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ABSTRACT: Structural and viscoelastic properties of slightly interconnected polymer
networks immersed in a solvent have been studied in two cases: when the polymer
network is building up and when the polymer network is shrinking stepwise in a controlled
way. To accomplish this goal, the mean square displacement (MSD) of embedded
microspheres in the polymer network was measured as a function of time, with diffusive
wave spectroscopy. Particle motion was analyzed in terms of a model, based on a Fokker−
Planck type equation, developed for describing particles in Brownian motion within a
network that constrain their movement. The model reproduces well the experimental
features observed in the MSD vs t curves. The variation of the parameters describing the
structure of the network can be understood as the polymerization comes about, and also
after the successive volume contractions. In addition, from the MSD curves, the complex shear moduli were obtained in a wide
range of frequencies when the network is building up, and at the different shrinking states of the network. Our microrheological
results give an insight about the dynamics of embedded particles in slightly interconnected networks, which were also compared
with similar results for polymers without interconnections and polymer gels.

1. INTRODUCTION

Slightly interconnected polymer networks (IPNs) that are
immersed in a liquid medium are materials forming a three-
dimensional structure made of cross-linked entangled chains.
Even though they are soft and structurally disordered and have
a high volume fraction of liquid solvent, some of their
mechanical properties are solid-like. A physical realization of
this type of systems is the cross-linked polyacrylamide
consisting of long linear flexible segments joined at a few
cross-link points. It is formed by free-radical polymerization of
acrylamide monomers and a small quantity of methylene
bisacrylamide working as a cross-linker between polyacrylamide
molecules. In general, when the cross-linker concentration is
large enough, the acrylamide−bisacrylamide system forms a
typical gel that in the last two decades has attracted much
attention because of its scientific interest. Some examples can
be mentioned such as the role of ionization of the polymer
network in the phase swelling−shrinking transitions of this
gel,1,2 the formation of blob clusters and holes in swelling gels,3

the friction coefficient between the polymer network gel and
water,4 the influence of cross-linkers and polymerization
temperature on the polymerization process,5 measurement of
viscoelastic properties using dynamic light scattering, diffusing
wave spectroscopy, and video-based particle tracking techni-
ques,6 identification of the gel point, and the critical scaling
exponents using particle tracking microrheolgy.7,8 The
technological importance of these gels in biochemistry and
molecular biology is nowadays outstanding.9 In particular, when
the number of cross-links is small, the slightly IPNs resemble
biological scaffolds and they might be useful as model systems;

however, the study of their viscoelastic properties has received
much less attention.
If a small portion of acrylamide groups in the polymer

network is hydrolyzed into ionizable acrylic acid groups, the
polymer network can undergo continuous or discrete
transitions of its equilibrium volume. This occurs when the
polymer network is immersed in an acetone−water solution,
and the solution composition or its temperature is varied.1 This
makes this soft material an excellent candidate to study how
particle fluctuations evolve in a complex network as the volume
of an interconnected polymer networks shrinks. The volume
transition modifies the polymer network structure, and it has an
important effect on one of the most important properties to be
measured in rheology, the shear modulus, G, which connects
stress response to an applied deformation in a material, σ =
∫ −∞
t dt′ G(t−t′)γ;̇ σ is the shear stress, and γ ̇ is the shear rate.

The shear modulus exhibits a significant time, or frequency,
dependence expressed through the complex modulus G*(ω) =
G′(ω) + iG″(ω). The real part of the complex modulus is the
storage, or elastic, modulus in phase with the applied shear
strain. The imaginary part is the viscous, or loss, modulus in
phase with γ.̇
Viscoelastic properties are usually measured with mechanical

rotational rheometers that probe macroscopic samples in a
limited frequency range (ω ∼ 10−2 to 30 rad/s), and in various
deformation geometries; their use depends on the extent of
strain and the magnitude of shear modulus to be measured.
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However, when the rheology of a polymer network is assessed,
these mechanical rheometers may destroy or substantially affect
the internal structure, leading to nonaccurate results. Other
kinds of mechanical rheometers have been developed for
reaching high frequencies (>10 kHz) and applying very low
strain amplitudes, as those using piezo-driven oscillatory devises
or torsional resonators.17

Microrheological techniques are another option for measur-
ing viscoelastic properties. They have been reliable to get useful
structural and dynamic information in soft materials,14−20

because the modification of the measured material is avoided or
reduced to a minimum. The general principles behind
microrheology are two: first, minimization of the mechanical
probe that deforms matter, typically, a colloidal particle in
random motion; second, employment of a modern technique
for tracing the probe particle motion (optical microscopy, light
scattering, etc.). A colloidal particle is a delicate probe, which
introduces a minimum perturbation in the structure and
dynamics of fragile soft matter (thermal energies ∼kBT; kB is
the Boltzmann’s constant and T is the temperature), allowing
the measurement of rheological properties at the micrometer
and submicrometer scales through evaluating the mean square
displacement (MSD = ⟨Δρ2(t)⟩) of particles. In microrheology,
G*(ω) can be evaluated from the MSD in a wide range of
frequencies, making this procedure a good option when the
limitations of standard mechanical rheology are an issue, for
instance, the range of frequencies, the size of the shear moduli
that can be probed, the sample size, and the fragility or
heterogeneity of specimen to be measured.
Movement of embedded particles within IPNs is just

determined by the interaction of particles with the solvent
and the polymer molecules, if they are dilute. The relevant
factors for particle motion are particle size, concentration of the
polymer, geometrical arrangement of the polymer chains, and
the stiffness of the chains. The theoretical description of these
factors can be carried out by means of several approaches,
although the most important contribution to particle diffusion
in a IPN comes from steric hindrance.10,11 This steric hindrance
is usually modeled in terms of an obstruction effect, which leads
to a lengthening of the diffusion path that has been investigated
with computer simulations.12,13 Brownian motion of particles in
polymer networks can be experimentally studied through
measuring their MSD as a function of time, by means of the
mentioned microrhelogical techniques, which help to under-
stand the mechanisms that lead to subdiffusive dynamics. Here,
diffusion does not scale linearly with time, an issue that remains
unsolved when the host material displays a variety of time and
length scales, as in the case of particles embedded in IPNs.
Several effects emerge in anomalous diffusion: a broad
distribution of jump times, a broad distribution of jump
lengths, or strong correlations in diffusive motion. Particularly,
obstruction and caging occurring in IPNs produce strong
correlations, because the local isotropy of space breaks down.
For highly cross-linked polyacrylamide, dynamic viscoelastic

spectra have been measured in real time during gelation, at
small strains, placing the gel directly between the parallel
rheometer plates.21 A linear increase of G′(ω), which is almost
frequency independent, up to a maximal value was found when
the mesh size was changed by modulating the molar ratio of the
monomer and the cross-linker. It was also observed that G′(ω)
≫ G″(ω) and that G′(ω) increases linearly with T. A
comparison among rheological moduli for cross-linked
polyacrylamide−bisacrylamide, in the sol and the gel regimes,

was made by Dasgupta and Weitz6 employing polystyrene
beads of several sizes and surface chemistry. They used data
from bulk rheology, quasielastic light scattering, diffusing wave
spectroscopy (DWS), and one-particle and two-particle micro-
rheology. These authors could probe almost eight decades in
frequency, which was not possible using traditional bulk
rheometric measurements, validating the ability of micro-
rheology for studying cross-linked polymeric systems. On the
other hand, multiple tracking microrheolgy was successfully
used to extract the full spectrum of rheological information near
the gel point, including the critical extent of reaction by
identification of the gel point, the critical relaxation exponent,
and other critical dynamic scaling exponents.7,8 Translation and
rotational dynamics of optically anisotropic colloidal particles
have been studied with depolarized light scattering, allowing us
to calculate the translational and rotational MSD of particles
embedded in highly cross-linked polyacrylamide gels.22,23

The purpose of this paper is to study the structural and
viscoelastic properties of slightly IPNs immersed in a solvent in
two cases: first, when the polymer network is building up, i.e.,
when the polymerization is taking place, and second, when a
swollen polymer network is shrunk stepwise in a controlled
way. To accomplish this goal, the MSD as a function of time is
measured for microspheres embedded in the polymer networks.
An optical technique, DWS, was used to follow the time
evolution of the MSD of the microspheres. These experiments
give structural and dynamic information about the network
when used in conjunction with a model based on a Fokker−
Planck equation. This model was explicitly developed to
understand particle motion in a polymeric network that
constrains the particle movement. The model is able to
reproduce the experimental features observed in the MSD vs t
curves. It allowed us to understand how the parameters
characterizing the structure of the network change as the
polymerization comes about, and when volume undergoes
successive contractions. For the different studied circumstances,
G*(ω) was also calculated for a wide range of frequencies from
the MSD curves. Our microrheological results for the slightly
IPNs were compared with those obtained for polymer without
cross-links, and for highly cross-linked polymeric gels
previously reported in the literature. This article is organized
as follows: In section 2, experimental procedures, techniques,
and the experimental setup are described. Section 3 is presents
a theoretical model developed for understanding the MSD
experimental results. In section 4, we give our results, as well as
a discussion. Finally, in section 5 we present the conclusions.

2. EXPERIMENTAL SECTION

2.1. Materials and Methods. The linear constituent
acrylamide (prop-2-enamide ≥99.5%; Fluka), the cross-linking
constituent bis-acrylamide (N,N′-methylene-bisacrylamide
≥99.5%; Fluka), the initiator APS (ammonium persulfate,
98%; Fluka), and the accelerator TEMED (N,N,N,N-
tetramethylethylene diamine, 99%; Sigma-Aldrich) were used
as received. Polystyrene probe microspheres with diameters 600
and 800 nm (Bangs Laboratories Inc., Fishers, IN, USA) and
deionized water (Nanopure-UV; 18.3 MΩ cm) were used
during all the experiments.

2.2. Polymer Samples. In all experiments microspheres
were added and blended with weighted quantities of acrylamide
(wA), bisacrylamide monomers (wB), and water (wH2O). Results
are presented in total polymer concentration, %P = [(wA +
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wB)/(wA + wB + wH2O)] × 100, and in the cross-linker
concentration, %C = [wB/(wA + wB)] × 100. Therefore, the
cross-linker concentration with respect to the total weight is
%T = [wB/(wA + wB + wH2O)] × 100 = %P × %C/100.
The transport mean free path, l*, was also measured prior

and after the polymerization, without any significant change.
The ratios L/l* were always between 12 and 20, to ensure the
diffusive approximation of light transport in the sample without
a significant light absorption; here, L is the sample size.
2.3. Experiments of Hydrolysis and Shrinking. After

mixing the polymers and microspheres, the initiator (TEMED,
3.2 μL/ml) and the catalyst (5 μL/mL of a 10 wt % APS
aqueous solution) were added to start the polymerization
reaction in a cylindrical recipient, of height L, made of Teflon
within a nitrogen atmosphere. The cross-linker concentration
was very low, consequently, the polymerized polymer network
did not scatter light (%C = 0.5, 1.0, 2.0); 0.13% of the total
sample weight was the higher cross-linker concentration used.
To hydrolyze a portion of the acrylamide groups (−CONH2 →
−COOH), the polymerized samples were allowed to reach
equilibrium with a basic solution of TEMED aqueous solution
(0.4 vol %). After hydrolysis, the IPNs were equilibrated within
acetone−water mixtures for 72 h. Prior to the DWS
experiments, the l* of the swollen IPNs was estimated by
measuring the volume of the IPNs to get an approximate value
of the swelling ratio, as well as of the particle volume fraction.
DWS experiments were performed in a temperature-controlled
cell filled with the corresponding acetone−water mixture to
maintain the swollen IPN in thermal equilibrium.
2.4. Experiments for Following Polymerization.

Mixtures of weighted quantities of acrylamide, bisacrylamide,
water, and microspheres (diam = 800 nm, φ = 0.0125) were
placed in DWS cells of thickness L, with a very slow nitrogen
flow to avoid atmospheric oxygen interference during the
polymerization process. After small quantities of initiator (1
μL) and catalyst (0.5 μL of our stock solution) were added to
the mixture to start the polymerization reaction; small
quantities of TEMED and APS produce very slow polymer-
ization reactions. Typical polymerization times were in the
range of 80 min; this was a convenient time interval because
each DWS measurement lasted typically 2−3 min. The
measurement time was a good compromise, with enough
delay time to get a smooth intensity time correlation function,
but shortly enough to observe a quasi-stationary state during
such a slow the reaction process.
2.5. Diffusive Wave Spectroscopy (DWS). Our DWS

setup is a homemade instrument described elsewhere.43 DWS
theory connects temporal field fluctuations of the scattered
light emerging from a turbid suspension to the dynamics of the
probe particles embedded in the suspension. ⟨Δρ2(t)⟩ of the
probe particles can be determined by collecting the scattered
intensity from a single speckle over a sufficiently long collection
period, and by evaluating the time-averaged intensity
autocorrelation function (ACF), g(2)(τ). The time-averaged
field ACF, g(1)(τ) = ⟨E(0) E*(t)⟩/⟨|E(0)|2⟩, is related to the
measured g(2)(τ) through the Siegert relation: |g(2)(τ)| = 1 + β|
g(1)(τ)|2, where β is an instrumental factor determined by the
collection optics. Therefore, the Brownian motion of probe
particles incorporated in the fluid of interest is tracked with
multiple dynamic light scattering experiments, when laser light
is incident on one side of a planar sample and the scattered
light is collected from a small area on the opposite side. A single

photon passing through the sample undergoes n scattering
events and emerges with a phase that depends on its total path
length; photons are multiply scattered and lose their scattering
vector dependence. The total phase shift of the photon after
passing from the laser to the detector can be calculated, and the
total field at the detector is the superposition of the fields from
all light paths through the sample to the detector. Therefore,
the temporal electric field fluctuations of the scattered light
emerging from the suspension can be connected to the motion
of the particles incorporated in the fluid. In a transmission
geometry, the polymer network under investigation with the
scattering particles immersed in it, can be treated as a slab with
an infinite transverse extent and a thickness L ≫ l*. After
traveling a l* distance, light propagation is randomized and the
transport of light in a turbid medium can be described by the
diffusion approximation.24−27 In this case, the expression of the
time-averaged field ACF, g(1)(τ) is24−27
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where x = [Q0
2⟨Δρ2(t)⟩]1/2, α* = z0/l*, and z0 is the distance

into the sample from the incident surface to the place where the
diffuse source is located. Q0 = 2πns/Λ is the photon wave
vector in the solvent, Λ is the light wavelength in vacuum, and
ns is the index of refraction in the solvent. If l* is known for a
sample with embedded particles, the MSD of a probe particle
can be obtained by using eq 1.
The ability to store energy upon deformation changes the

temporal correlations of the stochastic forces acting on the
particle at thermal equilibrium, because the suspending medium
must satisfy the fluctuation−dissipation theorem. In micro-
rheology, it is assumed27−30 that the material time-dependent
memory function, ζ(t), which accounts for both the energy loss
and storage upon deformation, is proportional to the bulk-
frequency dependent viscosity of the fluid, η̃(s) = ζ ̃(s)/6πa.
The relation between G̃(s) and ⟨Δρ2(t)⟩ can be written as29

η
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Here, s is the frequency in the Laplace domain, and m and a are
the mass and the radius of the particle, respectively. Using the
unilateral Fourier transform Fu, and neglecting the inertial term,
an expression for the viscoelastic modulus as a function of
frequency can be written as29

ω ω ω
π ω ρ ω

* = ′ + ″ =
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B
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2
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Several procedures have been followed by different au-
thors29−33 to determine Fu. In our case, the logarithmic
derivative of the MSD was evaluated on experimental data fitted
curves. The viscoelastic modulus were calculated using eq 3.29

2.6. Two-Cell Technique and Multispeckle DWS. Time-
averaged (⟨...⟩T) and ensemble-averaged (⟨...⟩E) correlation
functions are identical, when all the scattering particles
suspended in a fluid are free to explore the same local
environment during the course of a measurement; the
scattering process is ergodic. If particles are bounded near a
fixed position or if they are arrested, time averaging and
ensemble averaging are not equivalent. To overcome this
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situation, Scheffold et al.34 proposed a method for obtaining
true-ensemble average autocorrelation functions. Here, light
transmitted through a sandwich of two turbid cells then can be
considered as ergodic even though only one of the cells is
ergodic. The use of a second cell modifies the intensity
correlation function of transmitted light, which now exhibits an
additional decay. To simplify the analysis of the experimental
data, the parameters of the double-cell sample can be
optimized. Namely, moderate absorption and/or leakage of
light should be introduced between the two cells, and the
optical thickness of the ergodic cell should be reduced well
below the optical thickness of the cell containing the
nonergodic medium; at the same time, the dynamics of
scatterers in the ergodic cell should be chosen to be slow.
Under these conditions, Scheffold et al.34,35 have shown that
the field autocorrelation function of light transmitted through
the double-layer sample can be written as a multiplication rule.
The two-cell geometry can also be realized using a very slowly
rotating diffuser disk, as suggested by Viasnoff et al.36 This
method provides a procedure for obtaining accurate autocorre-
lation functions in turbid, nonergodic media in time scales
below the characteristic decorrelation time of the second
ergodic cell. In our case, we used a rotating diffuser disk made
of ground glass connected to a slow-working motor. The decay
correlation time was found to lie around the 20 ms. For slow
dynamics, we used a CCD camera as a light detector. With this
approach it is possible to record simultaneously a large number
of speckles, and thereby to obtain direct multispeckle ensemble-
averaged autocorrelation functions. The autocorrelation
function at a lag time is calculated by an algorithm that
compares the speckle field image at a time delay from fixed
reference time. The speckle size was adjusted to obtain a
satisfactory optical contrast with as many speckles as it was
possible to be analyzed.37 The frame rate of the camera is
around 100 frames/s, allowing detection of the autocorrelation
function at delay times as small as 10 ms. Our set up is
described in ref 43.
2.7. Intensity Correlation Functions for the Case of

Nonergodic Systems. In Figure 1, we present the normalized
intensity correlation functions of interest vs time delay obtained
with DWS and with multispeckle DWS. For relative short lag

times (τ ≤ 10 ms) the multiplication rule for intensity
correlation functions was used.34,35 Here, the scattered light of
the sample was mixed with the light scattered from a slow
rotating disk into a photomultiplier detector.34−36 Under the
current configuration of our DWS setup, the multiplication rule
holds, i.e., g2

M(t) = g2
E(t) × g2

S(t) where M, E, and S correspond
to the mixed signal, the ergodic sample, and the sample under
study, respectively. Thereby, by knowing the intensity
autocorrelation functions coming from the rotating diffusing
disk and the mixed one, the ensemble-averaged autocorrelation
function of the sample can be retrieved. Figure 1 shows the
rotating diffusing disk autocorrelation function (red line), g2

E(t),
the mixed signal (black line), g2

M(t), and the retrieved ensemble-
averaged sample signal (black filled circles), g2

S(t). As indicated
by the multiplication rule, this method provides a procedure for
obtaining ensemble-averaged autocorrelation functions at times
scales below the characteristic decorrelation time of the rotating
diffusing disk (∼10 ms). Figure 1 also shows the
autocorrelation function obtained by multispeckle DWS
obtaining with a CCD device. The red filled circles represent
the raw autocorrelation function that has to be corrected. First,
by subtracting the artificial baseline and then by adjusting
(normalizing) the height of the correlation function with the
correlation function obtained using the rotating diffusing disk.
This produces the hollow black circles that in conjunction with
the filled black circles provide the full ensemble-averaged
autocorrelation function ranging through 9 decades in time.

3. THEORETICAL MODEL FOR CONSTRAINED
DIFFUSION

The motion of submicrometer particles in an IPN can be
analyzed by considering that each particle performs a partially
constrained diffusion within polymeric cages or cells. Our
model starts by assuming that the dynamical state of each
particle in the network can be determined by means of two
configuration variables. One characterizing the position Ri of
the geometrical center of the fluctuating cell formed by the
polymer network, where the position of the particle is
fluctuating. A second one determines the position ri of the
fluctuating particle with respect to the center of the cell. The
position of the particle with respect to a lab-coordinate axis, ρi,
is given as the sum of both position vectors, ρi = Ri + ri. This
description allows a better understanding of the effects of
confinement, and the activated process related to the escape of
particles from one cell to other.
The characteristic scales of the motion will be ri ≤ λ and Ri ≥

λ. Here, λ represents a characteristic length of the polymeric
cells, mainly determined by bisacrylamide filaments joined to
acrylamide filaments at cross-link points. Therefore, λ can be
related to the characteristic length of the network (mesh size).
Two characteristic time scales can be introduced, one related to
particle diffusion inside each cell τr = a2/D0 with a the radius of
the particle and D0 the short-time diffusion coefficient, which is
assumed to be given by the Stokes−Einstein relation, D0 =
kBTβ0; β0 is a short-time mobility, i.e., the inverse Stokes
friction coefficient, which turns out to be proportional to the
local viscosity η0 of the host fluid. The other time scale,
associated to R, is τR = λ2/DR with DR = kBTξ0 and ξ0 is a long-
time mobility.
We start our description in terms of a normalized single-

particle time dependent distribution function, f(r,R,t), that
satisfies a continuity equation of the form38

Figure 1. Intensity correlation functions obtained with DWS and with
multispeckle DWS (see text). The final intensity correlation function
of the sample is the curve formed by filled and hollow black circles.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp4105344 | J. Phys. Chem. B 2014, 118, 1146−11581149



∂
∂

= − ∂
∂

· − ∂
∂

·
f t

t
f f

r R
r

v
R

V
( , , )

( ) ( )r R (4)

where vr f and VR f are the associated probability currents in the
(r, R) space. These two quantities can be determined by
analyzing the entropy produced by an ensemble of particles
during the diffusion process, and then by following the rules of
nonequilibrium thermodynamics.39 The entropy production
can be calculated considering the Gibbs entropy postulate:38,40
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where the local equilibrium distribution function f leq(r,R) is
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Here, Z(T) is the partition function; U(r,R) is the potential
energy of the particles that can be divided into a local Ur(r) and
an intercage UR(R) contributions, U(r,R) = Ur + UR. In
general, the confinement of a particle in a cell may depend on
the position of the cell in the system. Therefore, it is a function
of R and its fluctuations, characterized by ⟨R2⟩. If we assume, in
a first approximation, that the interaction of a particle with the
elements of the network is elastic, we may write the local
contribution to the energy, Ur, in the form

=U kr R R r( , )
1
2

( )r R
2

(7)

where kR(R) is an R-dependent elastic constant that takes into
account the heterogeneity of the IPN. The long time behavior
of the particle is characterized by an activated process
associated to the motion between cells. This suggests that the
potential energy related to the variable R may be characterized,
in a first approximation, by a periodic potential:

= − ·U UR q R( ) [1 cos( )]R 0 (8)

where q = |q| = 2π/λ and λ is an average characteristic length
scale related to a mesh size in IPNs. Nevertheless, the dynamics
of particles crossing cages can be considered as an activated
process. Then, an analytical improvement can be made by
approximating the potential UR in terms of a bistable potential
obtained expanding cos(q·R). Now, the complete potential
entering in the Boltzmann factor can be written in the following
form:
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Using eqs 4−6, it is possible to show that the mesoscopic
entropy production per unit volume σ in the system is of the
form
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Using f leq(r,R) given in eq 6 and the chemical potential μ =
kBT ln|f/f leq|, and assuming a linear relationships between forces
and currents in eq 10, i.e., vr = −β(t)∇rμ and VR = −ξ(t)∇Rμ,
where β(t) and ξ(t) are Onsager coefficients,38,40 it is easy to

show that the nonequilibrium distribution function obeys the
following Fokker−Planck type equation:
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The time dependence of β(t) and ξ(t) coefficients comes from
the fact that we are dealing here with a slow non-Markovian
processes. Hence, the time dependence takes into account
memory effects, making eq 11 suitable for describing the
anomalous diffusion of the microspheres as observed in the
experiments presented here, as well as in others previously
reported.38,40,41

The correlation between theory and experiment may be
performed by analyzing the time evolution of the MSD of
particles, through deriving evolution equations for the moments
of the distribution function defined according to

∫
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where j = 1, 2. Performing a time derivative of eqs 12,
employing eq 11, and partially integrating, we can give an
expression for the moments through a set of coupled equations.
The configurational variables R’s and r’s describe the slow
fluctuations of the massive polymer cells and the fast
fluctuations of the microspheres, respectively. Their time scales
are quite separate. Therefore, we assumed that f(r,R,t) can be
expressed as a conditional probability of the form f(r,R,t) =
φ(R,t) χR(r,t) and that ⟨kR(R)⟩ = kR(⟨R⟩). All these
assumptions allow us to get the following set of coupled
equations:

β⟨ ⟩ = − ⟨ ⟩ ⟨ ⟩
t

t kr R r
d
d

( ) ( )R R (13)

β β⟨ ⟩ = − ⟨ ⟩ ⟨ ⟩
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B R
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ξ ξ⟨ ⟩ = − ⟨ · ⟩ −
⟨ · ⟩⎛
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2
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Here, ⟨r⟩R = ∫ χR(r)r dr. Equation 14 can be integrated to yield
the following expression:

∫ β⟨Δ ⟩ =
⟨ ⟩

− − ⟨ ⟩ ′ ′t
k T

k
k t tr

R
R( )

3
( )

[1 exp( 2 ( ) ( ) d )]2 B

R
R

(17)

Now, an expression for kR(⟨R⟩) can be obtained, assuming that
the spring constant is isotropic with respect to R, and that large
fluctuations in R reduce its magnitude. Then, in a first
approximation kR(⟨R⟩) ≈ k0 − k1⟨ΔR2⟩, which introduced in
eq 17 produces
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∫ β
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Because the MSD of a microsphere shows regions with a
power law time dependence, we assumed a power law
distribution of relaxation times compatible with the coefficient
β(t) = δrτr(t/τr)

α−1.38,40,41 Here, δr was added to make β(t) be
dimensionally correct. Thus, the time dependence for the
integral function in eq 18 is

∫ β
δ τ
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where t0 is a cutoff initial time; for short times it is essentially
zero. Finally, we obtain
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Equation 16 can also be explicitly integrated, but an algebraic
transformation has to be performed, dt = ξ−1 dτ, and the
following integrals have to be introduced: ∫ (q·R)nf dr dR =
qn∫ Rn cosn θf dr dR = qn⟨R̅n⟩. These steps allowed us to obtain
the expression

τ
⟨ ⟩ = − ⟨ ̅ ⟩ − ⟨ ̅ ⟩⎛
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Equation 21 can be reduced by calculating the time variation
of ⟨(q·R)2⟩, using eq 11. This gives

τ
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Calculating explicitly the integrals for ⟨(q·R)2⟩ leads to the
following equation:

τ
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Then, eqs 23 and 21 yield the following relation:

∫ ξ⟨Δ ⟩ = ⟨Δ ̅ ⟩ + ′ ′k T t tR R 4 ( ) d
t

t
2 2

B
0 (24)

In an equivalent way as before, we may also assume a power
law distribution of relaxation times for the coefficient ξ(t) =
δR(t/τR)

ε−1, with an exponent ε and characteristic time
τR.

38,40,41 A final expression for eq 24 can be obtained by
solving eq 23 through direct integration, and by using the
Gaussian decoupling ⟨R̅4⟩ ≈ ⟨R̅2⟩⟨R̅2⟩.42 This gives the
following result:
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where Ψ = (2kBT/3U0 − 1)1/2. Now, expanding the tangent
function to the first order to avoid its divergences, a smoother
function of time can be obtained. Then, inserting eq 25 into eq
24, a final expression for ⟨ΔR2⟩ can be written as
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The total expression for the mean square displacement of a
particle can be written, in a first approximation, as ⟨Δρ2(t)⟩ =
⟨ΔR2(t)⟩ + ⟨Δr2(t)⟩, that is
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The final expression given by eq 27 can be used to fit our
experimental data for particles fluctuating in an IPN. The fitting
allows us to estimate several properties of the network−particle
interaction, such as the spring coefficients, k0 and k1, the
average mesh size, and the height of the periodic potential
representing an IPN, λ and U0, as well as the constants and
exponents characterizing the memory functions. It is important
to note that in this model an explicit polymer dynamics was not
used, which is an attractive feature of the model. Polymer
dynamics is hidden in the functional form of the memory
functions, in the elastic form of the first term of the interaction
potential, and in the parameter α that describes the particle’s
dynamics at short times.

4. RESULTS

4.1. MSD during Polymerization. MSDs of microspheres
embedded in the slightly interconnected polymer networks
were obtained by using the DWS. Figure 2 presents typical
examples of the measured MSD vs time curves as a function of
elapsed time since the polymerization reaction started, for the
particles immersed in the polymeric solution. The examples
have different cross-linker concentrations: %C = 0.0 (Figure
2a), 0.5 (Figure 2b), and 1.0 (Figure 2c), but the same total
polymer concentration, %P = 6.6. Experimental data can be
approximated in limited ranges of time by ⟨Δρ2(t)⟩ ∼ tκ.
Usually, κ = 1 at short time scales (t → 0) as well as at long
time scales (t → ∞); κ < 1 at intermediate time scales. Our
measured MSD curves can be similar to anomalous diffusion, if
measurements just cover intermediate time scales. Anomalous
diffusion is a process where ⟨Δρ2(t)⟩ ∼ tκ, with κ ≠ 1 (κ being
the slope of the log−log plot of the MSD vs t). This is a
diffusion behavior common in disordered and fractal
structures.44,48
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For the case of particles embedded in a polymer mixture that
will not develop cross-links, a diffusive regime ⟨Δρ2(t)⟩ ∼ t is
observed (Figure 2a) at early stages of the polymerization
process; viscosity of the polymeric solution remains still close

to pure water. Later, ∼40 min, the particle dynamics is diffusive
at short times, but at longer times it is subdiffusive; the κ
exponent decreases as the polymer chains are formed. The time
interval where motion is diffusive decreases quite fast as the
polymerization reaction advances. These observations suggest
that the formation of polymer chains induces strong
interactions with the microspheres, through the formation of
loose cages that allow Brownian particles to escape after
network relaxation. These interactions are responsible for
having exponents κ < 1.41 The change of particle dynamics,
during the polymerization reaction, is similar to the evolution of
the MSD of particles when the polymer concentration increases
in polymer networks without cross-links.49,50 The behavior for
the fully polymerized network illustrated in Figure 2a is similar
to that found in PEO solutions by Dasgupta et al.;32 there, the
particle MSD curves were fitted with a two-step power law.
For the case of a polymer mixture with a small quantity of

cross-linkers (Figure 2b,c), two dynamic regimes become quite
visible in the MSD curves when the reaction time is ∼43 min.
At short times, the diffusion is still subdiffusive. However, at
larger times a big shoulder appears that extends for a couple of
orders of magnitude in time, forming a kind of small plateau.
This behavior is different from the case of polymerization
without cross-linkers, %C = 0 (Figure 2a). For subsequent
stages of the polymerization reaction with cross-linkers, three
different regimes for particle motion can be observed. At the
very short times (<10 ms), the behavior of ⟨Δρ2(t)⟩
corresponds to a subdiffusive regime. In advanced stages of
the polymerization process these MSD curves can be very
noisy; this is due to the short time window for correlation
measurement. At intermediate times around 10−1000 ms,
⟨Δρ2(t)⟩ remains almost constant for a given time interval (a
plateau); this is more marked for the case of %C = 1 (Figure
2c). At these time scales, particles apparently explore all the
available volume of the cage surrounding them formed by the
polymer network; clearly, cross-linkers restrict the motion of
particles in an important way. At longer times (∼1000 ms),
particles apparently find the way out of the constraining cages.
In spite of the cross-links, the network can relax and there are
enough network fluctuations for allowing particles to escape.
The MSD curves present an enhanced diffusion regime
⟨Δρ2(t)⟩ ∼ tκ with κ > 1; for simplicity we will call this
motion “superdiffusive” from now on. The simplest argument
to explain why particles present an enhanced diffusion is
because the network has not relaxed after the polymerization
process apparently ended up; there are residual slowly relaxing
stresses created during the polymerization. When particles
interact with the not relaxed polymer network, a remnant stress
in the network makes particles move slightly faster than in the
simple diffusive case. This explanation is consistent with a
previous calculation41 in which the exponent κ of the MSD has
been related with the main oscillation mode ω0 of the network:
κ ∼ 1/ω0

2. Relaxed networks are stiffer; consequently, they
have larger ω0 values and therefore lower exponents. On the
contrary, nonrelaxed networks are weaker due to large thermal
fluctuations. Therefore, they have lower characteristic oscil-
lation modes and present higher κ exponents. Another
possibility could be that superdiffusive motion might be
apparent, due to convective motion related to nonuniform
temperature gradients in the samples; we do not consider that
this is happening in our experimental setup.

4.2. Hydrolysis and Shrinking of the Slightly IPN. The
resulting slightly IPNs from the polymerization of acrylamide

Figure 2. Typical examples of the MSD vs time curves for
microspheres (diam = 800 nm), as the polymerization reaction
progresses. The legend is the elapsed time since polymerization
started. In all of them %P = 6.6. A) %C = 0.0 and %T = 0. B) %C = 0.5
and %T = 0.033. C) %C = 1.0 and %T = 0.066. Straight lines have a
slope = 1 corresponding to ⟨Δρ2(t)⟩ ∼ t.
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and bisacrylamide, with embedded microspheres, were partially
hydrolyzed in a basic aqueous solution of TEMED for 2 days,
as mentioned above. Prior to shrinking the samples, by
immersing them in acetone−water solutions, it was considered
interesting to know how the MSD of microspheres evolves in
time in hydrolyzed polymeric networks. As far as we know,
there is no such kind of measurements. Figure 3 presents the

MSD vs t curves for microspheres in a couple of samples of
hydrolyzed IPNs as a function of the elapsed time since the
hydrolysis process ended, both with the same polymer
concentration and hydrolysis time. The MSD curves for the
embedded microspheres are quite similar, and they show
almost the same features no matter how much time after the
hydrolysis has elapsed. However, it is clear that polymer
network relaxation takes a long time after the hydrolysis process
has finished, because the curves present small changes, although
without any specific trend; apparently, each IPN relaxed
through a different pathway. In Figure 3, at very short times the
⟨Δρ2(t)⟩ is quite noisy. After approximately a couple of decades
in time, motion is diffusive, ⟨Δρ2(t)⟩ ∼ t. Then, there is a small
plateau at longer times, which extends approximately over two
decades in time. At long times ⟨Δρ2(t)⟩ ∼ t, i.e., the particle
motion becomes approximately diffusive again. Here, in

contrast to the case of the polymerization process, a
considerable time has elapsed since polymerization and
hydrolysis have ended. Here, when particles interact with the
relaxed polymer network, they move as in the simple diffusive
case.

4.2. MSD at Different Swelling Fractions. A group of
samples of acrylamide, bisacrylamide, and water, with the
embedded microspheres that were also hydrolyzed in a
TEMED solution for 48 h, were submerged in acetone−
water mixtures for another 48 h to reach a new equilibrium
volume (water: 100−55 wt %). Depending on the time the
polymer gel was allowed to hydrolyze, it will change its volume
in a definite way when equilibrated with a acetone−water
solution;1 in all the cases our gels contracted. The change in
volume may be continuous or discontinuously depending on
the acetone−water concentration (above or below the critical
point). We preferred to work in the case of continuous volume
change to have more control on the experiments to be
described below. In Figure 4, we present a typical example of
diagram of acetone−water concentration vs swelling ratio (final
volume/initial volume) for a slightly IPN that was hydrolyzed
for 2 days.

Figure 5 presents typical MSD vs time curves for particles
embedded in a shrunken partially ionized IPN (%P = 6.6%, %C
= 2%) as a function of time after subsequent volume
contractions; each curve corresponds to a specific percent of
volume shrinking. A specific contracted volume was obtained
by equilibrating the partially ionized IPN in an acetone−water
mixture for 72 h with the appropriate concentration (as in
Figure 4). All the curves present three regimes. At short times,
particles move subdiffusively, i.e., ⟨Δρ2(t)⟩ ∼ tκ, where κ ∼
0.4−0.6. At intermediate times, ⟨Δρ2(t)⟩ presents a plateau
extending approximately over 2 orders of magnitude. At these
time scales, cross-linkers and the less available volume restrict
the motion of particles. Apparently, particles are trapped and
explore all the available volume of the polymer network cage
formed around them, before to find a way out. In spite of the
cross-links and volume reduction, the network can relax and
there are enough network fluctuations for allowing the
Brownian particles to escape. Depending on the case, particles
present diffusive motion, or superdiffusive motion. When the

Figure 3. Two examples of MSD vs time curves for microspheres
embedded in the hydrolyzed polymer network several days after
hydrolysis has finished. Lines with experimental data are guides to the
eye and straight lines have a slope = 1 corresponding to ⟨Δρ2(t)⟩ ∼ t.

Figure 4. Typical diagram of concentration of the acetone−water
solution where previously hydrolyzed IPN were immersed vs swelling
ratio reached after two days of immersion.
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IPNs are equilibrated with solutions rich in water (80−100%),
the network apparently is structurally relaxed at long times.
Particle motion is diffusive, ⟨Δρ2(t)⟩ ∼ t, probably because they
were not submitted to excessive shrinking. For the case of IPNs
that were significantly shrunk with acetone−water solutions at
55% and 60% (volume shrinking >40%), there is a short time
interval where motion is close to diffusive before reaching the
plateau; this is reached through a pronounced change of
curvature; a kind of pronounced kink. This unexpected
behavior is more pronounced as the IPNs undergo larger
volume contractions. Here, the most probable explanation is
that IPNs have not yet relaxed completely. Here, ⟨Δρ2(t)⟩ ∼ tκ

with κ > 1. As discussed before, when particles interact with a
not-relaxed polymer network, apparently a remnant stress in
the network makes particles move slightly faster than in the
simple diffusive case. A more abrupt volume change requires
longer relaxation times to reach a structural equilibrium, and
⟨Δρ2(t)⟩ apparently can detect this condition. In the case of
samples reaching even larger shrinking volumes, not discussed
here, they turn out to be white, revealing regions with large
concentration fluctuations of a size to allow light scattering.
These samples needed months to be completely transparent,
revealing a very slow relaxation process. In Figure 5, the best fit
curves to the experimental MSDs are also presented; they were
calculated with the model described by eq 27, in section 3. For
the case of the partially ionized polymer networks that were not
submitted to excessive shrinking, the fitting is quite good. For
the case of the IPNs that were significantly shrunk, the fitting is
good in general, although they do not fit well in the region
before reaching the plateau, that is, where particle motion is
close to diffusive motion and in the pronounced change of
curvature.
An additional feature of the model is that the fitting

parameters can be physically interpreted. Figure 6 presents the
time evolution of some of the fitting parameters as a function of
the polymerization time for the curves presented in Figure 2b,c;
only for the cases with a very good fitting were used. Here, the

elastic constant k0, related to the interaction of the particle with
the elements of the polymer network, increases in a sigmoidal
form as the polymerization advances. As expected, this
parameter captures the fact that the polymer is stiffer as the
polymerization advances, reaching an almost constant value
around 60 min. In one of the insets of Figure 6, we present the
evolution of the parameter λ associated with the average
periodicity of the polymer network of the IPN. λ decreases as
the polymerization advances, in agreement with what would be
expected if both the size of the acrylamide polymer chains and
the number of bisacrylamide links grow. In another inset of
Figure 6, the evolution of the exponents α and ε is presented. α,
the exponent related to the motion of particles at short times,
decreases as the polymerization advances; the motion of the
microspheres is subdiffusive. At short times, the MSD captures
the dynamics of the short length scales of the polymer network.
A decrease in α exponent means that the local relaxation
process is changing as polymerization advances. This evolution
in the short length scales stops ∼52 min after the polymer-
ization has started. It remains relatively constant even when the
ε exponent is changing. The ε exponent is related to the
motion of the particle at long times and longer scales; it is
directly related to the properties and fluctuations of the IPN, as
follows from eqs 20, 26, and 27. ε increases as the
polymerization advances, revealing the nonequilibrated struc-
tural relaxation of the IPN. We discussed this behavior above.
For the case of successive shrinking, Figure 7 presents how

the parameters of the model change as a function of the
swelling ratio, Vinitial/Vfinal. The constant of force k0 increases
linearly with the swelling ratio; as the volume contracts, the
polymer network becomes stiffer. This is in agreement to what
we observe with the polymer network as it shrinks. In one of
the insets of Figure 7, we present the change of the average
periodicity, λ, which decreases in the first shrinking steps, but
apparently it reaches a plateau where its change is negligible as
the IPN contracts. In a simple model of Brownian particles
harmonically bound around a stationary mean position, the

MSD can be modeled as41,43 ⟨Δr2(t)⟩ = 6δ2(1 − e−(D0/δ
2)t),

where D0 is the short time diffusion and δ is the particle’s
amplitude motion, i.e., the cage size. δ is also related to the
plateau modulus G0 (δ2 = kBT/[6πaG0]).

43 For comparison

Figure 5. MSD vs t as a function of the volume shrinking for particles
(diam 600 nm) embedded in partially ionized IPN with %P = 6.6%, %
C = 2%, and %T = 0.132. The polymer network was shrunk
successively by allowing equilibration with different acetone−water
mixtures (100−55%) for 72 h; the less water in the mixture, the larger
the shrinking. Lines are the best fit-curves calculated with the model eq
27 to the experimental points. Straight lines have a slope = 1
corresponding to ⟨Δρ2(t)⟩ ∼ t.

Figure 6. Time evolution of the parameters of our model during the
polymerization reaction, for the examples presented in Figure 2b,c.
Main figure k0 vs time. Left inset presents the evolution of λ (nm).
Right inset presents the evolution of the exponents α and ε. Lines are
guides to the eye.
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with λ, both the particle’s amplitude obtained fitting the MSD
data to the given formula and the δ coming from G0 were
included in the inset; G0 can be calculated with the result of the
next section. These simple ways for obtaining a cage size
behave in the same manner as the λ.
In another inset of Figure 7, the exponents are plotted as a

function of the swelling ratio. The α exponent essentially does
not change. As the polymer network contracts stepwise, the size
of the cage decreases. However, the motion at short times is
always subdiffusive with κ ∼ 1/2. As discussed above, the local
structure apparently remains the same, and the local relaxation
process is not changing. The ε exponent is close to one when
the network volume reduction is not large, but it increases
when the volume of the polymer network is importantly
reduced; here, motion is superdiffusive, and as mentioned
above the network has not relaxed.
4.3. Elastic and Viscous Modulus. Viscoelastic spectra

were evaluated from the MSD vs t curves for the two types of
IPNs of interest here: For those obtained both during the
polymerization process (Figure 2b) and from each step after
subsequent volume contractions (Figure 5). The viscoelastic
spectra were obtained through eq 3, evaluating the logarithmic
derivative of best fitting curves for MSD vs t data; the fitting
curves were based on the theoretical model described before. It
is important to take into consideration that the agreement
between DWS and mechanical rheology is in general good,
although it is not excellent.43,51 Trends and features are
identical, but the actual numerical values differ a little.
Comparison of rheological data obtained by different methods
is not an easy task because protocols play a central role, as well
as cell geometry, cell parameters, sample preparation, etc. DWS
microrheology seems to share some of these problems; here it
is critical to ensure that particle aggregation is not occurring
during measurements. The l* measurement is a useful tool,
because it is very sensible to detect particle aggregation. It is
also important to recall that for the case of the polymerization
process, the method employed here to get rheological
information perturbs the polymerization reaction and the
newly formed network in a minimum level. From G′(ω) and

G″(ω) in Figure 8a, the values of both viscoelastic moduli
increase as far the polymerization advances. In general, the

IPNs are more viscous at low frequencies and, at larger
frequencies, after a crossing point, the sample is more elastic.
Also, the crossover frequency increases as polymerization
advances, except for the early stages of polymerization (t = 43
min). The frequency corresponding to the bottom of the well
for the viscous modulus at intermediate frequencies decreases
as the polymerization reaction evolves. Because ⟨Δρ2(t)⟩ is
noisy at short times, due to the short time window for the
correlation measurement, probably the past decade at high
frequencies is not accurate.
In the second case, the volume of the IPN was successively

contracted (Figure 8b). At low frequencies the IPN is more
viscous, G″(ω) > G′(ω), and after a crossing point it is more
elastic G″(ω) < G′(ω). As far as the IPN is stepwise shrunk, the
values of both viscoelastic moduli increase, and both G′(ω) and
G″(ω) curves move to higher frequencies. At high frequencies,

Figure 7. Parameters of our model as a function of the successive
volume reductions for the example in Figure 5. Main figure k0 vs
Vinitial/Vfinal, the red dashed line is the best fit to the data. The right
inset presents the change of λ (nm) vs Vinitial/Vfinal . For comparison, it
was included the amplitude for a particle harmonically bound around a
stationary mean position obtained fitting the MSD data, and δ
calculated from G0 (see text). Left inset presents the change of the
exponents α and ε. Lines are guides to the eye.

Figure 8. G′(ω) (filled circles) and G″(ω) (hollow circles). (A)
Moduli calculated from the MSD during the polymerization process.
(B) Moduli for an IPN as a function of the volume shrinking, for %P =
6.6%, %C = 2%, and %T = 0.132 . The polymer network was shrunk
successively by allowing equilibration with different acetone−water
mixtures (100−55%) for 72 h; the less water in the mixture, the larger
the shrinking. The black straight line has a slope = 1/2 corresponding
to G″(ω) and G′(ω) ∼ ω1/2.
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both moduli follow a power law behavior, i.e., G″(ω) and
G′(ω) ∼ ωs, with s in the range 0.4−0.6. Notice that these
results seem to be consistent with a Rouse-like relaxation
showing an exponent κ ∼ 1/2.42 This is a direct consequence of
the measured values for the MSD at short times. The
viscoelastic moduli shown in Figure 8 are reminiscent of
those obtained in systems with embedded thread-like
structures, as with worm-like micelles,43,45 fd virus,46 and
actine,47 although their short length relaxation dynamics at
higher frequencies differ, due to their particular characteristics.
In both cases, polymerization and shrinking, a crossover
between G″(ω) and G′(ω) is found at low frequencies, and
the elastic modulus presents a kind of plateau. However, a
question can be posed. If we have interconnected networks,
why do the curves of G′(ω) and G″(ω) cross each other? One
would expect that the crossover frequency decreases as
polymerization goes on, which is not the case here. This can
be explained by taking into account that we are dealing with a
very slightly interconnected network immersed in water. As
shown by Dasgupta and Weitz,32 a Brownian particle moving in
a polymer network without cross-links can be described by a
two-step power law with exponents around 0.4 and 0.9, at short
and long times, respectively. This is similar to our case for the
MSD presented in the inset of Figure 9a for one of the cases
described in Figure 2a. This MSD produces the moduli
presented in Figure 9a. Here at low frequencies, a crossover
frequency is present, but there is no plateau. In contrast, in a

highly interconnected network, a colloidal particle moves
subdiffusively for a couple of decades, before being completely
trapped in a cage. This leads to a plateau that extends
indefinitely (see inset of Figure 9c); there is no finite longest
relaxation time. This behavior has also been observed
previously with microrheology.7 Therefore, a highly inter-
connected gel is characterized by an elastic modulus larger than
the viscous modulus. Polymer relaxation dynamics in gels can
be translated to the moduli behavior at very high frequencies
(Figure 9c) transforming the MSD; we evaluated the moduli
from the MSD given in the inset of Figure 9c. Our experiments
with slightly interconnected networks are located between a
polymer network without any interconnection and a polymer
gel with too many connections. In the slightly interconnected
polymers networks, the Brownian particle presents a small
plateau that extends only for one or two decades, but at longer
times, the particles can escape from the cages. In this particular
case, a crossover frequency is present at low frequencies in the
moduli, and a plateau is formed before reaching the short
length relaxation dynamics at higher frequencies (Figure 9b).
Figure 9 as a whole gives insight into the formation of a highly
elastic interconnected network. First, it starts with a polymer
network without interconnections. Then, when a small amount
of cross-links is added where the elastic contribution increases,
a plateau is formed at intermediate frequencies. A small number
of cross-links induces the formation of cages, trapping the
Brownian particle for a period of time. Further addition of
cross-links increases the elasticity of the gel, shifting the
crossover frequency to higher frequencies. At some point, the
particle cannot escape from the cages formed by the
interconnected network, and the crossover in the moduli is
lost. Then, a big plateau is formed in the elastic modulus.
Rouse-like relaxation dynamics is still present at higher
frequencies in the viscoelastic spectra, which remains almost
unaltered; the local relaxation processes is not affected by the
network cross-link density.

5. CONCLUSIONS
In this article, we have performed a study involving experiments
and theory about the MSD and about the viscoelastic properties
of an interconnected polymer network when the number of
interconnections is very low. We examined two cases, when the
network is building up, that is, when polymerization is taking
place, and when it is shrinking in a controlled way. The study
was performed by using DWS measurements to obtain the
MSD as a function of time for tracer microspheres embedded in
the polymer network that is immersed in a solvent. The results
were interpreted with a theoretical model of constrained
diffusion based on a Fokker−Planck equation. The conjunction
of these two approaches allowed us to determine, under the
different physicochemical conditions imposed on the slightly
interconnected polymer network, the trend of several physical
parameters characterizing the system, namely, the elastic
constant of the polymer network, the cage size, and the
exponents determining the time evolution of the MSD. A better
understanding of the processes influencing the time depend-
ence behavior of the MSD provided a better understanding of
the frequency behavior of G*(ω), for the different stages of
building up the network and for the swollen states of the
polymer network.
We conclude that a rapid polymerization leads to non-

equilibrated polymer networks that store energy through
remnant stresses at short times, producing (together with the

Figure 9. Moduli behavior of polymer networks as the number of
cross-links increases. Upper panel: polymer without cross-links; inset,
MSD vs t. Middle panel: IPNs with a very small number of cross-links;
inset MSD vs t. Lower panel: highly cross-linked polymeric gels; inset
data of MSD vs t from ref 32.
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caging effect) subdiffusion. This remnant elastic energy is
apparently liberated at long times, where an enhanced diffusion
regime is observed. Similar behavior is observed for
interconnected polymer networks subjected to important
shrinking. Long structural relaxation times were associated
with the anomalous diffusion observed in this case.
A general insight of the consequences of cross-link formation

on the dynamics of embedded particles has been presented;
thanks to a comparison of our results with those in a polymer
without cross-links and in a polymer gel. The appearance of
cross-links induces the formation of cages, in which the
particles are trapped. This leads to an increase of the elastic
modulus of the system. However, at small cross-link
concentrations particles can escape from the cages, giving rise
to a crossover in the viscoelastic spectra. Further addition of
cross-links requires longer relaxation times, particles require
more time to escape from the confining cages up to the point to
be completely trapped. Then, cross-links lead to the formation
of an extended plateau in the elastic modulus, characteristic of
polymeric gels without a crossover in the viscoelastic spectra.
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