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The aims of this study are the following two: (1) To show that in Langmuir monolayers (LM) at low
supersaturation, domains grow forming fractal structures without an apparent orientational order trough tip
splitting dynamics, where doublons are the building blocks producing domains with a seaweed shape. When
supersaturation is larger, there is a morphology transition from tip splitting to side branching. Here, structures
grow with a pronounced orientational order forming dendrites, which are also fractal. We observed this behavior
in different Langmuir monolayers formed by nervonic acid, dioctadecylamine, ethyl stearate, and ethyl palmitate,
using Brewster angle microscopy. (2) To present experimental evidence showing an important Marangoni
flow during domain growth, where the hydrodynamic transport of amphipiles overwhelms diffusion. We
were able to show that the equation that governs the pattern formation in LM is a Laplacian equation in the
chemical potential with the appropriate boundary conditions. However, the underlying physics involved in
Langmuir monolayers is different from the underlying physics in the Mullins-Sekerka instability; diffusional
processes are not involved. We found a new kind of instability that leads to pattern formation, where Marangoni
flow is the key factor. We also found that the equations governing pattern formation in LM can be reduced
to those used in the theory of morphology diagrams for two-dimensional diffusional growth. Our experiments
agree with this diagram.

1. Introduction

During domain growth, a stable phase, usually solid, propa-
gates into a metastable one, usually liquid. During this propaga-
tion, the interface between both phases moves as the metastable
phase is transformed into the more stable one. The interface
becomes unstable and forms patterns because of the competition
between a temperature gradient (or chemical potential gradient)
that destabilizes the interface on one hand and surface tension
that stabilizes the interface on the other.1,2 One factor increases
the interface to allow heat release (or chemical migration) to
grow and the other avoids the energetically expense interface.
The further the system is out of equilibrium, the faster the
metastable phase will turn into the stabler phase and, conse-
quently, the faster the interface will propagate. The competition
between effects that stabilize and destabilize the system gives
rise to characteristic length scales of growing domains and
determines, together with the stable phase anisotropy, the overall
shape and symmetry of domain patterns.1 Balance between
competing effects varies as growth conditions change. The
observed patterns may be grouped into a small number of typical
patterns or morphologies each representing a different dominant
effect. Tip-splitting growth gives rise to dense branched
morphologies called seaweeds and dendritic growth, which is
characterized by a needle with side branches, produces dendrites.
Each morphology is observed over a range of growth conditions,
bringing to mind the idea of a morphology diagram and the
existence of a morphology selection principle. This one would
select a particular morphology and consequently, the corre-
sponding transitions, as we vary the growth conditions. In
equilibrium, the phase that minimizes the free energy is selected
and observed. The existence of an equivalent principle for out-

of-equilibrium systems are one of the longest pursued and yet
unsolved questions in the study of pattern formation.

Pattern formation in three-dimension (3D) has a long history.2

First just undercooling was considered, predicting the existence
of a continuous family of steady-state solutions all with parabolic
shape, where the product of the tip radius and the growth
velocity for each parabola was a constant, suggesting that
dendrites with different tip curvatures and corresponding tip
velocities could coexist at a specified undercooling. However,
it was experimentally demonstrated that under controlled
conditions for a given undercooling the same dendrite is
reproducible, implying a selection problem.3 To solve the
selection problem, surface tension was included. Although it
seemed as if the selection problem had been solved, this was
not so; different substances that, accordingly to predictions,
would produce dendrites, by no means did it. In addition,
decoration of a needle crystal with side branches, that is, a
dendrite, did not seem to influence the selected velocity
dramatically, so the selection problem for the needle crystal
included the one for dendrites. The selection problem for
growing needle crystals was solved through the microsolvability
theory with the conclusion that surface tension and surface
kinetics, despite their small size, turned out to be singular
perturbations to the problem that totally change the character
of interfacial dynamics.4,5 When surface tension and surface
kinetics are isotropic, dendritic growth does not occur, but rather
fingers with tip-splitting dynamics are observed. Anisotropy in
the interfacial dynamics of the stable phase is required to
produce dendritic growth.4 A theory of pattern formation for
diffusional growth was developed by Müller-Krumbhaar and
co-workers, which were able to develop a morphology
diagram,6-11 where the building block of the dendritic structure
is a dendrite with parabolic tip, and the basic element of the
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seaweed structure is a doublon;10,11 this is a local structure
consisting of two broken-symmetry fingers that are mirror image
of each other and separated by a narrow groove of liquid of
constant width. The control parameters in the morphology
diagram are the anisotropy of the capillary length and the
undercooling. The predicted structures are classified according
to whether they are compact or fractal, and whether they possess
orientational order or not. Different morphologies after changing
the control parameters have been observed, as in the directional
solidification of succinonitrile alloys that show different mor-
phologies depending on the plane direction where they grow,12

or in the observation of morphology transitions from dendrites
to seaweeds in xenon 3D crystals.13,14

Studies of patterns formed by growing domains in Langmuir
monolayers (LMs) are not common. Pattern formation in
phospholipids has been explained in terms of a 2D diffusion
model with impurities, since a dye was used to observe the
monolayer with polarized fluorescence microscopy.15 Dendritic
growth in the chiral amphiphile D-myristoyl alanine has been
studied in the context of the microsolvability theory.16 Also, a
variety of nonequilibrium growth structures have been reported
for monolayers of fatty acid ethyl esters (palmitate and stear-
ate),17 1-monopalmitoyl-rac-glycerol,18 cis-unsaturated fatty
acids,19 dioctadecyamine,20 and mixtures of phosphatidylcholine
and ceramide.21 There are also studies of chiral effects on the
shape of domains for different enantiomeric and racemic
mixtures of phospholipids22-25 and N-acyl amino acids.26 In LMs
made of a single component, the problem of nonequilibrium
growth morphologies is subtler than in 3D solids. In the latter
case, the heat released during the phase transition has to be
diffused far away from the interface before the front can advance
further. This mechanism can be ruled out in LMs because the
monolayer rests on a large body of water (subphase) that acts
as an isothermal reservoir, absorbing all the latent heat released
during the phase transition. So, it is not clear why patterns are
formed in LMs. Growing instabilities are usually observed along
a fluid/nonfluid phase transition (LE/LC, LE/S), where the
involved phases have a large difference in area density (∼50%).
Amphiphiles usually have some kind of hindrance (2 or more
tails, a chiral center, bent tails due to double bonds, and so forth).
Supersaturation induces domain growth, which depending on
the experimental conditions forms either seaweed or dendritic
morphologies. The interest of studying how patterns are formed
in monolayer domains relies on questions that are not satisfac-
tory solved, for instance, if heat is not playing a role, why does
a complex morphology evolve in uniform environments? Why
do we not simply observe growing 2D circular domains? How
are length scales selected as tip-radius, width and spacing of
the side-braches? Why does the morphology of a growing
domain change from tip splitting to side branching? To answer
some of these questions, our group has recently presented a
study of how domain patterns are formed in LMs and how their
morphology evolves.27,28 There, we found morphology transi-
tions from tip splitting to side branching. Also, we observed
the formation of doublons during domain growth, including the
onset of the instability in round domains when an abrupt lateral
pressure jump is made on the monolayer. It was found that as
domain growth starts, the shape becomes unstable. At low
supersaturation, some unstable modes grow faster and structures
evolve through tip-splitting dynamics. At high supersaturation
levels, there is a morphological transition where domains grow
with needle tips, which show, as growth proceeds, side
branching. Nevertheless, we did not address the issue of
classification of the growth structures that could be compact or

fractal patterns. By compact growth we mean growth at constant
density, irrespective of the value of this density, while in a fractal
pattern the density varies with length scale. In that study,27,28 a
model was proposed to understand this kind of nonequilibrium
growth patterns. At the steady state, the growth behavior is
supposedly determined by a density profile around domains due
to the large density difference between the metastable phase
with respect to the stable one. This density profile drives
amphiphile molecules toward the LE/LC line boundary by
diffusion, suggesting a Laplace’s equation in chemical potential
with specific boundary conditions, which are equivalent to those
used in the theory of morphology diagrams for two-dimensional
diffusional growth developed by Müller-Krumbhaar and
collaborators,6-11 where morphological structures and morpho-
logical transitions can be obtained. This description is different
from the one presented by R. Bruinsma et al.,29 not experimen-
tally tested yet, where it was proposed that a hydrodynamic
mechanism based on the Marangoni flow describes the growth
instabilities of domains in monolayers, using a 2D equation
equivalent to the Stokes equation. Two regimes predicting
different pattern evolution were theoretically analyzed, when
the steady growth is dominated by the bulk viscous term or by
the surface viscous term. In this description, the issue of
morphological structures and morphological transitions is not
addressed.

The main topics to be presented in this paper are the
following: (a) Experimental results showing how domains grow
at low supersaturation forming fractal structures without an
apparent orientational order trough tip splitting dynamics with
doublons as the building blocks producing domains with a fractal
seaweed shape. When supersaturation is larger, there is a
morphology transition from tip splitting to side branching, that
is, structures with a pronounced orientational order (dendrites)
are formed, which are also fractal. This behavior can be observed
in different LMs at the air/water interface, using Brewster angle
microscopy (BAM). We will concentrate on experimental results
for the nervonic acid (NA) monolayer, however, we also include
results from other monolayers such as dioctadecylamine (DODA),
ethyl stearate (ES), and ethyl palmitate (EP). (b) Experimental
results revealing Marangoni flow close to the growing domains,
obtained using a new technique that allows us to measure flows
in the vicinity of growing domains, using hydrophobized silica
microspheres as tracers. This experimental evidence supports
that patterns are formed by a hydrodynamic mechanism where
Marangoni flow is important. In steady state, growth is
apparently dominated by the bulk subphase viscous term
although the surface viscous term cannot be neglected. (c) A
model where a Laplacian equation in the chemical potential can
be recovered from the hydrodynamic model with Marangoni
flow, including the necessary boundary conditions, to explain
the morphology structures and the morphology transitions, as
previously reported.27,28 Our experiments agree with the kinetic
morphology diagram.6-11 However, the underlying physics
involved in LM is different from the underlying physics in the
Mullins-Sekerka instability; diffusional processes are not
involved. This is a new kind of instability that leads to pattern
formation, where Marangoni flow is the key factor.

2. Models to Explain Pattern Formation in Langmuir
Monolayers

Two models have been presented to explain the pattern
formation in LMs. In the first one,29 the growth instability is
due to a hydrodynamic mechanism where concentration gradi-
ents produced by supersaturation generate a hydrodynamic flow
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through the Marangoni effect, and only inside a very narrow
strip of molecular size outside the LE/LC boundary transport
takes place by diffusion. Here, local fluid velocities at the air/
water surface produce a modulated LE/LC boundary, and flow
lines are focused toward the tips of the boundary. As a
consequence, excess of surfactant is transported to the tips of
the LE/LC boundary, which increases the amplitude of the
modulation. On the other hand, the second model27,28 pays
attention on the large density difference (∼50%) of the involved
phases in domain growth. Here, the basic assumption is that
domain growth will necessarily give rise to a density profile of
the order of several micrometers in length in the domain
neighborhood. Diffusion is the key factor driving amphiphile
molecules toward the LE/LC line boundary; subduction flow
does not play an important role. In addition, this model could
be related to the theory of dynamic phase transitions,6-11 to
understand the morphological structures and morphological
transitions.

To focus on the main differences between both models that
will be confronted in this paper, let us present here the main
variables used to describe growth in a LM. Here, we will
represent by LE the liquid expanded phase, and by LC any
condensed phase. We denote by µ the chemical potential of
amphiphile molecules, which is the same for both phases when
the interface is flat or when the interface curvature is negligible;
let us denote it by µo. Fl and Fs are the amphiphile densities for
LE and LC phases, respectively. If we impose a small, but
abrupt, decrease in the total area occupied by the LM, as in the
experiments to be described below, a transient increase in
surface pressure ensues. Far from the LE/LC line boundary,
both the amphiphile density and chemical potential in the LE
phase increase by amounts δF and δµ, respectively. The
chemical potential µ0 and the density Fs in the LC phase change
only by a negligible amount. For sufficiently low levels of
supersaturation, that is, for sufficiently small values of δF and
δµ, we can employ the condition of local thermodynamic
equilibrium. Under these conditions, we reach a stationary state,
where the chemical potential is a continuous function of position,
and it must be equal on both sides of the LE/LC flat line
boundary. Away from this LE/LC line boundary, µ increases
monotonically until it reaches a value µ∞ ) µ0 + δµ at the
monolayer boundary. Density increases also monotonically from
the line boundary until it reaches the asymptotic value F∞ ) F0

+ δF. Now, consider that the monolayer is mainly in a LE phase
coexisting with a few LC domains at temperature, T, in a
stationary state, where the boundary of the LC domains has a
local curvature κ. Therefore, we need to bring into play the
Gibbs-Thomson equation at the line interface

where ∆F is the equilibrium density difference between LE and
LC phases at the temperature T, and τ is the line tension.
Inevitably, there is another boundary condition related to the
mass conservation at the LE/LC boundary

where Vn is the normal velocity of the line interface, and � )
M′/M is the ratio of LC to LE mobilities, M′ and M, respectively;
the diffusion coefficient is D ) M(∂µ/∂F). We will also consider

that the subphase has an infinite depth in the y-direction, and it
is also infinite as the monolayer in the perpendicular directions,
⊥, that is, the plane where the monolayer rests. The subphase
flow velocity W(x,y,z) obeys the usual 3D Stokes equation for
incompressible liquids

In all our theoretical description, we will use a reference frame
attached to the moving boundary. Under steady-state conditions
the concentration flow profiles are time independent in this
frame.

In the hydrodynamic model, as a consequence of Marangoni
effect, a hydrodynamic flow is predicted. Here, the basic
equations in the steady-state for describing the monolayer are
given by the 2D equivalent Stokes equation29,30

and by the mass conservation equation

where

In these equations∇⊥ is the operator that applies only to the
in-plane coordinates, γ is the surface tension, ηs and η are the
monolayer and the subphase viscosities, respectively. To
compare the relative importance of surface and the viscous terms
in eq 4 is critical, and it is necessary to note that the ratio of
the surface to the subphase bulk viscous terms is of the order
q�;29 � ) ηs/η and q ) 2π/l, where l is a relevant periodicity
size of LC domains in a supersaturated LE phase following a
mechanical compression. Therefore, there are two regimes easily
defined that were studied by Bruinsma et al.29 Surfaces viscous
losses are dominant when q� . 1. This limit can lead to the
diffusional model.8 On the contrary, bulk viscous terms dominate
when q� , 1. Transport and instability mechanisms are
mathematically different in both regimes. In this paper, we will
try to determine which regime is followed during domain
growth.

In the diffusional model at the steady state, the growth
behavior is determined by a density profile around domains,
which generates a diffusion zone, due to the huge density
difference between LC and LE phases. The density profile is
supposed to be of the order of several micrometers in length
around the domain neighborhood, and it is the result of a mass
balance that drives amphiphile molecules toward the LE/LC line.
Thus, the monolayer growth is governed by the equation

Equation 7 has to be solved with the two boundary conditions
(1) and (2). They are similar to the equations used by
Müller-Krumbhaar6-11 and collaborators to analytically build a

µ(interface) - µ0(T) ) - τ
∆F

κ (1)

Vn ) M
∆F

[�(∇⊥µ)s - (∇⊥µ)l] ·n (2)

∇ · W(x, y, z) ) 0 (3)

ηs∇⊥
2W(x, y ) 0, z) ) |dγ

dF |∇⊥Fl(x, z) - η∂yW(x, y ) 0, z)

(4)

∇⊥ ·J(x, y ) 0, z) ) 0 (5)

J(x, y ) 0, z) ) Fl(x, y ) 0, z)W(x, y ) 0, z) -
D∇⊥Fl(x, y ) 0, z) (6)

∇⊥
2 µ ) 0 (7)
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kinetic morphology phase diagram, where they include in the
Gibbs-Thomson equation a supersaturation parameter ∆, and
a capillary length with an anisotropy parameter, ε, that is, d )
d0 (1 - ε cos nθ). Here, d0 is the so-called capillary length
defined by d0 ) τ [(∆F)2(∂µ/∂F)]-1. The diagram predicted by
those authors has regions of different morphological structures
and lines indicating transitions between them, defined by the
control parameters ∆ and ε. They could discriminate between
compact and fractal structures, as well as between structures
with orientational order, like dendrites, and structures without
apparent orientational order, as seaweeds. In the same way in
LMs, the transitions between morphological structures must be
also related to changes in the control parameters during domain
growth (supersaturation level and line tension anisotropy). In
addition, in the diffusional model, it was also possible to obtain
a dispersion relation that could explain which modes of growth
preserve the circular shape and which ones become unstable.26,27

Physics behind the hydrodynamic and the diffusional models
are different. Therefore, one issue to be addressed in this paper
is to find out if there is a density profile where amphiphiles
move mainly driven by diffusion or if they move mainly due
to a hydrodynamic flow occurring in the subphase and in LE,
induced by the concentration or a chemical potential difference,
that is, Marangoni flow. The key would be to discern if growth
is dominated by viscous dissipation in the subphase or by
viscous dissipation at the monolayer. Our findings leaded us to
propose a better model to understand pattern formation in LMs
in the last section.

3. Experimental Section

3.1. Amphiphiles. Dioctadecylamine (DODA), 2C18NH
(g99%), was purchased from Fluka Chemie (Switzerland).
Nervonic acid (NA) (g99%), ethyl stearate (ES) (99%), and
ethyl palmitate (EP) (g99%) were obtained from Sigma Aldrich
Inc. (MO, U.S.A.). All of them were used without further
purification.

3.2. Monolayers. Measurements of the pressure-area iso-
therms, Π(A,T) ) γ0(T) - γ(A,T), were performed spreading
the amphiphiles in solution onto a subphase made of ultrapure
water (Nanopure-UV, 18.3 MΩ) in a Langmuir trough. After a
waiting time for allowing evaporation of the solvent coming
from the spreading solution, the monolayer was slowly com-
pressed. T is the temperature, A is the area/molecule, and γ and
γ0 are the surface tensions of the monolayer and of the
uncovered subphase, respectively. The spreading solution was
made with chloroform (Aldrich, U.S.A., HPLC) for DODA and
NA monolayers and with heptane (Aldrich U.S.A., g99%) for
EP monolayer and in all cases at a concentration of 1 mg/mL.
The DODA monolayer subphase was modified with H2SO4

(Merck, Mexico) to reach pH 3. The other monolayers were
worked at pH 5.7-5.8. On many occasions, we modified the
subphase viscosity by adding glycerol (g99%) from Sigma
Aldrich Inc. (MO, U.S.A.). When the subphase glycerol
concentration was up to 10 vol %, the dynamics of domain
growth was sensibly slowed without an appreciable change in
the isotherms or in the phase transition texture.

3.3. Troughs. Two NIMA troughs (601 BAM and 601 M,
Nima Technology Ltd., England) were used. The trough used
to observe the domain growth in DODA and hydrodynamic
fluxes in EP is a rectangular one with a working area starting
at 490 cm2, and it rests on a vibration isolation system (model
2S, Halcyonics GmbH, Germany). The trough used for NA is
also a rectangular one but smaller, with a working area starting
at 84 cm2 and it rests on an optical table to avoid vibrations

(model 13811, Oriel Corporation, U.S.A.). Both troughs are
made of PTFE and were put inside of a 1 m3 plastic box to
avoid undesired air convection. The temperature difference
between the surroundings defined by the air inside the box and
the trough was at most 1 °C. Additionally, a C-shaped piece of
Teflon with stainless steel inside was used with the NA
monolayer to slow the global monolayer movement. In both
cases, a Wilhelmy plate was used to measure Π, and temperature
was kept constant with the aid of a water circulator bath (Cole-
Parmer 1268-14 and 12101-00, U.S.A.). All experiments were
carried out in a clean-room lab.

3.4. BAM. The growth of domains was observed with an
Elli2000 imaging ellipsometer (Nanofilm Technologie GmbH,
Germany) in the BAM mode (spatial resolution of ∼2 and ∼1
µm using the 10× and 20× objectives, respectively). When the
monolayer moved slowly, this instrument allowed us to get
observations with the whole field of view in focus, due to its
movable objective lens. A BAM1 plus instrument (Nanofilm
Technologie GmbH, Germany) was also used to obtain NA
images with a spatial resolution of ∼4 µm. This instrument
allowed us to follow some growing domains due to its capability
of XY motion.

3.5. Microspheres. Silica beads (with silanol (SiOH) surface
groups) were purchased from Bangs Laboratories, Inc. (U.S.A.)
with a mean diameter of 2.47 µm (10 wt %, solids). The density
of the microspheres is 2.0 g/cm3, so they do not float on the
subphase. However, if beads are treated with 8-10 times
centrifugation-sonication cycles in a chloroform-ethanol mix-
ture, they end up hydrophobized, allowing them to float on the
air/water interface. We used another procedure to hydrophobize
the microspheres through functionalizing them with octadecyl-
trichlorosilane (OTS) by using a condensation reaction between
the OTS and the silanol surface groups of microspheres in
ethanol. Both methods produced floating beads with similar
tracer properties. A 1 wt % bead suspension in a 1:1
chloroform-ethanol mixture was prepared. Eighty microliters
of this suspension were mixed with 5 mL of the monolayer
spreading solution. This new suspension is the actual spreading
solution to deposit amphiphiles and microspheres at the same
time on the air/water interface.

3.6. Contact Angle Measurements. To determine the hy-
drophobized particle-fluid contact angle, we used the method
developed by Sickert et al31 that consists in forming a sessile
water drop on the surface of a siliconized glass cover microscope
slide (Hampton Research, U.S.A.) and depositing a dilute
solution of microspheres on its surface. Beads sediment by
gravity toward the glass-water contact line, where they are
observed with an inverted microscope through a long working
distance objective (M plan Apo 100× Mitutoyo, Japan).

3.7. Surface Tension and Density Measurements. The
surface tension of a water/glycerol mixture was measured by
the falling drop method counting drops when the fluid flows
between two arbitrary marks on a capillary. The density was
measured using a calibrated picnometer (10.149 cm3 at 20.2
°C, Brand, Germany).

3.8. Fractal Dimension Measurements. Brightness and
contrast of BAM images of NA, DODA, and EP monolayers
were adjusted using software (ImageJ 1.42 g, Wayne Rasband,
National Institutes of Health, U.S.A., and/or Adobe Photoshop
8.0.1, Adobe Systems Inc., U.S.A.). Fractal dimension was
measured by using the box counting method implemented in
the software FRACLAC 2.5 Release 1d plugin for ImageJ
(developed by A. Karperien, Charles Sturt University, Australia).
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4. Results and Discussion

4.1. Compression Isotherms and their BAM Observation.
As far as we know, there are two previous reports where
compression isotherms for NA monolayer were presented (pH
) 3).19,32 However, they differ in the coexistence plateau lateral
pressure. For that reason, we developed our own compression
isotherms, which were observed with BAM before starting the
pattern formation study for this monolayer. In Figure 1, we
present the Π-A isotherms for the NA monolayer at different
temperatures (pH ) 5.7-5.8). At the same time, during the
compression process, monolayers were surveyed with BAM.
At negligible pressures, we found gas phase (G) coexisting with
a liquid expanded phase (LE) when temperature is above T ∼
20.5 °C. Below this temperature, G is coexisting with a more
solid-like phase that we named as liquid condensed phase (LC).
As lateral pressure increases during compression, there is a first
order transition between LE and LC phases for temperatures
above T ∼ 20.5 °C. Along a wide coexistence plateau, beautiful
patterns to be described below are formed by the growing
domains of LC phase. The LC phase is quite incompressible; a
typical compressibility, κ ) -1/A (∂A/∂Π)T, value is 4.6 × 10-3

m/mN (22 °C). As previously reported,33 LC phase forms a
centered rectangular lattice with alkyl chains tilted toward their
NN direction. After a long relaxation time, LC domains show
two planes of symmetry in agreement with the reported lattice.
The effect of lateral pressure on tilt (∼25 - 31 °C) and on
in-plane molecule area (∼23.2 Å2/molec) has been reported as
small.32 Below T ∼ 20.5 °C, the LE/LC coexistence disappears
and we just found the G/LC coexistence. Collapse is found
between 27-35 mN/m depending on temperature; the lower
the temperature, the higher collapse pressure. Our compression
isotherms are closer to those reported by Iimura et al.19 The
inset of Figure 1 presents the temperature dependence of the
LE/LC phase transition equilibrium pressure Πe. In the short
temperature range under study, Πe is a linear function of
temperature (Πe ) 1.63T - 33.14 mN/m). Our dΠe/dT ) 1.63
mN/m K-1 value is close to the values obtained for other two-
tail amphiphile monolayers as DMPC (2.35 mN/m K-1),33

DMPA (1.05 mN/m K-1),33 DODA (1.26 mN/m K-1),20 and
r-DPPC (1.42 mN/m K-1).34 Using the Classius-Clayperon
equation (l ) ∆AT dΠe/dT, ∆A corresponds to the molecular
area difference between LC and LE phases at the onset of the
transition) the latent heat was evaluated as l ) 47.90 kJ/mol at
22 °C. This value is larger than one previously reported for
NA (∼18.5 kJ/mol);32 the difference can be attributed to the
difference between our compression isotherms and those
presented in that work. Our l is of the same order of DPPC
monolayer34 (114 kJ/mol) at 20 °C and of DODA monolayer
(89.86 kJ/mol).20 pH modifies to some extent isotherms. In
particular pH slightly modifies the position of the LE/LC
coexistence. The larger pH presents the larger Πe. However,
BAM images do not show any significant difference among
domains at those pH values. Collapse pressures are ∼45 mN/m
at pH ) 7 and ∼ 24 mN/m at pH 3-5.7 (T ) 22.0 °C).

4.2. Pressure Jumps. Morphology of domain growth of LC
phase for the NA monolayer was observed performing several
experiments using pressure jumps. First, the monolayer was
compressed up to the phase transition, i.e., when LE and LC
are in coexistence (at the kink point in the Π-A isotherm at the
onset of the phase transition). After some minutes to allow
monolayer relaxation (∼3-5 min), a pressure jump was made
by a sudden compression of the monolayer to supersaturate the
system. This sudden supersaturation jump is equivalent to an
undercooling jump in classical solidification. The pressure
reached after the jump was maintained constant using the
servomechanism of the Langmuir trough.

Figure 2a shows typical BAM images of the NA monolayer
(T ) 21.9 °C) after a pressure jump of ∆Π ) 1 mN/m, where
the monolayer reaches an actual pressure of Π ) 3.5 mN/m.
Particularly, in this example we present a series of four
successive images, where we can observe how a couple of
growing domains evolve as time elapses (time step ∼10 s).
Domains grow forming seaweedlike structures, caused by the
typical tip-splitting dynamics. This is particularly clear at the
tip of the main stems of the seaweedlike structures. At the end
of many seaweed arms, doublons are easily observed. However,
in spite that local growing conditions along the trough are surely
not exactly the same, we observed only seaweeds along the
monolayer. When the pressure jump above equilibrium is of
∆Π ) 2 mN/m to reach a lateral pressure of Π ) 5 mN/m, we
observe essentially the same kind of growing as before, although
tip-splitting dynamics forming seaweeds is more clear. This is
shown in a typical sequence of images presented in Figure 2b
developed at T ) 21.8 °C, where the growth of one domain is
followed. Figure 3a presents a sequence of images when the
pressure jump is ∆Π ) 3 mN/m (final pressure reached Π )
4 mN/m, T ) 21.8 °C). Here, although domains are growing
through tip-splitting dynamics, it is clear that something has
changed. The arms of domains are not as slim as before; they
form like triangular-shaped stems. At this supersaturation level,
the monolayer seems to be close to a transition zone where
morphology will change. This occurs when the pressure jump
reaches values of ∆Π ) 4 mN/m. In Figure 3b, we present
several images of the monolayer when the supersaturation is
larger than that in the preceding examples due to a big pressure
jump of ∆Π ) 4 mN/m, lateral pressure reaches an actual value
of Π ) 5 mN/m, T ) 21.9 °C. Here, dendrites are the most
common growing structures. The arms of the growing domains
are mainly formed by needles with side branches. It is common
to find some arm in a domain that is growing with tip splitting,
particularly when this arm is to close to other growing domains.
Finally, a global observation of Figures 2 and 3, where the

Figure 1. Π-A isotherms for NA monolayer at different temperatures
(pH ) 5.7-5.8) and BAM images at the LE/LC coexistence. Inset:
Temperature dependence of the phase transition equilibrium pressure.
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essential difference among them is just the magnitude of the
pressure jumps that leads to different supersaturation levels
(temperature is almost the same), makes clear that at low
supersaturation levels tip splitting growth is preferred; seaweed
structures are produced. On the contrary, at large supersaturation
levels, side-branching growth is preferred and dendrites are
formed.

4.3. Morphological Growth in Different Monolayers. The
evolution just described where the monolayer prefers to grow
at low supersaturation levels through tip-splitting dynamics
forming doublons and then seaweeds, and as supersaturation
increases, to grow through needles with side branching forming
dendrites, turns out a natural question: Is that a general feature
in Langmuir monolayers? The answer seems to be affirmative
up to now. All monolayers that we have studied presented the
same morphological evolution. Of course, more pattern forma-

tion studies have to be done in LMs to have a definitive answer.
In Figure 4, we present images for different monolayers (DODA,
EP, and ES) where domains are growing with the same
morphology as in NA at low supersaturation levels. At high
supersaturation levels, as in NA, these monolayers present a
morphological transition and domains grow with side branching
morphology (Figure 5). According to the kinetic morphological
diagram found for diffusional growth,7-9 the parameter that is
driving the morphology change is line tension that seems to be
isotropic at low supersaturation and apparently as supersaturation
increases, it becomes anisotropic. We will come back to this
issue later.

4.4. Compact and Fractal Patterns. To determine what kind
of structures are present in LM when they are growing, we used
the box-counting method, as described in the Experimental

Figure 2. BAM images of NA monolayer. (Left vertical strip) After
a pressure jump of ∆Π ) 1 mN/m that reaches a final pressure of Π
) 3.5 mN/m (elapsed time after the pressure jump ∼70, 80, 90, and
100 s, top to bottom; T ) 21.9 °C). (Right vertical strip) After a pressure
jump of ∆Π ) 2 mN/m that reaches a final pressure of Π ) 5 mN/m
(elapsed time after the pressure jump ∼180, 200, 210, and 230 s, top
to bottom; T ) 21.8 °C). The horizontal full width is 460 µm for each
individual image.

Figure 3. BAM images of NA monolayer. (Left vertical strip) After
a pressure jump of ∆Π ) 3 mN/m that reaches a final pressure of Π
) 4 mN/m (elapsed time after the pressure jump ∼200, 210, 220, and
230 s, top to bottom; T ) 21.81 °C). (Right vertical strip) After a
pressure jump of ∆Π)4 mN/m that reach a final pressure of Π ) 5
mN/m (elapsed time after the pressure jump ∼150, 160, 200, and 210
s, top to bottom; T ) 21.9 °C). The horizontal full width is 460 µm for
each individual image.
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Section, to measure the fractal dimension of domain boundaries
on BAM images coming from growing patterns developed in
different conditions of supersaturation for three monolayers, NA,
DODA, and EP. To avoid artifacts, domains have to cover a
large portion of the selected images. They were contrasted for
avoiding generating structures below the limit of resolution of
BAM images. Figure 6 presents a log(box number) - log-
(length) scaling plot for growing domains presenting both tip-
splitting and side-branching dynamics. We cover at least an
order of magnitude of the length scale. The fractal dimension,
D, for NA monolayer is D ) 1.6 for both kinds of domain
growth. For DODA, monolayer is D ) 1.3 for tip-splitting
growth and D ) 1.4 for side-branching growth. For ethyl
palmitate, monolayer is D ) 1.4 for tip-splitting growth, and
for side-branching growth we did not obtain a good enough

images to make this fractal analysis. Figure 7 presents how
fractal dimension evolves during domain growth from D ) 1
(compact domain) to D ) 1.4 (fractal domain) as time elapses
for the EP monolayer after two pressure jumps of ∆Π ) 2 mN/
m, reaching a final pressure of Π ) 8 mN/m; here, the box-

Figure 4. BAM images of growing domains showing the same
morphology as in NA. (Upper panel) DODA after 3 pressure jumps of
∆Π ) 1 mN/m reaching a final pressure of 9 mN/m; T ) 24.7 °C.
(Middle panel) Ethyl palmitate after 2 pressure jumps of ∆Π ) 2 mN/m
reaching a final pressure of 8 mN/m; T ) 19.8 °C. In top and middle
panels, the horizontal full width is 220 µm. (Lower panel) Ethyl
estearate before the morphological transition during a continuous
compression at T ) 32.0 °C. The horizontal full width is 460 µm.

Figure 5. BAM images of growing domains showing the same
morphology as in NA. (Upper panel) DODA after a pressure jump of
∆Π ) 4 mN/m reaching a final pressure of 8 mN/m; T ) 23.5 °C.
The horizontal full width is 220 µm. (Lower panel) Ethyl stearate after
the morphological transition during a continuous compression at T )
32.0 °C. The horizontal full width is 460 µm.

Figure 6. Log(box number) - log(length) scaling plot for growing
domains presenting both tip-splitting and side-branching dynamics for
different monolayers.
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counting method was also employed. It is not shown in our
images, but as we reach equilibrium long time after, fractal
dimension goes back again to D ) 1 (compact domain) in this
monolayer.

4.5. Experimental Measurements for q� Values: Diffusion
Coefficients, Contact Angle, and Monolayer Viscosities. As
mentioned in Section 2, to compare the relative importance of
the surface and the bulk viscous terms in eq 4, it is necessary
to evaluate the ratio of surface to bulk viscosity, �. A practical
route for the rheological characterization of LMs of amphiphilic
molecules spread at the air/water interface was introduced by
Sickert and Rondelez,31,35-37 who optically tracked the motion
of microspherical particles placed on the interface to obtain the
diffusion coefficient of microspheres, as a means to obtain the
monolayer viscosity. The method used to get the diffusion
coefficient is similar to that developed to follow gold nanopar-
ticles in random motion in monolayers by fluorescent optical
microscopy.38,39 Surface viscosity can be obtained from Brown-
ian motion of floating particles, if there is a model that takes
into account the protrusion of the spheres into the subphase and
the incompressibility of the viscous monolayer. A theory that
incorporates these two ingredients was developed by Fischer
et al.40 and it will be used in our data analysis here.

To get the actual LE phase viscosity along the LE/LC
coexistence, the experiments for tracking particle motion have
been performed in the LE phase at a density corresponding to
the kink that marks the onset of the phase separation. However,
care was taken to be very far from domains in the case they
appeared, to avoid any kind of interaction between particles and
domains. Relative positions between several pairs of hydro-
phobized silica microspheres as a function of time, moving in
Brownian motion, were obtained in each experiment. In our
experiments, a BAM microscope was employed instead of an
optical microscope to track the particle motion. The mean square
displacement (MSD), <∆r2>, can be obtained from the relative
position of a pair of microspheres as time elapses using the
following equation

where rj+k is the relative position of the pair of particles under
observation at the (j+k) step at time (j+k)∆t, rj is the relative
position at step j at time j∆t along their relative random
trajectory made of a total number of N steps; ∆t is the time
interval between steps (∆t ) 1/25 s). The linear Stokes-Einstein
relationship <∆r2> ) 4Dt, is observed for relative short time
intervals (t < 1 s) in this method.31,35-37 For larger intervals,
the behavior of the <∆r2> is much more erratic, due to the
difference in the number of data points which can be used for
the averaging. The first point in that relationship is calculated
using 250 relative particle positions, whereas the last one
corresponds to a single event. Significant variability in the shape
of the curve is observed between different microspheres in the
same sample, as well as from sample to sample. Each particle
pair produces two diffusion coefficients, one per each orthogonal
direction. We just used trajectories for which the mean square
displacements along orthogonal directions differ at most 20%,
to avoid including local inhomogeneous drifts superimposed on
the Brownian motion. Therefore, we averaged all the results
for all the particle pairs followed in each experiment. In Figure
8, we present typical examples of MSD for microspheres along
orthogonal directions for an uncovered subphase made of pure
water, and for covered subphases with the LE phase of NA and
with the LE phase of EP. Our results with the particle diffusion
coefficients are presented in Table I for several cases. (a) For
uncovered subphases made of pure water and of water and
glycerin (7.3%). (b) For LE phases of NA and of EP. For the
latter, we measured the MSD when the subphase was pure water
and when the subphase was made of water and glycerin (7.3%).
Our result for uncovered pure water, 1.22 µm2 s-1, is very close
to the value obtained by Sickert et al.31 (1.26 µm2 s-1); glycerin
addition does not modify particle diffusivity noticeably. The
diffusion coefficients for particles moving in the LE phases are
lower than the diffusion coefficients for particles moving in the
uncovered subphase, as in the case of Sickert et al.31 For them,
the ratios of particle diffusion coefficients between those moving
on LE phases and those on pure water interface, at densities
similar to those of interest here, was in the range of ∼0.5-0.7
for pentadecanoic acid and DPPC. This ratio is similar for NA
(0.70) and EP (0.59).

Fischer et al.40 have studied how to obtain the drag force,
Fdrag ) -
V, for a microsphere that is partially immersed in an
interface moving at velocity V, where 
 is the drag factor. The
drag factor monotonically increases with the immersion depth
of the microsphere. They found a way to calculate the drag factor
using the formula 
 ) ηR(KT

0(θ) + EKT
(1)(θ)), where the KT

(i) are
the drag coefficients that can be numerically evaluated, E )
ηs/ηR, and θ is the contact angle that is related to the depth of
immersion of the particle of radius R.31 If the drag factor for a
particle immersed in a free surface is denoted by 
0(θ0), where
θ0 is the contact angle between the uncovered subphase and
the particle, viscosity data can be obtained by using the
following expression

Here, D1 is the measured diffusion coefficient for immersed
microspheres in a surface covered with a monolayer and D0 is

Figure 7. Fractal dimension evolution of growing domains from D )
1 to D ) 1.4 as time elapses for EP monolayer after 2 pressure jumps
of ∆Π ) 2 mN/m, reaching a final pressure of 8 mN/m.

〈∆r2(k∆t)〉 ) 1
(N + 1) - k ∑

j)1

(N+1)-k

(rj+k - rj)
2 (8)

D1

D0
)

KT
(0)(θ0)

[KT
(0)(θ1) + EKT

(1)(θ1)]
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the same but for an uncovered interface, the θ values are
experimentally measured contact angles; θ1 is for the covered
surface. The uncovered subphase contact angle was obtained
using the sessile water drop described in the Experimental
Section. The contact angle when the subphase is covered with
a monolayer was obtained through the Young’s law, cos θ1 )
(γ0/γ1)cos θ0. Since all quantities in eq 9 are known except E,
this variable can be determined for a given microsphere and ηs

can be finally obtained (see Table I). Our ηs are relative close
to measured ηs for other LE phases using the same procedure
(for PDA, PPA, and DPPC, 0.2 × 10-9 < ηs < 0.8 × 10-9).31

The uncertainties in the determination of the diffusion coef-
ficients introduce uncertainties in E and, consequently, on the
surface viscosities. For the objective pursued here of obtaining
an estimation of the � parameter, this is not an important
problem. Our results are presented in Table I. The � parameter
is of the order of 1.6-3.8 × 10-6 m.

To evaluate q�, q ) 2π/l has to be estimated where l is a
relevant repeat distance for domain growth. The relevant repeat
distance has to be related to that distance where the description
given by eq 4 is working. After a new domain is nucleated and
starts to grow, there must be necessarily a nonstationary transient
time, until domains reach a size from which domains grow in
a stationary way. Domains are progressively growing and

morphology is steadily evolving, when their size is in the range
of ∼50-100 µm (q ) 2π/l ∼ 6.3 × 104-13 × 104 µm-1).
From this size, they grow until reaching roughly ∼500-700
µm for NA and EP monolayers (DODA ∼100 µm), before
colliding with other domains. Thus, q� is of the order of
0.1-0.5. Therefore, according to eq 4, the growth of domains
is dominated by viscous dissipation at the subphase, and viscous
dissipation at the air-water interface plays a less important role,
although it is not negligible. Since q� is not much less than 1,
we cannot use directly the limiting equations given in ref 29,
for viscous dissipation at subphase. An alternative solution will
be given in the last section.

4.6. Movement of Tracer Microspheres around Growing
Domains. The next experiments are addressed to study how
particle tracers move around the growing domains. They could
discriminate if around the growing domains there is a diffusion
zone with a density profile or if LE is flowing in conjunction
with a subphase flow. We dispersed in the LE phase hydro-
phobized silica microspheres as tracers and their movement was
followed as a function of time. Nevertheless, first, it is necessary
to test that dipolar interaction between silica microspheres and
LC domains is low enough to be taken it into account.
Otherwise, they would be bad tracers unless dipolar interaction
is included. Difference in surface density gives rise LC domains
to possess an excess dipole density with respect to the
surrounding LE phase, pointing upward. Local electric fields
around LC have been observed and measured with polystyrene
spheres,41 with ionizable groups on the surface exhibiting a
dipolar moment pointing toward the water. In particular, the
interaction is attractive over the whole range of separation
distances, consistent with fact that dipoles in microspheres and
in LC domains have opposite orientations. In silica micro-
spheres, the dipolar moment must be very low because they
have silanol (SiOH) surface groups and they were hydropho-
bized, as mentioned in the Experimental Section. To determine
if this dipolar interaction is small enough, the movement of
microspheres very close to domains in equilibrium (not growing)
was tracked. In this situation, if there is some electrostatic
interaction, particles that are in Brownian motion will move
toward the LC domain at accelerated speeds as they get closer
to the domain. We never observed anything like this. All
particles wandered around domains, without an apparent interac-
tion with domains. In Figure 9, we present examples of the
movement of microspheres and of domains in equilibrium
separated by a small distance for NA and EP monolayer,
measured from a reference system placed at the Lab. As it is
normal there are drifts along the LM, and what we observe in
these experiments are a domain and microspheres traveling
parallel to each other without any apparent interaction down to
separations of the order of 7-8 µm; we never observed any
kind of drag in domains direction. Therefore, we consider the
hydrophobized silica microspheres good tracers, and if there is
some dipolar interaction, this is below our limit of detection.

In the next experiments, hydrophobized silica microspheres
were dispersed in the LE phase, and their movement was
followed close to the growing domains as a function of time
with the aid of digitized pictures of the BAM VCR recordings
(step ) 1/25 s). We observed Brownian particles dragged onto
the domains edge by virtue of a flow of material, where they
were stuck along the domain edge. To observe the way those
microspheres moved toward domains, we employed in addition
to a coordinate frame attached to the Lab, where direct
measurements were performed, two other coordinate frames,
the monolayer frame and the moving boundary frame. In the

Figure 8. Examples of <∆r2> as a function of time for microspheres
along orthogonal directions for an uncovered subphase made of pure
water (T ) 22.8 °C) upper panel, for a subphase covered with LE phase
of NA (T ) 22.8 °C) middle panel, and of EP (T ) 22.0 °C) lower
panel. Inset in upper panel: The whole relative MSD as a function of
time.

TABLE I: Main Results from the Experiments of Particle
Motion Tracking

D (µm2/s) θ (°) ηs (Ns/m) � ) ηs/η (m)

water 1.22 43.3
water + glycerin 1.19 44.5
NA subphase: W 0.86 40.8 1.6 × 10-9 1.6 × 10-6

EP subphase: W 0.72 37.2 2.7 × 10-9 2.7 × 10-6

EP subphase: W +
glycerin

0.67 38.0 3.8 × 10-9 3.8 × 10-6
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first one, the frame is attached to a microsphere far from the
growing domains. This is used to avoid macroscopic drift
currents common in monolayers. The second frame is attached
to the moving boundary of the domain under study; this is the
frame used in theory (Section 2). The latter was selected using
the following procedure. We observed with BAM microscopy
how a domain and a particle were approaching to each other
(in the Lab frame). We observed the exact position at the domain
edge where the particle is trapped when they collide. Then, going
backward in the BAM microscope VCR film, we were able to
determine the sequence of positions as a function of time (each
1/25 s) on the domain edge that will give origin to the point
where later the particle will be trapped (for short periods of
time this can be done unambiguously). We used these positions
on the domain edge to fix the origin of the moving boundary
frame. As a consequence, positions of the microsphere and of
the boundary points on the digitized BAM images allowed us
to obtain particle positions with respect to the moving boundary
frame, using elementary Galilean transformations. Examples of
particle approach with respect to the moving boundary frame
can be seen in Figures 10 and 11; in insets, we present the same
information but from the monolayer frame. For all positions,
we included the velocity component in the direction of the
instantaneous origin of the moving boundary frame at the edge
of the domain. Far from domains, microspheres are in Brownian
motion, which is clearly superimposed on a drift toward domains
(average speed ∼25 µm/s for NA and ∼23 µm/s for EP). When
a microsphere is close to a domain, at a separation distance

Figure 9. Position of microspheres immersed in LE phase as time
elapsed wandering close to domains that are not growing (dots). Red
stars correspond to a specific position in the domain edge, which is
also moving due to drift in the monolayer. (Top) NA monolayer (T )
21.3 °C, Π ) 4 mN/m), the particle was followed by 76 s, time step
) 0.8 s. (Bottom) EP monolayer (T ) 20.6 °C, Π ) 10.6 mN/m),
particles were followed by 5.04 s, time step 0.12 s.

Figure 10. Tracer particle positions close to growing domains as time
elapses (T ) 21.0 °C, Π ∼ 8.6 mN/m; upper panel, step 1/25 s; middle
panel, step 2/25 s; lower panel, step 3/25 s) as observed from the LE/
LC boundary frame defined on an EP domain during a continuous
compression (compression rate ∼6 cm2/min). Particles collide with
domains at the coordinate origin. Inset: Particle approach with respect
to the monolayer frame defined by a microsphere far from the growing
domains (microsphere positions are in black, domain edge positions
that will give origin to the point where later the particle will be trapped
are in red). Blue arrows indicate the velocity component in the direction
of the instantaneous origin of the moving boundary frame (instantaneous
radial velocity) at the edge of the domain.
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from a protruding part of a growing domain (finger or dendrite
arm) in the range of 15 µm for EP and 29 µm for NA, usually
a small change in the microsphere approach direction ensues.
It seems as if the point that in the near future will trap the
microsphere at the domain edge is dragging the microsphere
onto it. This is visible as a change in particle approach direction
in the monolayer frame, or in a change in direction of the
velocity vectors in the moving boundary frame. However, the
speed of the microspheres does not change when they are close
to domains (average speed ∼24 µm/s for NA and 22 µm/s for
EP). On the average, the speed of the approaching particles is
the same as when they are far from domains. An important
observation is that when a particle and a domain tip are
approaching, if they are not approaching in a head-on collision,
microspheres laterally deviate from their course to reach the
tip, revealing transverse flows to domain tips. This change is
not related to dipolar interaction, as discussed at the beginning
of this section.

The important drift shown by the tracer particles is hardly
compatible with a diffusion zone due to a density profile around
domains. In a small concentration profile, a Brownian particle
of 2.47 µm probably will not notice it to modify its random
walk motion in an important way. Particles should have to move
slowly close to the domains ∼(4Dt)1/2; no drift is expected. A
small concentration profile practically will not affect the
immersion of microspheres and consequently, a drag force
change will be almost unnoticed to these Brownian particles.
On the contrary, we have obtained evidence of Marangoni flow,
that is, subphase flow driven by a difference in surface tension,
related to the concentration gradient along the monolayer close
to domains. The partially submerged microspheres are driven
by the subphase convection flow (Marangoni) of the fluid where
they are immersed in. The flow velocity of the subphase can
be obtained by solving eq 3 in the stationary state, if appropriate
boundary conditions are provided. Consider for simplicity, the
case of a linear infinite LE/LC boundary along the Z-axis. Y-axis
is along the downward normal to the air/water interface and
the X-axis is normal to the LE/LC boundary away from the LE
phase. Far from the growing boundary, the surface flow velocity
Vx(x,y,z) of the LE phase is a constant

Where -Vex is the asymptotic surface flow velocity in the
reference frame moving with the LE/LC boundary. The second
boundary condition comes from the absence of flow in the LC
phase. Consequently, from the coordinate frame moving with
the LE/LC boundary

Where Vsex is the steady-state growth velocity of the LE/LC
boundary (as seen from the monolayer). The third boundary
condition is that flow in the direction normal to the LM is not
allowed

It can be checked by direct substitution that the following
expression is the solution to eq 3, in the moving frame that
fulfills the boundary conditions29

Figure 11. Tracer particle positions close to growing domains as time
elapses (upper panel, step 3/25 s, T ) 23.1 °C, Π ∼ 8.6 mN/m; middle
panel, step 2/25 s, T ) 23.3 °C, Π ∼ 5.4 mN/m; lower panel, step
3/25 s, T ) 23.1 °C, Π ∼ 8.6 mN/m) as observed from the LE/LC
boundary frame defined on an NA domain during a continuous
compression (compression rate ∼5.5 cm2/min). Inset: Particle approach
with respect to the monolayer frame defined by a microsphere far from
the growing domains (microsphere positions are in black, domain edge
positions that will give origin to the point where later the particle will
be trapped are in red). Blue arrows indicate the velocity component in
the direction of the instantaneous origin of the moving boundary frame
(instantaneous radial velocity) at the edge of the domain.

Vx(x, y ) 0, z) ) -V (x . 0) (10)

Vx(x, y ) 0, z) ) -Vs (x < 0) (11)

Vy(x, y ) 0, z) ) 0 (12)
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Figure 12 shows Vx(x,y,z) as a function of x as observed from
the moving LE/LC boundary for different depths; U ) V-Vs.
To the right of the LE/LC boundary and for small depths, the
flow velocity is approximately parallel to the surface and equal
to -V. It gradually increases as one gets closer to the growing
boundary. For x < 0 and small y, that is, below the LC phase,
the magnitude of the flow velocity is close to Vs. Therefore, a
partially submerged particle will present Brownian motion with
a constant drift due to the flow under the LM. For a particle
with its center at ∼0.9 µm below the LM (as in our case), the
drift of the particle will be constant up to 20 µm from the
growing boundary. For closer distance, the particle will slightly
decrease its velocity and will stop when it hits the LM, since
our particle is protruding from the surface. All these events have
been observed in our experiments. Notwithstanding, it is
important to note that velocity field calculations are for the case
of a linear infinite LE/LC boundary, and in the experiments
there are irregular (tips) domain boundaries. However, approach
velocities given by the model are close to the observed approach
velocities measured in the experiments. Stability analysis of this
problem have predicted transverse flows to domain tips as
observed in our experiments.29

4.7. Morphology Evolution in Langmuir Monolayers.
Apparently, we have lost the general picture given by the
diffusional model proposing the existence of a diffusion zone,
which with eq 7 and the boundary conditions given by eqs 1
and 2, successfully explains the pattern formation and the
morphology evolution in LMs.27,28 In the same way, apparently,
we have also lost the connection with the morphology diagram
with regions of different morphological structures,6-11 deter-
mined by the control parameters ∆ and ε, as explained above.
Here, we will assess in what conditions the 2D hydrodynamic
eq 4 can recover that picture related to pattern formation and
to the morphology diagram. Equation 13 allows us to evaluate
the last term of eq 4 through direct calculation

Substituting this equation in eq 4 and applying the ∇⊥ · opera-
tor on both sides of eq 4, we obtain the expression

Here, |dγ/dFl|∇⊥Fl ) ∇⊥Π was used. The left side of this
expression is negligible as revealed by dimensional analysis.
Typical values for the dimensionless number η(V - Vs)/Π ∼
10-6 m, except for distances of submicrometer order. Thus, eq
15 can be expressed as

To first order in the gradients, the last of the previous
equations gives ∇2Fl ) 0. Finally, from here eq 7 can be
recovered, also to first order in the gradients. Therefore, eq 7
and the boundary conditions given by eqs 1 and 2 are still the
basic equations followed by the system to form patterns. We
recovered as the basic equation that governs the pattern
formation, a Laplacian equation in the chemical potential.

Consider again, for simplicity, the case of a linear infinite
LE/LC boundary along the Z-axis, where under steady state the
interface is a straight line and the concentration profile Fl(x)
depends only on the x coordinate. In this condition, the tangential
z-component of the flow vanishes, the surfactant current is
strictly along the x direction, and J must be a constant,
independent of x due to eq 5. Using eqs 5 and 6, we can write
the following expression

Using eq 13 allows us to recast eq 17 in an equation similar
to the steady-state diffusion equation in the Mullins-Sekerka
theory1

Where l ) (2D/Vs)[F∞/(Fs - Fo)] would be the diffusion length.
This parameter can be estimated from our experimental data;
the result is l ∼ 1 µm. Amphiphile diffusion was estimated (D
∼ 10-11 m2 s-1) according to refs 42-44. Therefore, the
diffusion length in our case is below our limit of resolution
and is almost nonexistent.

5. Conclusion

In LMs, at low supersaturation, domains grow forming fractal
structures without an apparent orientational order trough tip-
splitting dynamics. Doublons are the building blocks producing
domains with a fractal seaweed shape. When supersaturation is
larger, there is a morphology transition from tip splitting to side
branching. Here, structures grow with a pronounced orientational
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Figure 12. Vx as a function of position at different depths as given by
eq 13.
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order-forming dendrites, which are also fractal. Experimental
evidence shows an important Marangoni flow during domain
growth and in steady state, it is dominated by the bulk subphase
viscous term, although the surface viscous term cannot be
neglected. The equation that governs the pattern formation in
LMs is a Laplacian equation in the chemical potential with the
appropriate boundary conditions. However, the underlying
physics involved in LMs is different from the underlying physics
in the Mullins-Sekerka instability; diffusional processes are not
involved. This is a new kind of instability that leads to pattern
formation, where Marangoni flow is the key factor. The
equations governing pattern formation in LMs are the same
equations used by Müller-Krumbhaar and collaborators to
analytically build a kinetic morphology phase diagram, where
they include in the Gibbs-Thomson equation a supersaturation
parameter and a capillary length with an anisotropy parameter.
Therefore, an identical kinetic morphology diagram has to be
followed in LMs. This diagram presents regions of different
morphological structures and lines indicating transitions between
them, discriminating between compact and fractal structures,
as well as between dendrites and seaweeds. Our experiments
agree with this diagram.

Acknowledgment. The support from SEP-CONACYT (81081)
and DGAPA-UNAM (112508) is gratefully acknowledged. We
also thank to C. Garza and S. Ramos for their technical support,
to Alejandro Vazquez for his support in MATLAB, and to J.
Fujioka for useful discussions.

References and Notes

(1) Langer, J. S. ReV. Mod. Phys. 1980, 52, 1.
(2) Ben-Jacob, E. Contemp. Phys. 1993, 34, 247.
(3) Glicksman, M. E.; Schaefer, R. J.; Ayers, J. D. Metall. Trans. A

1976, 7, 1747.
(4) Ben Amar, M.; Pomeau, Y. Europhys. Lett. 1986, 2, 307.
(5) Langer, J. S. Science. 1989, 243, 1150.
(6) Brener, E.; Müller-Krumbhaar, H.; Temkin, D. Europhys. Lett.

1992, 17, 535.
(7) Brener, E.; Kassner, K.; Müller-Krumbhaar, H.; Temkin, D. Int. J.

Mod. Phys. C 1992, 3, 825.
(8) Brener, E.; Müller-Krumbhaar, H.; Temkin, D. Phys. ReV. E. 1996,

54, 2714.
(9) Brener, E.; Müller-Krumbhaar, H.; Temkin, D.; Abel, T. Physica

A 1998, 249, 73.
(10) Ihle, T.; Müller-Krumbhaar, H. Phys. ReV. Lett. 1993, 70, 3083.
(11) Ihle, T.; Müller-Krumbhaar, H. Phys. ReV. E 1994, 49, 2972.

(12) Utter, B.; Ragnarsson, R.; Bodenschatz, E. Phys. ReV. Lett. 2001,
20, 4604.

(13) Stalder, I.; Bilgram, J. H. Europhys. Lett. 2001, 56, 829.
(14) Singer, H. M.; Bilgram, J. H. Phys. ReV. E 2004, 70, 31601.
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(27) Flores, A.; Corvere-Poiré, E.; Garza, C.; Castillo, R. J. Phys Chem.

B 2006, 110, 4824.
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