, but rather from a series of intermediates that—based

on the type of secondary structure acquired during fold-

ing—might or might not resemble the native state (Fig. 2)

[14, 16]. It is well known now that primary polypeptide

sequences become the key factor during this process, while

the environment surrounding the protein is an important

factor for explaining the folding process [17]. On the other

hand, natively unfolded proteins, known to lack the pres-

ence of permanent secondary and tertiary structures, have

been recognized at least in the absence of other proteins, to

present the tendency to organize themselves into amyloi-

dogenic structures. This is the case for a-synuclein, an

important protein found in Lewy bodies in the brain of

patients affected with Parkinson disease [18]. In the case of

prion diseases, the PrP protein has been isolated from

amyloid plaques, in which a clear conformational change

in secondary structure from a-helix into b-sheet following

a templating mechanism has been recognized as the pro-

cess that causes aggregation [17].

Considering that the native state is located at the lowest

minimum of the ‘‘folding funnel’’, it indicates that this

region is the most thermodynamically stable configuration

of the polypeptide chain under physiological conditions.

For proteins, whose functional state is a tightly packed

globular fold, a key step in fibril formation related to partial

or complete unfolding is less likely to occur and therefore

remains protected against aggregation [19]. In this respect,

it has been proposed that the more transient structures thus

formed in proteins, the better probability for key determi-

nants in amyloid fibril formation to be found [20]. Thus,

many of the known forms of amyloid diseases are

Fig. 1 Folding funnel energy landscape. Globular proteins organize

themselves from a random coil to a molten globule during a large loss

of entropy and small changes in energy. However, the molten globule

becomes transformed to a native state during a low change in entropy

at the expense of a large loss of energy. Adapted from references

[12–14]

106 Mol Cell Biochem (2009) 330:105–120

123



associated with genetic mutations that decrease protein

stability and promote unfolding [20], both related to dis-

order-to-order conformational transitions.

Chen et al. showed that monomeric polyglutamine in

solution represents the nucleus for aggregation and nucleation

of a b-sheet aggregate through an initial disorder-to-order

transition [21]. Multiple molecular dynamic simulations have

provided quantitative characterization of these polyglutamine

peptides showing disorder-to-order fluctuations directly

related to chain length and average compactness [22]. Here, it

was shown that the concentration of side chain primary amides

around backbone units and solvation, either by hydrogen

bonds or surrounding water molecules, importantly contribute

to these average compactness values [22]. In this context, the

first experimental evidence about a specific disorder-to-order

transition was presented over 30 years ago with the mecha-

nism description for the conversion of trypsinogen to trypsin

[23]. This mechanism is characterized by the enzymatic

removal of an hexapeptide from the N-terminal region of

trypsinogen in order to form trypsin. This basic change pro-

motes the transition from a disordered state of the ‘‘specificity

pocket’’ in trypsinogen to an ordered state in trypsin [24].

Since it is known that several amino acids that make up

a protein strongly favor a disordered state, at present

this ‘‘new view’’ of folding is beginning to be further

studied, in which the influence of external or environmental

conditions sustains well-tested transitions between disor-

dered and ordered states [25–27]. Specific polypeptide

chains contained in proteins or complete proteins lacking

defined tertiary structures are known to have the capacity to

undergo disorder-to-order transitions upon binding to spe-

cific [28] or multiple partners [29]. It is precisely this

ability that allows the concept of ‘‘protein disorder’’ to be

proposed as an important feature in the capability of pro-

teins to present regions with switching properties [30–32].

Dunker and Obradovic [26] and later Uversky [27]

designed a protein/function paradigm extended from the

classic form of thought in which ordered 3D structures are

indispensable for function due to the fact that the function

might arise from ordered structures as efficiently as from

disordered functions, namely pre-molten globules and

random coils (Fig. 3). An example of the latter would be

a-synuclein, shown to be partially folded in the presence of

di- and trivalent metal ions, in which in response to cation-

binding intrinsic coils change into a pre-molten globular

conformation [33]. On the other hand, structural arrange-

ments that take place from a random coil to a molten

globule-like conformation have been observed with the

myelin basic protein upon binding to lipids [34]. From an

evolutionary point of view, it appears that intrinsic disorder

in proteins might have been the driving force behind many

of the adaptability processes found in proteins [15, 35].

Fig. 2 Protein aggregation

energy landscape. Although the

funnel shape for protein folding

is organized from an active

process that results in the

selection of forms with

favorable native contacts, when

a high concentration of

polypeptide is present, a large

number of interactions appear

followed by protein

aggregation. Landscape regions

characterized by low energy and

low entropy are recognized for

the appearance of well-ordered

species such as fibrils and

crystals. Adapted from

reference [14]
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Taking into account that the number of proteins pre-

senting disordered regions directly related with function and

therefore with disease is increasingly growing, an interest to

also generate accessible data banks for improving infor-

mation management has increased. Therefore, the database

of disordered proteins (DisProt) was created and released in

August 2006 by the group of Dunker [36] with extremely

good results at present [37]. Since then, other systems for

studying disorder in proteins have been released, such as the

Integrated Protein Disorder Analyzer, which aims at iden-

tifying and predicting disordered region in proteins [38], or

algorithms for predicting and evaluating aggregation ‘‘hot

spots’’ (AGGRESCAN) [39]. According to Dunker’s group

and as predicted by PONDRr [40], a large percentage of all

proteins involved with some sort of a disease have been

identified as directly related with disordered regions in

proteins closely associated with signaling.

Protein conformational diseases

From a general point of view, disordered regions in proteins

have been divided into the following two classes: the class in

which proteins retain a low percentage of secondary struc-

ture together with unstable tertiary structures during a molten

globule state, recognized as the collapsed class; and second,

the class in which proteins with a highly extended backbone

resemble a b-sheet conformation related with the extended

class [25, 41]. In general, proteins containing disordered

regions have been recognized as associated with several

human diseases, including cardiovascular disease, cancer,

degenerative diseases, and diabetes. Interestingly, because in

many of these cases cell signaling function has been

involved, there is a strong possibility that disorder-to-order

transitions in proteins playing normal switching roles in

the cell might become distorted and therefore abolish or

transform the normal protein–protein language into an

aberrant one. Therefore, the basic properties of a switching

mechanism must be based on the equilibrium between high

specificity and weak affinities accompanied by a large con-

formational entropy decrease. This phenomenon is based

principally on the fact that upon binding, disorder-to-order

transitions can overcome steric restrictions and thereby

enable larger interaction surfaces in protein–protein com-

plexes than those that could be obtained for rigid partners

[42]. Despite the extraordinary importance of this type of

transition, we continue to lack detailed biophysical studies

that might demonstrate a close relationship between this type

of disorder-to-order organization and protein function.

During the last few years and mainly employing powerful

bioinformatics and data mining, many proteins showing

intrinsic disorder have been studied in relationship with the

disease [43, 44]. A good number of these proteins can be

considered as potential candidates in the understanding and

treatment of the disease when specific group domains under-

going abnormal disorder-to-order transitions are recognized

[42, 45]. An example of this possibility is the lymphoid

enhancer-binding factor 1 (LEF-1), which corresponds to a

sequence-specific and cell type-specific transcription factor

playing a key role in T-cell receptor (TCR)-a gene-enhancer

modulation [46]. Based on circular dichroism studies, helix I

adopts a helical structure and becomes fully stabilized,

reaching a well-folded state in the presence of DNA [47].

Another example corresponds to the p53 tumor-sup-

pressor protein as one of the most studied proteins in history.

It is known that p53 activates a large number of genes, with

its main function being the arrest of the cell cycle in G1 and

G2, allowing the activation of DNA repair mechanisms and

therefore the development of its cancer-inhibiting proper-

ties. Persons inheriting only one functional copy of the p53

gene are predisposed to develop several tumor types. This

condition has been found in the Li-Fraumeni syndrome

(LFS), in which individuals are predisposed to develop

sarcomas, leukemias, adrenocortical carcinomas, and breast

cancer at early ages [48, 49]. More than 50% of human

cancers have been associated with mutations in p53, and

according to systematic analysis of a large number of

mutations, it has been revealed that 304 of the 882 mutations

studied affecting the structure of the p53 core domain can be

explained by their effects on protein folding [50]. Although

reversible aggregation appears to play an important role in

p53 core-domain folding [51], it remains to be studied

whether a percentage of the structural changes found with

this important protein might be associated with localized

disorder-to-order transitions, which in turn could modu-

late—and therefore affect, for example—protein–DNA

interactions.

Moreover, with regard to RNA function, several RNA

chaperones with key participation in cellular RNA metab-

olism have been described as organizing several networks of

RNA–RNA, RNA–protein, and protein–protein interactions

Fig. 3 Protein quartet model for protein structure transitions.

Adapted from references [26, 27]
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[52]. Here, these chaperone proteins presenting an important

intrinsic disorder assist RNA function by successive disor-

der-to-order and order-to-disorder transition cycles to aid

RNA in acquiring the most stable conformation required for

optimal function [53]. One classical example is NCp7, a

nucleocapsid protein from the HIV type 1 virus. NCp7 is a

55 amino-acid nucleic-acid-binding protein that represents

an important structural segment of the HIV type 1 virus

nucleocapsid. It is characterized by two zinc fingers [54, 55]

and participates in several key functions during the HIV-1

viral life cycle [56–58]. The two main activities of NCp7 are

destabilization of nucleic acid loop structures [59–61] and

nucleic acid aggregation–condensation [62–64]. NCp7 has

been mainly studied through its interaction with four con-

tiguous stem-loop structures, where SL1–SL4 of the HIV-1

w recognition site [65–67] shows a high degree of disorder

[53] and therefore excellent adaptation properties for a wide

range of RNA and DNA molecules (Fig. 4) [66–70].

Lipid transfer protein structure and disease

In an attempt to define the possibility that folding key

features in proteins could provide us with the manner in

which to explain basic issues such as receptor recognition,

lipid transfer activity, and self-exchangeability carried out

by several lipid transfer proteins including apolipoproteins,

our group has attempted to address these points by directly

measuring molecular conformational changes of apolipo-

proteins at air/water and lipid/water interfaces, in order

to approach the possible mechanisms that might explain

these phenomena [71]. This has been achieved employing

Langmuir monolayers in conjunction with Brewster angle

microscopy (BAM), atomic force microscopy (AFM) of

LB films of protein [72–75], grazing incidence X-ray

diffraction on protein monolayers [76], and surface force

measurements (SFA) [77]. Because at that time, we were

unable to define whether the secondary structure of spe-

cific segments of apoCI and -AII remained stable

independently of their position at air/water and lipid/water

interfaces, more recently we have addressed the possibility

that these segments responding to specific environmen-

tal changes and following disorder-to-order transitions

might function as molecular switches that trigger function

[78, 79].

ApoCI is synthesized with a 26-residue signal peptide

that is cleaved co-translationally in the rough endoplasmic

reticulum which inhibits both phospholipase A2 [80, 81]

and hepatic lipase [82] and activates the lecithin-choles-

terol acyltransferase (LCAT) [83]. Also, it has been

reported that the C-terminal fragment of human apoCI acts

as an inhibitor in vitro of the cholesterol ester transfer

protein (CETP) [84, 85]. On the other hand, the discovery

that apoE-enriched b-migrating very-low-density lipopro-

tein (b-VLDL) binds to the lipoprotein receptor-related

protein (LRP) [86], the effect of apoCI content upon this

binding has been studied [87]. When individual members

of the C apolipoprotein family were examined, it was

found that apoCI is the most potent inhibitor of apoE-

mediated b-VLDL binding to the lipoprotein-related pro-

tein (LRP) [88]. It has been suggested that in addition to

displacement of apoE from the particle, apoCI binding

might exert its effect by inducing a change in resident apoE

conformation, which in turn abolishes its ability to interact

with LRP. Apolipoprotein E is a 299-residue protein that

exists as three allelic variants, denominated apo E2, -3, and

-4. In Alzheimer disease, the apo E4 allele is a risk factor

associated with an earlier age of onset for sporadic cases

[89, 90].

Fig. 4 Structural conformations for the NCp7 (Zn-finger) protein.

a Relatively unstructured NCp7 (residues 12–53) showing coordina-

tion with zinc atoms in purple around a poorly structured section. b In

the presence of DNA (HIV-1 primer binding site) a change in

secondary structure (a-helix, blue) is observed, when a complex is

formed around the HIV-primer binding site of DNA and the N-

terminal region of NCp7 (Zn-finger). Structures were obtained from

PDB access code: 1esk and 2jzw. Images visualized employing the

Pymol program [212]
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Although function that depends specifically on 100%

disordered proteins represents the extreme case, the con-

cept of having disordered segments in proteins that only

respond and acquire a well-defined secondary structure

associated with the binding of specific ligands, might be

more common than we thought. We have postulated that

changes in lipid composition of HDL particles might pro-

mote an alteration in normal disorder-to-order transitions

found in apoCI, changing its switching properties, and

therefore predisposing the onset of diseases related with

LCAT activation and CETP function [79]. Acquisition of a

very rapid lipid-specific a-helical conformation following a

disorder-to-order transition in the C-terminal peptide of

apoCI has provided new insights into how this protein

might modulate function [77, 79]. Moreover, following the

same approach with specific peptides synthesized from the

reported structure of apolipoprotein A1, when left in water

at 4�C, a very slow disorder-to-order transition develops

over the course of weeks, from a fully disordered state to a

well-developed b-sheet secondary structure (Mas-Oliva J,

personal communication). This behavior further supports

the fact that the physicochemical characteristics of the

environment must be considered as a key factor in the

equilibrium displacement within the secondary structure of

a protein or specific segments toward a-helices or b-sheets

[91]. Here, the result that specific segments of apolipo-

protein AI slowly develop fibril-like structures indicates

the possibility that pathological processes such as athero-

genesis might be also considered as an amyloidotic-related

process (Fig. 5) [92].

Amyloid-related diseases

At present, an important number of human diseases

affecting several tissues and producing a series of common

symptoms find their origin in the assembly of proteins into

insoluble deposits [93, 94]. Although absolute establish-

ment of this connection is lacking to date, there is solid

evidence indicating a strong correlation between the for-

mation of amyloid fibrils and their toxicity upon cells in

vitro [95–97]. The missing point continues to reside in

basic understanding of the characteristics of the so-called

amyloidogenic proteins that define their capacity to orga-

nize themselves into a b-structure conformation. This

capacity has been, on the one hand, related to a hereditary

component with several dominant autosomic diseases [98],

and on the other, with a ‘‘sporadic’’ form of the disease [98,

99]. Here, independently of whether the precursor protein

is being synthesized as a normal protein, secondary

external factors mainly related with the protein environ-

ment during synthesis or during transit to its target

pathway, define their potential amyloidotic pathway.

Because not every protein that aggregates forms amyloid

deposits, the study—and eventually the understanding—of

the mechanisms that govern, first, protein folding and

second, aggregation-related phenomena, include possible

implications for disorder-to-order transitions. Again, the

potential implications of having disordered segments in

these proteins that might present conformational transitions

to ordered states still remains to be fully evaluated.

Amyloid-related diseases are in direct association to a

failure of the regulatory mechanisms that normally ensure

that proteins remain in their correctly folded functional

states [13]. Such mechanisms and quality control systems

include the action of folding catalysts, molecular chaper-

ones, degrading enzymes, and endoplasmic reticulum-

associated degradation, that normally detect misfolded or

damaged proteins and either rescue or destroy them [19,

100]. If the function of these protective mechanisms

is diminished, the probability of pathogenesis increases

[101, 102].

On the other hand, several studies have shown that a

certain number of polypeptides not directly related to

amyloid disease might be also capable of forming amyloid

fibrils under destabilized conditions [103–108]. This shows

that amyloid deposition may be a common property of

proteins, and not only to the ones associated with disease

[109]. In fact, the difference between ‘‘functional’’ amyloids

and the ones associated to disease might be explained in

terms of evolutionary regulating mechanisms. These

mechanisms might have evolved functional amyloids where

cellular toxicity associated to their formation might have

been quenched by other proteins [110] as in the case of

protein Pmel17 [111, 112]. Pmel17 corresponds to a trans-

membrane protein located in the plasma membrane of

melanocytes [113]. This protein is of central importance in

the way melanin is polymerized in melanocytes since Ma, a

proteolytic fragment of Pmel17 structured as amyloid fibrils

Fig. 5 Atomic force microscopy image of apolipoprotein AI-peptide

DRV (amino acids 9–24) (Mas-Oliva J, personal communication).

Fibrils show an average length of 300 nm and 25 nm in height
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functions as a key support in the polymerization of melanin

[111]. Since it has been shown that amyloidogenesis of Ma
is four orders of magnitude faster that Ab and a-synuclein,

we can consider this optimized process of fibrillogenesis as

an evolutionary way to avoid intrinsic toxicity mostly

associated to fibril polymerization [112].

Amyloids are basically classified according to the pro-

cess-specific protein rather than their clinical manifestations.

One of the most important models for studying amyloido-

genesis has been the one that occurs during inflammation

[114, 115]. This model has been useful in the study of the

common characteristics among amyloids, in which an acute

phase related with protein synthesis in liver has been

described. Because many amyloid peptides/proteins corre-

spond to a fragment of larger precursor molecules, it has been

observed that usually a 1,000-fold increase in the plasma

concentration of these precursors is needed in order to start

the deposition of amyloid. Proteolytic processing of these

precursors associated with an altered expression of a series of

sorting and trafficking factors appears to be a pathogenic

factor in the formation of amyloid deposits [116].

To date, many proteins have been proposed as presenting

amyloidogenic properties. Interestingly, on examining their

shared characteristics from the perspective of primary

structure, no common features are found among them.

Therefore, their amyloidogenic properties must rely on the

secondary and tertiary levels. Kinetic data are consistent

with the possibility that ‘‘intermediate’’ or ‘‘molten globule-

like’’ conformational states are in equilibrium, and that the

process of fibril formation takes place only by shifting this

equilibrium [117]. Since amyloidogenesis corresponds to a

two-step reaction with a slow lag period related with the

formation of a nucleation center and as a secondary stage its

propagation, this process has been compared with protein

crystallization [118]. The presence of metal ions and the

association with accessory proteins such as apolipoproteins

and sulfated proteoglycans has shown the property to

modulate amyloidogenesis [119–121]. Therefore, the

sometimes denominated pathological chaperones have also

been shown to contribute to amyloid toxicity [122].

Amyloid-associated proteoglycans

Perhaps the most common amyloid-associated molecules

are proteoglycans, which contain a large number of sulfate

glycosaminoglycan (GAG) chains linked to large molecu-

lar-weight protein cores [123, 124]. The possibility that

GAG interaction contributes as a driving force in fibril

assembly and amyloid plaque formation has been sug-

gested [125]. In this context, sulfated proteoglycans are

ubiquitously expressed on various cell membranes and they

are common to all type of amyloids studied to date. They

have been also suggested as key factors in the formation of

mature plaques serving as scaffolds and protecting against

proteolysis [126–128]. Several subtypes have been asso-

ciated with Ab plaques, including heparin, dermatan,

keratin, and chondroitin sulfate proteoglycans [129, 130].

It seems that the most common amyloid-associated

proteoglycan is perlecan [130, 131] that constitutes the

major component of the basement membrane/extracellular

matrix proteoglycan of the cell [127, 132, 133]. Perlecan

has been associated to virtually all human amyloid diseases

including Alzheimer’s disease, familial amyloidosis, and

type 2 diabetes [128, 134–137]. Although several in vitro

studies have shown that sulfated GAG chains can induce

extensive Ab aggregation via electrostatic interactions

[138] and have been found to increase the b-sheet content

of several amyloidogenic proteins such as serum amyloid

A protein (SAA) [139], sulfated GAG chains also seem to

reduce amyloid fibril degradation [140]. The SAA [139]

has been reported to contain specific binding sites for

heparin and heparan sulfate, associated to phylogenetically

conserved basic residues. The occupation of these sites is

likely to increase the amyloid conformation of SAA [141].

b amyloid precursor protein (AbPP) and b amyloid

(Ab)

Together with its precursor protein, the amyloid peptide is

considered a normal molecule found in plasma, cerebro-

spinal fluid, and the extracellular space. AbPP corresponds

to a transmembrane protein with a low amyloidogenesis

potential in vitro. This is in contrast with the high tendency

of Ab to form fibril aggregates [142]. Three AbPP isoforms

are shown to date (751, 770, and 695 amino-acids) [143]

and all of them, followed by the action of an a-secretase,

form a soluble ectodomain with the retention in the

membrane of the carboxy end fragment [144]. Secondary

to the action of b and c secretases, Ab is liberated gener-

ating diverse forms of the b amyloid peptides ranging in

size from 39 to 43 residues, being Ab42, the one with the

highest fibrillogenic potential (Fig. 6) [145]. Several years

ago, we found that upon activation platelets secrete a

120 kDa proteoglycan that presents the ability to inhibit

acetylated-low-density-lipoprotein internalization through

binding to the scavenger receptor class A (SR-A) in mac-

rophages [124]. This proteoglycan was identified as an

a-secretase product of AbPP [146]. This finding supports

the possibility that SR-A might participate in the clearance

of several forms of AbPP from atherosclerotic lesions, thus

contributing to the reduction of foam cell formation.

Moreover, competition of AbPP for b-amyloid uptake by

microglial cells through the SR-A, might contribute to

b-amyloid accumulation in the brain’s extracellular space.

Although changes in secondary structure of AbPP related

to a disorder-to-order transition has not been addressed, at
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this stage this possibility can not be discarded. b-amyloid

has been also shown to promote an important cellular

oxidative state [147] and further promote, for example, the

development of Alzheimer disease, the most common

amyloidosis and leading cause of dementia among the

elderly.

The amyloid-enhancing factor (AEF) is defined as a

factor that dramatically shortens the induction time for

amyloid development during inflammatory processes (from

36 h to 2–3 weeks). This characteristic is consistent with

amyloidogenesis requiring a nucleating event that shortens

initiation of the process. Likewise, many AEF character-

istics are related with experiments in which exogenously

delivered prions have been injected, and apparently served

as templates for endogenously synthesized prions trans-

formed into pathologically active agents [148, 149].

However, different from prions, AEF generates amyloi-

dosis only in the presence of an inflammatory event, reason

why instead of being an infective agent it is considered a

potentiator of the disease [150].

Prion disease

Prion diseases are chronic neurodegenerative disorders

associated with the accumulation of abnormal isoforms of

PrP protein in the brain. Among these diseases, we rec-

ognize at present scrapie (in sheep and goat), spongiform

encephalopathy (in cattle) [151, 152], and in the human,

Kuru [153], Creutzfeldt–Jakob disease (CJD) [154], fatal

familial insomnia (FFI), Gerstmann–Sträusler–Scheiker

disease (GSS), and PrP-cerebral amyloid angiopathy (PrP-

CAA) [155–157]. The cellular prion protein (PrPc) corre-

sponds to a single gene-encoded 35 kDa sialoglycoprotein

[158]. The translated protein contains 253 amino acids with

glycine/proline-rich octopeptide repeats spanning residues

51–91. It is polymorphic at residue 129 with methionine/

valine and at residue 219 with glutamic acid/lysine, and is

glycosylated at residues 181 and 197 [159]. Circular

dichroism has shown that PrPc presents a high content of

a-helical secondary structure and shows no b-sheet con-

formation [160]. It is transported in secretory vesicles

while anchored to these structures through a GPI moiety

[161]. Although the normal function for PrPc remains

unknown, it has been suggested that it might play a role in

synaptic function [162]. Because PrP knockout mice have

shown to be resistant to development of scrapie, it has been

postulated that synthesis of the normal form of PrPc is an

absolute pre-requisite in this protein’s abnormal form

(PrPsc), which involves a conformational change from an

Fig. 6 Structural representation of Ab peptides. a Primary sequence

of Ab fragment 17–42 showing segments that correspond to b1

(18–26) and b2 (31–42) connected through a poorly structured region

(residues 27–30). b Fibrilar structure of Ab (17–42) obtained with

NMR and mutagenesis complementation methodologies. The struc-

ture shows a pentamer with interchain distances of approximately

4.7 Å. c Lateral view through the axis of a Ab fiber showing the

lateral amino-acid residues of both b-sheets separated by a 10 Å gap.

PDB access code: 2beg. Images visualized employing the Pymol

program [212]

Fig. 7 Structure of the prion like domain of HET-s (218–289).

a Primary sequence of HET-s fragment 218–289 showing segments

that correspond to b-strands b1a (226–229), b1b (230–234), b2a

(236–241), b2b (243–246) and b3a (262–265), b3b (266–270), b4a

(272–277) and b4b (279–282) separated by a poorly structured region

(residues 247–261). b Side view of five domains of HET-s (218–289)

calculated from solid state NMR with a tridimensional structure in the

form of a left-handed-b-solenoid. Each color represents a single

domain. c Side view of a single domain showing b-structured regions

as marked in (a). PDB access code: 2rnm. Images visualized

employing the Pymol program [212]
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a-helix-based structure into b-sheets [163]. Prion rods

possess the same tinctorial properties of amyloid fibers

(binding the amyloidophilic fluorophores thioflavin and

Congo red) [164] and resemble amyloid fibrils found in

vivo (Fig. 7) [165, 166].

Peripheral nerve amyloidosis and transthyretin (TTR)

Peripheral nerve amyloidosis is common in familial amy-

loid polyneuropathy (FAP) [167] and can be a key feature

in primary light chain amyloidosis and b2-microglobulin-

related amyloidosis. FAPs are a heterogenous group of

autosomal dominant disorders characterized by deposition

of a fibrillar protein associated to transthyretin (TTR) in the

form of amyloid [168, 169]. TTR composed of four iden-

tical 127 residue subunits is the plasma protein responsible

for transport of thyroxin and vitamin A [170, 171].

Although several mutations in TTR causing extracellular

tissue-selective deposition have been described [172], the

clinical basis for the predominant manifestation of each

mutation has not been established yet [173]. Nevertheless,

pathogenesis has been associated with dissociation of the

native tetramer molecule into partially unfolded species,

which can subsequently self-assemble in the form of

amyloid fibrils (Fig. 8) [174–177].

FAP can also occur secondary to apolipoprotein A-I

[178] and gelsolin deposition [179], where two mutations

described in the gelsolin gene have been directly associated

to this type of disease [180, 181]. In this respect, it has been

also shown that serum apo A-II concentrations are much

higher in patients with FAP than in normal controls or

asymptomatic carriers, suggesting that apo A-II may play a

role in amyloid formation in these patients [182]. More-

over, the disease known as familial amyloidosis of Finnish

type (FAF) related to gelsolin deposition is characterized

by progressive cranial neuropathy, corneal dystrophy, and

skin elasticity complications [183, 184]. The first step in

FAF is determined by an aberrant proteolysis carried out by

furin [185] followed by the proteolytic cut of a MT1-matrix

metalloprotease generating amyloidogenic peptides of 5 or

8 kDa [186].

Islet amyloid polypeptide (IAPP) and Beta 2

microglobulin (b2m)

IAAP or amylin synthesized in pancreatic islet b-cells

suffers a series of post-translational modifications to yield a

mature 37-amino acid peptide (Fig. 9) [187, 188]. IAPP is

a molecule involved in the modulation of glucose metab-

olism [189, 190] as well as in calcium metabolism [191].

IAPP aggregates are the primary component of amyloid

deposits found in the pancreatic b-cells of patients with

type 2 diabetes mellitus [192]. Prefibrillar oligomeric IAAP

has been shown the property to permeabilize membranes

through a pore-like mechanism, suggesting that this pro-

cess might be related to the pathogenic mechanism

involved in the genesis of non-insulin-dependent (type II)

diabetes mellitus (NIDDM) and other amyloid-related

diseases [193]. In adult diabetes (type II), it has been

Fig. 8 Three-dimensional structure of the transthyretin monomer

obtained from X-ray diffraction. Arrows represent b-sheet secondary

structure showing in color the position of regions with the most common

amyloidogenic mutations. White color represents regions with no

incidence of mutation, red one mutation, green two-three mutations,

and blue four or more mutations. Citation for each mutation can be

found at the TTR database of mutations maintained by C. E. Costello at

Boston University School of Medicine (http://www.bumc.bu.edu/msr/

ttr-database/). PDB access code: 1rlb. Image visualized employing the

Pymol program [212]

Fig. 9 Three-dimensional structure of human amylin. a Primary

amino-acid sequence of the entire amylin molecule (1–37) showing in

red the amyloidogenic region in between S20 and S29. A mutation

that changes S20 for G20 has been directly related to the most severe

cases of non insulin dependent diabetes mellitus (NIDDM). b
Secondary structure of amylin determined by NMR using SDS

micelles. The amyloidogenic region of amylin is shown in red as in

(a). PDB access code: 2kb8. Image visualized employing the Pymol

program [212]
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observed that 90% or more of patients with this disorder

present amyloid deposits in the islets of Langerhans [194].

b2m is a protein found in a noncovalently association

with the heavy chain of major histocompatibility class I

complex (MHCI). Due to the natural turnover of b2m, it is

normally found in plasma and therefore carried to the

kidneys where it is degraded and excreted [195]. Due to

renal disfunction, the concentration of b2m in plasma can

increase up to 60-fold, where it accumulates as a fila-

mentous structure in connective tissues and leads to

dialysis-related amyloidosis [196–198]. Although it is

known that dissociation from MHCI predisposes the

amyloid-transition of b2m [199], the mechanism underly-

ing b2m fibrillogenesis in vivo is still largely unknown

[200, 201].

Concluding remarks

According to scientists working in different fields of

knowledge, nature appears to have employed disorder to

create high levels of organization. Moreover, in some cases

nature seems to have created disorder, when there is, in the

first place a lack of it [202]. This latter situation extrapo-

lated to medicine has shown that many diseases find their

origin in the way proteins carry out many structural

changes employing finely tuned disorder-to-order and

order-to-disorder transitions.

Taking into account that several amyloid-functional-

structures have been characterized in bacteria [203, 204],

fungi [205–207], insects [208, 209], and mammals [111,

210], there is consensus that the formation of amyloid

fibrils represents a well conserved evolutive pathway in

protein structure [110, 211]. Therefore, differences

between ‘‘functional’’ and ‘‘pathological’’ amyloids might

simply reside in the modulatory pathways involved along

their synthesis. As professor Christopher M. Dobson has

stated, ‘‘One can therefore think of the amyloid diseases as

resulting from the reversion of the highly evolved biolog-

ically functional forms of peptides and proteins into an

alternative and unwelcome structural state that exists as a

result of the inherent physicochemical nature of polypep-

tide chains’’ [19]. Without a doubt we can state that in the

near future, many diseases with still unknown origins will

find their explanation in the way this class of phenomenon

is regulated.
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