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Force of adhesion on supersolvophobic surfaces: The role of capillary necks
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We study theoretically the force of adhesion of pinned liquid drops in contact with supersolvophobic surfaces.
We develop a method to calculate the contact and excess surface areas vs compression of the drops against
surfaces characterized by an effective interfacial energy in the Cassie-Baxter wetting regime. We find that a 9°
difference in contact angle can increase the force of adhesion by almost three orders of magnitude. We investigate
the role that the inevitable formation of capillary necks has on this force, which has the same functional form of
Derjaguin’s result for elastic solids. Our results suggest that measuring the force of adhesion directly on nearly
perfectly solvophobic surfaces may be a more precise technique to quantify the effective interfacial energy than
traditional contact angle measurements on macroscopic drops.

DOI: 10.1103/PhysRevE.93.022804

I. INTRODUCTION

Liquids and solids are in general expected to behave very
differently in their contact with a solid surface. Whereas the
mechanical deformation of an elastic solid sphere is perfectly
reversible [1,2], we know from experience that a liquid drop
normally deforms in an irreversible way. Actually, a drop
is said to “spread” on a surface, a term that reflects the
irreversible nature of the process [3,4]. In other words, wetting
phenomena are described by the laws of thermodynamics,
whereas mechanics and elasticity theory describe the adhesion
between solid objects. Nevertheless, a liquid can behave like
a solid under the right circumstances, namely, when it is
in contact with a nearly perfect solvophobic surface that
makes the contact with the liquid reversible. When this is
the case, it has been shown experimentally that a small
but finite constant force of adhesion is measured between a
macroscopic liquid drop and the solid surface regardless of
the history of the compression (Fig. 1) [5]. Indeed, measuring
apparent contact angle (CA) on these surfaces is recognized
to yield significant experimental errors [6], and using force
of adhesion measurements directly is a viable alternative to
better quantify the surface-liquid interactions [5,7]. In a recent
work, such small interactions were modeled by assuming the
CA remains at 180° during the whole process of compression
and detachment while allowing a nonzero contact energy term
to enter the energy balance [5]. This approach serves as an
excellent first approximation to the problem, but it is inher-
ently self-inconsistent because, however small, any surface
energy will deviate the CA from perfect solvophobicity, i.e.,
CA < 180°. As a consequence, capillary bridges [8–11]
inevitably form during detachment. These bridges are bound
to have an effect on the force of adhesion [12,13], despite the
fact that on supersolvophobic surfaces (SSSs) they are much
smaller than those normally found on solvophilic ones (CA <

90° [14]). An experimental realization of such a macroscopic
system is provided by the contact between liquid mercury
on rough diamond surfaces (Fig. 1) that presents an apparent
contact angle of >175° [5].
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In this paper, we study theoretically the force of adhesion
between pinned liquid drops of constant volume and SSS
(CA between 170° and 179°), and how its magnitude depends
on CA.

To this end, we develop a method to find the profile of
a deformed semidrop that makes a constant apparent CA
with a wetting surface while being pinned on a backing flat
surface possibly connected to a measuring device. From this
profile, we obtain the excess surface area of the drop and
the contact area of interaction as a function of compression.
We then incorporate these terms into a self-consistent energy
balance equation of the interaction between the semidrop
and the surface in which the apparent CA is related to the
thermodynamic contact energy through the Cassie-Baxter
model of wetting of rough surfaces [15]. Assuming a fixed grip
configuration, we obtain the pull-off force from mechanical
stability considerations. We restrict our analysis to drops
smaller than the capillary length and slow detachments rates
so that both gravitational forces and viscous effects can be
neglected. Interestingly, we find that the force of adhesion
in the presence of capillary necks has the same functional
form as the Derjaguin model of the interaction between elastic
solids [1]. We then compare this result to that of a perfectly
solvophobic surface that is analogous to the deformation of
between a plane and a solid sphere whose profile remains
Hertzian [16] at all times. Finally, we use these results to obtain
the effective work of adhesion and contact angle directly from
the experimental value of the force of adhesion.

Let us first briefly review some properties of adhesion,
wetting, and capillary bridges relevant to this paper.

A. Contact between solids: Adhesion

Despite the reversibility of the deformation process between
elastic solids, when an elastic sphere is compressed and
subsequently decompressed from a surface, a finite force
is required for its detachment. This force is called force
of adhesion or pull-off force F Solid

Ad , and it is the result of
a mechanical instability of the system [3,17]. Surprisingly,
irrespective of the degree of compliance of the solids or of
the range of the interactions involved, this force of adhesion is
always proportional to the thermodynamic work of adhesion
wa and to the radius of the sphere r [1,2] and is independent
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FIG. 1. A supersolvophobic system: Hg on boron-doped dia-
mond. (a) Scanning electron microscopy images of a diamond surface
with roughness on two different length scales. (b) A mercury drop
resting on this surface. (c) Experimental force of adhesion between a
350 μm radius Hg drop vs preload, Ref. [5]. (d) Hg semidrop being
detached from this diamond surface.

of the Young’s modulus of either one of the bodies,

F Solid
Ad ∝ −rwa. (1)

A thorough review on the various models of the adhesion
of solids can be found in Ref. [18] and in the classic work
by Maugis [17]. That surface interactions can affect the
contact dynamics was realized by Griffith in 1920 [19] in
the theoretical description of the propagation of cracks. Later,
Maugis [17] extended this approach to the detachment of solids
in which the key parameter is the elastic energy release rate
G, the condition for equilibrium is G = wa , and the stability
criterion is (∂G/∂A) > 0, where A is the area of contact. An
entirely equivalent strategy to obtain the force of adhesion and
equilibrium area of contact is to write down the total energy of
the system and minimize it with respect to a single parameter
that uniquely determines the configuration of the system. This
parameter can be, for example, the deformation of the sphere
when the experiment is in a constant force configuration as
performed in the seminal paper by Johnson-Kendall-Roberts
(JKR) [2]. On the other hand, when dealing with experiments
in the constant grip configuration, this parameter is the
deformation δ of the apparatus that provides the nonconstant
external force (see Fig. 2). In this case the force is obtained
by the product (−δk), where k is the spring constant of the
apparatus [5,17]. In either case, the total energy ET of the
system has three components,

ET (δ) = EE(δ) − EC(δ) + EM (δ), (2)

where EC is the interaction (contact) energy with the surface
(proportional to wa), EM is the mechanical energy of the
apparatus, and EE is the elastic energy stored in the defor-

FIG. 2. Constant grip configuration. A base holding a surface
is moved a distance H while an optical fiber with a semidrop of
liquid attached to it points to a quadrant detector. As the liquid gets
in contact with the surface, the fiber is deflected a distance δ [5].
See the Experimental results section.

mation of the sphere. In this context configuration refers only
to the particular way in which one chooses to measure the
force, and it is not related to the boundary conditions of the
physical problem. Remarkably, each configuration gives in
general different values of the force of adhesion given the
same work of adhesion wa [17].

In the case of a spring, EM (δ) = 1
2kδ2. Reversibility is

reflected on the fact that ET is a function of δ only, and
the equilibrium configuration is found by minimizing the
total energy (∂ET /∂δ)H = 0. Here, H is the position of a
surface that moves against the sphere (or drop) as shown in
the diagram of Fig. 2 so that the compression of the sphere is
x = (H − δ). Thus, for an externally imposed H, the system is
completely defined by the equilibrium δ. Finally, as the sphere
is pulled away from the surface, there will be a point in which
the system becomes unstable, and the sphere detaches. This
happens when the mechanical equilibrium criterion ceases to
hold, i.e., when (d2ET /dδ2)H < 0. The force supplied at this
point is F Solid

Ad , and this force is what is measured in adhesion
or “tack” experiments in a constant grip configuration.

B. Wetting of superhydrophobic surfaces

The starting point to study wetting phenomena in general
is Young’s relation [3,4],

γ = γSV − γLV cos θE, (3)

which gives the equilibrium contact angle θE between a liquid
and a flat homogeneous surface as a function of the surface
tensions (γSL, γSV, and γLV) of all three phases involved (solid-
liquid, solid-vapor, and liquid-vapor, respectively). In both the
fields of contact mechanics and wetting, the interfacial energy
wa (or work of adhesion) is defined as the reversible amount
of work that one needs to supply to the system to separate a
unit area of contacting liquid from the solid. This definition
along with Young’s relation yields the Dupré equation,

wa = γLV(1 + cos θE). (4)

Thus, knowing the surface tension of the liquid and the
equilibrium contact angle, one can infer the interfacial energy.
A method known to enhance the wetting properties of a surface
is to increase its roughness. There exist two thermodynamic
states that define the apparent contact angle θ∗ on rough
surfaces. In the so-called ’Wenzel’s” state [20], the system
minimizes its free energy when the liquid conforms to
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the surface profile, which happens on originally solvophilic
systems (resulting in θ∗ < θE) and on moderately solvophobic
ones (resulting in θ∗ > θE [21]). In contrast, surface roughness
can increase the apparent contact angle (θ∗ > θE) of originally
solvophobic ones, creating what is called a Cassie-Baxter state
[15]. In this case, the contact angle measured on the rough
surface is given by

cos θ∗ = −1 + φs(1 + cos θE), (5)

where φs < 1 is the fractional surface area with which the
liquid is in actual contact. φs is a crucial parameter in this
wetting state since the contact angle increases because the
liquid is progressively more in contact with air than with the
surface itself. As long as the liquid remains flat in-between
the supporting protrusions [22], it is possible to assign to the
rough surface an effective work of adhesion we

a that is reduced
in proportion to φs ,

we
a = φswa. (6)

Equation (6) makes it possible to study supersolvophobic
systems as if it were composed of a liquid in contact with a flat
surface with energy we

a . Combining Eqs. (4)–(6), we arrive at
we

a = γLV(cos θ∗ + 1), which after dividing by wa becomes

φs = (
we

a

/
wa

) = (γLV/wa)(cos θ∗ + 1). (7)

Figure 3 shows φs (left axis) as obtained with Eq. (7) as
a function of θ∗ for a range of supersolvophobic states for
the Hg-diamond system shown in Fig. 1 for which θE = 155◦

[5]. This figure illustrates the nonlinear effect that surface
roughness has on θ∗: If one wanted to increase θ∗ from 170°
to 179.9°, then φs would have to decrease by three orders
of magnitude. Although it may seem at first glance that by
reducing φs any θ∗ could be obtained, having too small a
φs can make the Cassie-Baxter state unstable with respect to
pressure changes and transition to a Wenzel one [21]. This
general lack of robustness is why it is so difficult to study
superhydrophobic systems experimentally.

The Hg-diamond system mentioned above is actually robust
in this sense, in part because the equilibrium CA on a flat
diamond surface is unusually high to begin with. Using
Eq. (4) and γLV = 486.5 mJ m2 for Hg gives wa = 45.6 mJ m2,
and as a result, a relatively modest value of φs = 1/25 is

FIG. 3. Fractional surface area φs (left axis) and effective inter-
facial energy (right axis) vs θ∗ for the Cassie-Baxter model assuming
wa = 45.5 mJ m−2 (Hg-diamond system). θ∗ spans the apparent
contact angles of the supersolvophobic systems.

capable of yielding θ∗ > 175◦ [5]. The right axis of Fig. 3
shows the effective interfacial energy for this system in a
Cassie-Baxter state. For reference, a very small surface energy
of wa

∼= 2 mJ m2 exists in the contact between native silicon
oxide and gold immersed in ethanol [23]. If the surface in
question is not only rough, but also composed of structures on
both the micro and the nanoscales [24], then it is possible to
achieve apparent loss of macroscopic contact angle hysteresis
[3,4,24,25]. Under these circumstances it is found that the
force of adhesion of a macroscopic drop of Hg (∼0.5-mm
radius) is independent of the history of the compression (or
preload, Fig. 1(c) [5]), just as in the case of elastic solids.
Actually, loss of contact angle hysteresis can also be achieved
in nanoscopic systems [26]. This phenomenon is theoretically
predicted to happen when the contact points between the liquid
and the solid constitute “weak” pinning points of the contact
line, a term coined by de Gennes et al. [4] and Joanny and
de Gennes [25]. In the presence of weak pinning points the
force of adhesion between a liquid drop and a solid surface
can be calculated following the same formalism summarized
in the previous section about the contact between solids since
in the absence of hysteresis the energy balance is a function
of the parameter δ only [5]. To be able to use Eq. (2), the
elastic energy EE of the solid needs to be replaced by the
energy contribution coming from the increase in the excess
surface area aex of the compressed liquid drop. Here, we call
this energy “pseudoelastic,” EPE = aexγLV since it gives rise
to a restoring force. Thus, to calculate the force of adhesion
in a supersolvophobic system, one needs to obtain first the
dependence of both the surface and the contact areas of
the compressed drop as a function of δ (see Fig. 2). In a
previous work [5], the energy balance was approximated by
assuming that the profile of the drop is given by a perfectly
hydrophobic contact (CA = 180◦) at all times, while allowing
a small interfacial contribution EC , limited to the contact area
AC , to enter the energy balance. This is equivalent to the
Derjaguin [1] model of the contact between an elastic sphere
and a plane that always makes a Hertzian contact during
compression and subsequent decompression [16]. Although
this model serves as a good first-order approximation, note that
it is inherently self-inconsistent because in the contact between
liquids and solids, even the smallest interaction energy will
decrease the contact angle below 180°. In order to construct
a self-consistent approach to describe this interaction, we
propose a model in which θ∗ is a function of we

a as given
by Eq. (7), whereas the contact energy is proportional to this
same energy we

a . Allowing CA �= 180° means that capillary
bridges will be present that will be particularly narrow due to
the supersolvophobic nature of the surfaces. Indeed, the profile
of liquid surfaces can present abrupt deformations because the
flexural rigidity of their surfaces is practically zero [27], i.e., as
long as the surface area is minimized, there is no energetic cost
of deforming the surface, however sharp the deformation may
be. This case is unlike that of liquid crystals or cell membranes
for which it is necessary to consider Helfrich´s energy [28].

C. Capillary bridges

Capillary bridges are axisymmetric liquid junctions be-
tween two solids, and they play an important role in the
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adhesion of biological [29] and granular [30] systems as
well as in the adhesion between man-made microstructures
[31]. For example, water condensation can lead to capillary
bridges in antiferromagnetic adhesion tests that can result in
a substantial increase in the force of adhesion in the contact
mode [32] and influence the general dynamics of the cantilever
in tapping mode [33]. A thorough review on the subject of
capillary bridges can be found in Ref. [11]. From a theoretical
point of view, capillary bridges between planar surfaces have
been studied before at constant contact angles [14,34–36] or
pinned on both surfaces [36,37]. In this paper, we study mixed
boundary conditions since we consider a drop pinned to a
surface as it is compressed, stretched, and detached from a
surface with which it makes a constant apparent CA (Fig. 2).
We have chosen these particular boundary conditions because
they match those encountered in the laboratory [5], thus
allowing our results to be compared to experiments on SSSs.
In order to obtain the mechanical properties of one of these
solid-liquid-solid systems, it is necessary to know the profile of
the capillary bridge. In the case of solvophilic surfaces, several
approximations can be made that allow finding analytical
solutions [11]. One such assumption usually made is the
so-called “toroidal” approximation that considers that the
profile of the liquid is given by a portion of a circle. However,
this clearly does not hold in the case of SSSs for which the
derivative of the profile has an inflection point as will be shown
in Fig. 6(a). Therefore, the Young-Laplace axisymmetric
equation [4] must be solved without any approximations given
the boundary conditions of the problem. These solutions allow
for the formation of bridges that, due to their very small relative
size on SSSs, we henceforth call capillary necks instead. In the
following section, we develop a model to solve for the profile
of a semidrop that meets the boundary conditions mentioned
above. We find that, however small they may be, capillary
necks have a strong effect on the force of adhesion.

II. THEORETICAL MODEL OF THE DEFORMATION
OF A SEMIPINNED DROP

In this section, we present a method to obtain both the
contact and surface areas as a function of compression of a
drop that wets a supersolvophobic surface while being pinned
on a backing substrate that holds it. The general strategy we
follow to find the profile of the deformed drop is to patch
together the positive and negative branches of the solution of
the differential equation that gives this profile at the point of
zero derivative. We do this while keeping the volume constant
and meeting the corresponding boundary conditions imposed
by θ∗ on the wetting surface and by the position of the pinned
contact line on the backing surface.

Consider a sessile liquid drop of radius r pinned on a
backing surface with which it makes a contact angle θp as
shown schematically in Fig. 4(a) for the particular case of
θp = 120◦. θp is the initial contact angle, which will change
as the drop is compressed and stretched. Assume that the
drop is smaller than the capillary length (i.e., gravity can be
neglected) so that energy minimization of the surface yields
a truncated circular profile y(z). For purposes of integration,
it is actually more convenient to define θp by specifying the
value of the parameter ε that determines the range by which

FIG. 4. Coordinate systems and variables. Profile in the z = y

coordinate system (left panel) of the drop pinned at a backing surface
(θp = 110◦), before [top (a)] and after [bottom (c)] compression
against a perfectly solvophobic surface (θ∗ = 180◦). The equivalent
profiles are shown in the dimensionless Z-Y coordinate system for the
uncompressed (b) and compressed drop (d). Note that both z and Z
axes increase towards the left.

the profile is extended from the point of zero derivative of
the profile to the backing surface [Fig. 4(a)]. This parameter
is always in the range of {−1,1}, and values of (θp) greater,
equal, or smaller than 90° are achieved when (ε) is positive,
zero or negative, respectively. The volume and area of this
undeformed drop are vs = (2/3)πr3(1 + 3ε/2 − ε3/2) and
as = 2πr2(1 + ε), respectively. These quantities are important
because the volume of the drop must be conserved while its
excess surface area multiplied by the surface tension gives
the pseudoelastic energy contribution to the energy balance.
To find the profile y(z) of the deformed drop we need to
minimize its surface area while keeping its volume constant.
Since the shape of the drop is axisymmetric, the surface area is
given by a = 2π

∫
y(z)

√
1 + [∂zy(z)]2dz, whereas the volume

is v = π
∫

y(z)2dz. If λ is a Lagrange multiplier, then y(z) is
an extremal of the functional,

f = 2π

∫
F [z,y(z),y ′(z)dz]

= 2πγLV

(∫ {
y(z)

√
1 + [∂zy(z)]2

}
dz−λ

2

∫
y(z)2dz

)
.

(8)
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Since F(z) does not depend explicitly on the variable z, it is
possible to use Euler´s first integral directly, C = y ′∂y ′F (z) −
F (z), where C is a constant of integration. Solving for y’(z),

y ′(z) = ±
√

4γ 2
LVy(z)2

[−2C + λy(z)2]
2 − 1. (9)

Unlike other problems pertaining to the calculus of varia-
tions with constraints, the parameter λ cannot be solved as an
analytical function of the volume of the drop. Nevertheless, it
is possible to conserve volume by hand while simultaneously
imposing the boundary conditions. To do this, first note in
Figs. 4(a) and 4(c) that the drop is pinned to the backing
surface, and therefore, the height of the profile is fixed, but
the slope will vary as the drop is compressed. In contrast,
the contact angle against the wetting surface is fixed, but
the position of the line will depend on the compression
precisely because volume has to be conserved. Thus, we are
dealing with mixed boundary conditions. We get around this
problem by calculating all the relevant quantities in a new
coordinate system in which the boundary conditions are met

naturally and introducing scaling rules to recover the value
of these quantities in the laboratory framework. We begin
by incorporating the boundary conditions into the differential
equation itself. As illustrated in Fig. 4(c), let y(zs) be the
contact point of the compressed profile of the drop on the
wetting surface. At that point, the slope y ′(zs) ≡ ξ of the profile
gives the contact angle CA = (180◦/π )arccot(ξ ), which is to
remain fixed. This first boundary condition can be imposed on
Eq. (9) leading to

C = −λy2(zs)

2
+ γLVy(zs)√

(1 + ξ 2)
. (10)

Then, let ρ be the maximum height of the profile which
is set to happen at z = 0, and let d be the derivative at that
point [i.e., y′(0) ≡ d and y(0) ≡ ρ]. Note that if θp > 90◦
(the case studied here), then ρ > r and vice versa, and that in
the case that θp � 90◦, d is necessarily zero, i.e., there exist a
maximum of the profile of the drop. This condition yields

λ = 2γLVρ

ρ2 − y(zs)2

(
1 − y(zs)

ρ
√

1 + ξ 2

)
. (11)

The constant λ is actually the pressure difference inside the drop with respect to the pressure outside, usually written as a function
of both the first and second derivatives of y(zs) [4]. Substituting the expressions for C and λ back in the differential equation for
the profile yields

y ′(z) = ±
√√√√ [ρ2 − y(zs)2]

2
y2(z)

{y(zs)[y2(z) − ρ2](1 + ξ 2)−1/2 + ρ[y(zs)2 − y2(z)]}2 − 1. (12)

Equation (12) can be rewritten in dimensionless form as

Y ′(Z) = ±
√√√√ (1 − α2)2

Y 2(Z)

{α[Y 2(Z) − 1](1 + ξ 2)−1/2 + [α2 − Y 2(Z)]}2 − 1, (13)

where Z ≡ z/ρ,Y ≡ y/ρ,α ≡ Y (ZS) = y(zs)/ρ, and ZS ≡
zs/ρ. Writing the differential equation for the profile in this
way is very useful since the only boundary condition necessary
to solve for the profile is Y (0) = 1. Note that the dimensionless
variables Z and Y, actually constitute a new coordinate system
(CS) Z-Y (right panel, Fig. 4). Once all the relevant quantities
have been obtained in the Z-Y CS, it is necessary to translate
them into the original z-y one since this is the laboratory
framework. To accomplish this task, note that if an area or a
volume are calculated in this Z-Y CS, we only need to multiply
such a quantity by ρ2 or ρ3, respectively, to get its value in
the original z-y CS. This property will come in handy when
imposing that the volume of the deformed drop be conserved.
Analogously, any quantity proportional to the radius r of the
original semisphere in the z-y CS is recovered by multiplying
its value in the Z-Y system by ρ, which serves as a scaling
parameter. In particular, the drop´s radius is r = Rρ, where R
is the radius of the uncompressed drop in the dimensionless
CS [see Fig. 4(b)]. Our dimensionless analysis is somewhat
similar to that of Fortes [36], but it differs from it in that
our scaling parameter ρ is not fixed a priori by the boundary
conditions of the drop in the z-y CS. We now consider the

pressure inside the drop, which must remain constant for all
Z’s. Written in terms of the boundary conditions, the pressure
difference [Eq. (11)] takes the following dimensionless form
in the Z-Y CS,

 ≡ λ

(
ρ

γLV

)
= 2

(1 − α2)

(
1 − α√

1 + ξ 2

)
. (14)

Note that for any given α,  has a maximum when ξ = 0,
which corresponds to a normal contact with the wetting surface
(or θ∗ = 90◦). This case is equivalent to the JKR model for
solids [2]. In contrast, for a perfectly solvophobic contact for
which ξ = −∞ (or θ∗ = 180◦),  has a minimum, and it
reduces to Laplace’s pressure for an uncompressed drop of
semicircular profile (2γLV/r in the z-y CS) when α = 0.

Equation (13) can be recast in terms of  only as

Y ′(Z) = ±
√

Y 2(Z)

{1 + (/2)[Y 2(Z) − 1]}2 − 1. (15)

The boundary conditions on the wetting surface given by
α and ξ fully determine  [Eq. (14)] and with it, the profile
of the whole drop through Eq. (15). Since  must be constant
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for all Z, both branches of Eq. (15) are necessary to obtain
the profile of the drop. Note that this mathematically correct
because  is constant and both branches must meet the same
boundary condition at the cusp, namely, Y (0) = 1 and Y ′(0) =
0. Physically, using both branches is justified because Eq. (15)
does not depend explicitly on Z and, therefore, Y(Z) is invariant
under an inversion of the coordinate Z → −Z. Using this
equation as a starting point, we now develop a method to find
all relevant quantities in this CS and to translate them back
into the laboratory framework.

First, we characterize any given surface by some apparent
contact angle ξ (or equivalent θ∗). Then, for some value
of α > 0, the dimensionless pressure  is calculated
[Eq. (14)], and the profile of the drop is obtained numerically
[Eq. (15)]. This solution yields numerically the point ZS ,
defined as the distance from the contact point against the
surface to the abscissa of the cusp. Figure 4(d) shows an
example of the deformed profile obtained in the dimensionless
Z-Y CS, whereas the corresponding profile of the original
uncompressed drop is depicted in Fig. 4(b) in this same CS.
The equivalent profiles in the laboratory framework are shown
in Figs. 4(a) and 4(c). As explained above, in both Figs. 4(c)
and 4(d), the negative branch of the solution for Y´(Z) is used
to extend the profile of the curve from its cusp to the backing
surface by an amount μ > 0, which must be determined from
the condition of conservation of volume in this CS while
simultaneously imposing that the contact line be pinned at the
baking surface. Actually, note that, since the drop is pinned,
fixing μ necessarily determines the height of the profile η

where it meets the backing surface [Fig. 4(d)],

η = Y (−μ). (16)

This point of constant height also serves as a reference to
find the radius R of the original drop in the Z-Y CS, which is
calculated by considering the geometric relation evident from
Fig. 4(b),

R = η√
1 − ε2

. (17)

Then, the parameter μ is chosen by inspection to meet the
condition of constant volume,

π

∫ ZS

0
Y (Z)2dZ+π

∫ 0

−μ

Y (Z)2dZ

= 2

3
πR3(1 + 3ε/2 − ε3/2), (18)

with arbitrary accuracy. Equation (18) ensures that the vol-
umes of the compressed [Fig. 4(d)] and uncompressed drop
[Fig. 4(b)] are equal while keeping the line pinned. The surface
area is then calculated (also numerically) for that value of μ

as

AS = 2π

∫ ZS

0
Y (Z)

√
1 + [∂ZY (Z)]2dZ

+ 2π

∫ 0

−μ

Y (Z)
√

1 + [∂ZY (Z)]2dZ. (19)

Note that AS gives the area in the Z-Y CS, but we are
interested in the area as measured in the laboratory framework,
which is simply aS = (ASρ

2). Also, since the only length scale

of the problem is the radius of the drop r , it is convenient
to write down all relevant quantities in dimensionless form
rescaling them by r . In particular, the area of the undeformed
drop in the original z-y CS is rescaled by the cross-sectional
area of the sphere as

ãS ≡ aS

2πr2
= AS

2π

(
ρ2

r2

)
. (20)

Recalling that r = Rρ, Eq. (17) implies that (ρ/r)2 =
(1 − ε2)/η2 = R−2, which yields an expression for the scaled
area in the z-y CS that is a function of η only,

ãS = AS

(
1 − ε2

2πη2

)
. (21)

Note that rather than ãS itself, what is ultimately relevant
for the energy balance is the scaled excess surface area ãex,

ãex ≡ ãS − 2πr2(1 + ε)

2πr2
= AS

(
1 − ε2

2πη2

)
− (1 + ε). (22)

On the other hand, the contact area (AC) with the wetting
surface is (πα2) in the Z-Y CS, and it is transformed into the
z-y one and rescaled as

ãC ≡ aC

2πr2
= ρ2AC

2πr2
= α2 1 − ε2

2η2
. (23)

Finally, the actual compression in the Z-Y CS is X ≡
(x/ρ) = R(1 + ε) − (ZS + μ) [see Figs. 3(b) and 3(d)], which
is rescaled by r and transformed back into the z-y CS as

x̃ ≡ (Xρ)/r = x/r = (1 + ε) − (ZS + μ)

√
1 − ε2

η
. (24)

We stress the point that all the quantities (η, ZS , AS ,
and α) used in the expressions of the scaled excess area
[Eq. (22)], contact area [Eq. (23)], and compression [Eq. (24)]
are uniquely determined by the value of μ chosen to conserve
volume, given certain ε (or equivalently, θp) and certain contact
slope ξ (or equivalently, θ∗). The corresponding contributions
to the total energy in the laboratory framework are the contact
energy,

Econtact ≡ EC = 2πr2(we
aãC

)
, (25)

and the surface energy,

Esurface ≡ EPE = 2πr2(γLVãex), (26)

where the subscript “PE” means “pseudoelastic” since it
is related to a restoring force. Finally, the actual pressure
difference in the laboratory CS can be recovered from the
relation,

�P ≡ λ = 
η√

1 − ε2

(
γLV

r

)
. (27)

In the cases in which θp < 90◦ (a “shallow” semidrop) the
exact same method applies with the only difference that the
limits of the integrals of Eqs. (18) and (19) change, and Eq. (15)
must be modified to incorporate the fact that d �= 0.

Specifically, the condition to conserve volume reduces to

π

∫ ZS

μ

Y (Z)2dZ = 2

3
πR3(1 + 3ε/2 − ε3/2), (28)
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FIG. 5. Results: supersolvophobic surfaces. (a) Scaled contact area vs scaled compression for θp = 110◦ and different values of
θ∗ = {179◦,178◦, . . . ,171◦,170◦}. The negative values of the compression signal the appearance of capillary necks. (b) The same as in
(a) but for larger positive compressions and on a logarithmic scale. (c) Scaled excess surface area vs scaled compression for the same
parameters. The dashed line denotes the function ãex ∝ x̃2, that follows well the limiting behavior of all curves towards zero compression. (d)
The same as (c) but on a logarithmic scale and for larger positive compressions.

whereas the surface area becomes

AS = 2π

∫ ZS

μ

Y (Z)
√

1 + [∂ZY (Z)]2dZ. (29)

III. RESULTS AND DISCUSSION

A. Adhesion on supersolvophobic surfaces and capillary necks:
Numerical results

As an application of the method developed in the previous
section, superhydrophobic systems with θ∗ = {179°, 178°,
177°, . . . ,171°, and 170°} were investigated for the specific
case of θp = 110◦. For each combination of θ∗ and θp, the
following procedure is followed. First, a value of α > 0 is
chosen (ranging from α = 0.01 to α = 0.6), which along with
ξ determines  [Eq. (14)]. This allows solving the differential
equation of the profile [Eq. (15)] with the boundary condition
Y (0) = 0. Then, the key quantity μ is found so that volume is
conserved [Eq. (18)] within 10−10%. The compression is then
obtained indirectly with Eq. (24). Figures 5(a) and 5(b) show
ãc whereas Figs. 5(c) and 5(d) show ãex vs x̃ (on different
scales for better appreciation) for the various SSSs studied.
The relationships displayed in these figures give all the relevant
mechanical properties of the drop-surface system that will be
used to calculate the pull-off force. In particular, note that as

the drop is retracted, the compression reaches negative values,
i.e., the drop is being stretched. This signals the appearance of
capillary necks. Figure 6(a) shows the profile of one of these
necks for the particular case of θ∗ = 170◦. Note the slope
of the profile changes close to contact to meet the surface at
the required θ∗. Even though the profile of Fig. 6(a) seems
perfectly spherical, it is actually not. If it were, it would be
impossible to have simultaneous capillary necks and satisfy a
constant Laplace’s pressure all throughout the profile. Indeed,
we have verified that the profiles obtained correspond to
surfaces of constant mean curvature.

Since capillary necks form during the detachment process,
they are bound to have an effect on the pull-off force as opposed
to the case of perfectly solvophobic systems for which the
profile of the drop always meets the surface at 180° as we will
show in the next section. We identify three different stages
of the mechanical behavior of the drop during its compres-
sion and stretching on different supersolvophobic surfaces.
Figures 6(b)–6(d) show more clearly the characteristics of
these three stages. For large relative compressions, there exists
a power law relationship between ãex and ãC [Fig. 6(b)]
that is similar to that found for a perfectly solvophobic
system (Fig. 11, next section). This first stage lasts until the
compression is zero as shown in the example for θ∗ = 170◦ in
Fig. 6(d). As stretching begins, the contact area decreases at
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FIG. 6. Capillary neck formation. (a) Profile of a semidrop with θp = 110◦ being stretched during detached from a surface with θ∗ = 170◦.
The inset shows the formation of a neck when the compression becomes negative, and the circular dashed line shows the profile of the original
uncompressed drop. In the case shown, the negative compression corresponds to (x/r) = −0.01. (b) ãex vs ãc for the different supersolvophobic
cases studied. (c) ãex (left axis) and  (right axis) vs ãc for the case of θ∗ = 170◦ showing the three different stages of the mechanical behavior
for the deformation of a drop. (d) Dimensionless compression x̃ vs ãc. Neck formation begins when x̃ reaches a minimum.

almost constant surface area. During this stage (stage 2), the
dimensionless pressure reaches a minimum. This stage ends
when the compression reaches its maximum negative value.
After this point (stage 3), the dimensionless pressure increases
[Fig. 6(c)], and the surface area decreases again for smaller
contact areas. At this stage, capillary necks are stretched
until detachment occurs. The mechanical characteristics of the
capillary necks at this stage will determine the pull-off force.
As mentioned in the Introduction, this force is determined by
the mechanical stability of the system that nonetheless will be
a function of the effective thermodynamic work of adhesion
we

a . Upon instability, the neck will break and give way to a
stable configuration of lower total energy.

Whereas in the case of the adhesion between solids this
new configuration of lower energy simply consists of the solid
sphere no longer in contact with the plane, and this is not
necessarily the case for liquid drops since the drop may break
in two, transferring some liquid to the contacting surface. This
is a particularly likely scenario in solvophilic systems where
the energy of the two-drop system will depend on the volume of
the liquid transferred. SSSs present an advantage in this sense
because the energetic cost of leaving a small drop behind will
always be much higher than that of full detachment. This is a
consequence of the fact that the contact area is many orders
of magnitude smaller than the surface one (Fig. 7, left axis)
because of the very large apparent contact angles involved.
This effect is accentuated further in the Hg-diamond system
by the two order of magnitude difference between the surface

tension γLV and the effective work of adhesion (Fig. 7, right
axis). As a result, when calculating the total energy of the
system composed of the pinned semidrop and the transferred
drop, the contact term can be neglected. Given that the sum
of the areas of these two spheres is necessarily larger than
that of a single semidrop of the same combined volume, a
detachment devoid of any transferred liquid yields the lowest
possible energy, just as in the case of elastic solids. This lowest

FIG. 7. Areas ratio. (Left) Ratio of contact area and surface area
vs θ∗ for a sessile semidrop on a supersolvophobic surface. (Right)
The same ratio but multiplied by we

a/γLV, yielding the ratio of the
corresponding energies for the θ∗ for the diamond-Hg system. The
effective energy we

a is calculated for each θ∗ using Eq. (7).
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FIG. 8. Mechanical instability and force of adhesion. Total energy
vs δ for a Hg semidrop of radius R = 350 μm in contact with a
diamond surface with θ∗ = 173◦ (we

a = 3.6 mJ m−2) and θp = 110◦

for different base heights H: (a) 20 μm, (b) 10 μm, (c) 5 μm, and (d)
−4.12 μm. In (d), the mechanical instability yields a force equal to
Fad = kδc. In this example, k = 5.4 N m.

energy value is actually zero because ãex, ãc, and x̃ are all zero
for that configuration.

Keeping this in mind, we can now write down the total
energy of the system [Eq. (2)] and perform the mechanical
stability analysis (see Fig. 8). Recall that since we are dealing
with a fixed grip configuration, our goal is to find the deflection
δ of the measuring device that minimizes the energy and to
assess the stability of the system at that point. The total energy
of the system is obtained by adding the contact [Eq. (25)] and
pseudoelastic [Eq. (26)] contributions to the mechanical term
1
2kδ2,

"

ET = EPE − EC + EM

= 2πr2
[
γLVãex(x̃) − we

aãc(x̃)
] + 1

2kδ2, (30)

where ãex and ãC are functions of x̃ = (x/r) = (H − δ)/r .
For any given base displacement H, the total energy can
then be calculated as a function of δ, given the parameters
γLV, we

a , k, and r , and the values of ãex and ãC shown in
Fig. 5. As an example of the evolution of energy landscape
as a function of δ, Fig. 8 shows the total energy of the
system calculated with Eq. (30) for a supersolvophobic system
similar to that investigated in recent experiments [5], namely,
a 350 μm radius semidrop of Hg (θE = 155◦) on a diamond
surface with θ∗ = 173◦ and k = 5.4 N m for different values

FIG. 9. Results: calculated force of adhesion vs θ∗. (Left axis)
Calculated force of adhesion vs θ∗ for a 350 μm radius Hg semidrop
with θp = 110◦ on a diamond surface. (Right axis) Fad/r vs θ∗. The
solid line depicts a force of adhesion equal to −πrwe

a . The dashed
lines correspond to −(5/6)πrwe

a and −(6/5)πrwe
a (see the text). The

error bars are the uncertainty due to the finite number of sampling
points (finite number of α’s). The inset: absolute value of Fad (dots)
and Fad = πrwe

a (solid line) vs θ∗ on a log-linear scale.

of H. Recall that θ∗, we
a , and θE are all related to each

other through Eqs. (2) and (3) (Cassie-Baxter model). The
equilibrium deflection of the measuring device (δE) is that
which minimizes the energy at constant H while satisfying
the aforementioned condition of stability, (d2ET /dδ2)H > 0.
In Figs. 8(a)–8(c), H is positive, which corresponds to a
compression, and the equilibrium is stable. But as the base
is retracted and stretching of the drop begins, there is a
position for which the minimum no longer corresponds to
a point of zero derivative [Fig. 8(d)]. In other words, the
equilibrium condition ceases to hold, i.e. (dET /dδ)H �= 0 for
all δ. Note this situation is different than the case where an
equilibrium point exists, but it becomes mechanically unstable
(d2ET /dδ2)H < 0. Mechanical equilibrium ceases to exist at
a critical deflection δc, and the force at this point is the pull-off
force or force of adhesion Fad = (−kδc). The force of adhesion
obtained in this way is shown in Fig. 9 as a function of
θ∗ for the 350 μm semidrop of Hg on a diamond surface.
Since a finite number of values of α is sampled, there exists
an uncertainty in the exact value of the critical deflection.
Therefore, δc is chosen as the average between the two closest
points to the minimum, and an uncertainty equal to half the
distance between those points is ascribed to each value of the
force of adhesion. The calculated Fad (dots) along with the
corresponding uncertainties (bars) is plotted in Fig. 9. The
force of adhesion is well fit (solid line, Fig. 9) to

Fad = −πrwe
a. (31)

Note that Eq. (31) is independent of γLV. The dashed lines
in Fig. 9 depict two limiting curves given by −(5/6)πrwe

a

and −(6/5)πrwe
a . Given the present uncertainty, these two

curves serve as a confidence interval for the best fit to the data.
Equation (31) is the exact same expression as to that obtained
from the Derjaguin model for the adhesion of solids in the
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constant grip configuration [17]. However, it is worth pointing
out that whereas in the contact between solids the force of
adhesion is independent of Young’s moduli of the bodies, the
force of adhesion given by Eq. (31) does depend on the surface
tension of the liquid through we

a [Eqs. (4) and (6)]. Note in the
inset of Fig. 9, that Fad changes by more than two orders of
magnitude between the two extremes of the apparent angles
examined, namely, between θ∗ = 170◦ and 179°. Provided an
apparatus capable of measuring the force of adhesion between
a liquid drop and a plane on this scale [5], measuring Fad

directly may provide a better estimate of we
a than measuring

θ∗ directly. We provide an example of this method in the
experimental Sec. III C.

We realize that data presented in Fig. 9 is calculated for
the specific case of θp = 110◦, and Fad may vary for different
values of θp. Nevertheless, this force of adhesion influenced by
capillary necks is already more than three times larger than that
obtained using the approximation of a perfectly solvophobic
system with the same θp as we show in the next section. Before
moving on to the next section, we would like to point out the
limits of the validity of this model. We are assuming that
the macroscopic angle θ∗ is constant throughout the whole
compression and subsequent detachment process. For this to
hold, a relatively large number N of subareas must be in touch
with the liquid at the moment of detachment, i.e., the surface
should still look rough relative to the dimension of the neck.
For the experimental case under discussion (θ∗ > 175◦ [5]),
our model predicts that the liquid is in contact with a couple
of tens of subareas of size 6.6×10−2 μm2 at the moment of
detachment. Therefore, the Cassie-Baxter model still applies,
and θ∗ can be considered as constant, but we are close to the
limit of validity. Nevertheless, N increases steeply for smaller
values of θ∗.

B. Adhesion on perfectly solvophobic surfaces

A perfectly solvophobic surface is one that forms a θ∗ of
180° with the liquid drop, which in reality is impossible to
achieve since even the smallest surface energy will deform the
contact line, thus creating a neck upon detachment. Neverthe-
less, examining this case is illustrative as it is analogous to the
Derjaguin model of the contact between solids in which the
deformation of the sphere is always Hertzian. Furthermore,
in this case, the functional form of the corresponding energy
contributions vs compression makes it is possible to obtain an
analytical solution of the force of adhesion as we show next.
Figure 10 shows ãex and ãc vs x̃ for the perfectly solvophobic
interaction for different values of θp. Note that when θ∗ is
strictly 180°, the compression always remains positive, and,
therefore, there is no capillary neck, as expected. This fact
can be appreciated further in Fig. 11 in which we plot ãex vs
ãc: The surface area decreases monotonically with the contact
area, regardless of how small the latter is. Figure 11 is to
be contrasted with Fig. 6(b) for the supersolvophobic case.
For small compressions, the dimensionless excess surface
[Fig. 10(b)] and contact [Fig. 10(d)] areas are very well fit to

ãex = Sox̃
β, (32)

and

ãc = Ax̃2 + Bx̃. (33)

Unlike the case of the supersolvophobic surfaces, here the
surface and contact energies are univalued functions of the
compression, and this fact allows us to write down Eq. (2)
explicitly as a function of H and δ, that are straightforward
to differentiate. The total energy for the perfectly-solvophobic

FIG. 10. Results: perfectly solvopho-
bic surface. (a) Scaled excess surface area
vs scaled compression for consecutive
values of θp starting at 30° (b) the same as
in (a) but only for θp = 30◦ and 120° and
on a log-log scale for small compressions
(x̃ < 0.02). The dashed lines are the best
fits to Eq. (32), ãex = Sox

β with {β =
2.3,So = 1.28} for θp = 30◦ and {β =
2.1, So = 0.23} for θp = 120◦. (c) Di-
mensionless contact area vs compression.
(d) The same as in (c) but only for
θp = 30◦ and 120° and on a log-log scale
also for small compressions. The dashed
lines are the best fits to Eq. (33), ãc =
Ax2 + Bx with {A = 15.8, B = 0.19}
for θp = 30◦ and {A = 2.04, B = 0.11}
for θp = 120◦.
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FIG. 11. Results: perfectly solvophobic surface. Dimensionless
surface energy vs scaled contact energy for θ∗ = 180◦.

system is as follows:

ET = 2πr2γLV[(H − δ)βSo]

− 2πr2we
a[(H − δ)2A + (H − δ)B] + 1

2kδ2. (34)

Unlike the SSS case, here it is in principle possible
to obtain the force vs compression relation by calculating
(∂ET /∂δ)H = 0 and solving for δE . The same applies to the
stability criterion. Unfortunately, given the particular values of
the exponent β found, it is impossible to arrive at an algebraic
expression for the force of adhesion. However, an excellent
approximation can be obtained if the exponent is replaced by
β = 2.5.

In this case, a rather lengthy but algebraic expression for
the equilibrium deflection δ (not shown) as a function of
the position of the base H can be found from the condition
(dET /dδ)H = 0. This deflection δ(H) becomes a complex
number (i.e., a real solution ceases to exist) when

R2γLV
6S6

0

(
Hk + 2BπRwe

a

)3

×{ − 4k3R + 48Ak2πRwe
a + 2π3Rwe

a

× [
675BγLV

2S0
2 + 128A3

(
we

a

)2]
+ 3kπ2

[
225HγLV

2S0
2 − 64A2R

(
we

a

)2]} = 0. (35)

Solving for H , we obtain the critical position of the base Hc

at which point the drop detaches from the surface. This critical
position of the base is Hc = −2 Bπrwe

a/k. Substituting
back into the expression for δ obtained from the condition
(dET /dδ)H = 0, the corresponding critical deflection of the
measuring device is δ(Hc) ≡ δc = −2 Bπrwe

a/k, yielding the
approximate force of adhesion,

Fad = −2Bπrwe
a. (36)

Since Hc = δc, the compression is zero, and therefore, the
contact area at the moment of detachment is also zero. This
happens analogously to the detachment of a solid elastic sphere
from a plane in the Derjaguin model [1]. Once again, note that
Fad is independent of γLV and of So, just as it is independent

FIG. 12. Force of adhesion on a perfectly solvophobic surface.
B coefficient (left) and scaled force of adhesion (right) for a fixed
grip configuration using the approximation β = 2.5 [Eq. (36)]. The
dashed line is the best fit to a logarithmic dependence of B on θp .

of Young’s moduli of the elastic solids bodies involved in both
the JKR and the Derjaguin models.

Figure 12 shows that the B coefficient of Eq. (36) is actually
a function of θp. A “deep” drop of θp = 120◦ presents half as
little adhesion as a comparatively shallow one with θp = 30◦
of the same radius. The dashed line in Fig. 12 is the best
approximation to a logarithmic dependence of the force of
adhesion on θp. In the limit when θp → 0◦, B = 0.38 ≈ 0.4,
and Fad ≈ −(4/5) π rwe

a . Thus, the stiffest possible semidrop
in this model still yields a force of adhesion that is smaller
than the one obtained in the presence of capillary necks
[Eq. (31)] evidencing the relevance of these structures for
realistic supersolvophobic surfaces.

C. Experimental results

In this section we describe the force of adhesion experi-
ments performed on a supersolvophobic system and apply the
results of the model and method proposed above to extract the
value of the work of adhesion from the experimental results.
We perform force of adhesion (or tack) experiments between
a 350 μm radius mercury semidrop on a nano-patterned
diamond surface [5]. This surface naturally contains structures
on both the micron and the nanoscales [Fig. 1(a)] [24]. As a
result, there is loss of contact angle hysteresis with mercury
concomitant with a very large apparent contact angle greater
than 175° [Fig. 1(b)]. To measure the force between this surface
and liquid mercury, a thin piece of glass is covered with a
sticky polymer (PSA from 3M, USA) and glued to the free
end of an optical fiber which points to a quadrant detector.
The polymer-covered glass is then placed in contact with a
pool of triple distilled mercury and subsequently retracted,
leaving a semidrop of the liquid metal strongly pinned on the
surface with θp between 110° and 120° (see sketch in Fig. 2).
It was verified that during the experiments the drop remained
pinned on its original position. An 830 nm pigtailed solid state
laser is connected to the fiber optic, and the deflection of its
free end is measured through the signal the quadrant detector
(Fig. 2). The fiber-plus-glass-holder system is calibrated by
monitoring the changes in resonant frequency vs mass of the
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mercury drop. The force is then proportional to the deflection
of the fiber (spring constant k = 5.4 N m). Note this constitutes
a “constant grip” configuration since the force exerted by the
fiber is not constant but is a function of its deflection. Since Hg
is a hazardous material, special care was taken when handing
and disposing of it. To measure the force of adhesion, the
nanopatterned surface is moved against the drop a certain
distance ranging from 5 to 30 μm, then is left to equilibrate for
30 s after which it is finally retracted until detachment occurs.
The maximum force measured upon detachment is the force
of adhesion. As shown in Fig. 1(c), this force of adhesion is
independent of the surface displacement, and its average value
is close to 0.5 μN [Fig. 1(c)]. This constancy with respect to
compression supports our assumption that the pinning points
between Hg and this surface are indeed weak and thus validates
our model.

Given that, in Sec. III A, Fig. 9, we obtained the force
of adhesion for a semidrop of the same dimensions and
θp, we can compare directly with our experimental results.
According to the inset of Fig. 9, a force of adhesion of 0.5 μN
corresponds to a contact angle of 178°. Also, from Eq. (31), the
effective energy in this case is we

a = 0.45 mJ m2. Measuring
this extremely large contact angle would have been very
difficult with other methods. This case serves as an example
of the use of force of adhesion measurements to quantify the
interaction in supersolvophobic systems.

IV. SUMMARY AND CONCLUSIONS

We have developed a method to calculate the force of
adhesion on both super and perfectly solvophobic surfaces
in the presence of weak pinning points. For the particular
case explored (θp = 110◦) the force of adhesion has the same
functional form as the result from the Derjaguin model of the
adhesion of elastic solids in the constant grip configuration.
The peculiar mechanical properties of capillary necks that form
during the process of detachment are responsible for a fivefold
increase in the force of adhesion as compared to the ideal
perfectly solvophobic case.

Given the linear dependence of the force of adhesion on the
surface energy, we propose the use of this force to measure
surface interactions on supersolvophobic surfaces instead of
contact angle measurements [5,7]. Ideal candidates to test
our results are superhydrophobic surfaces based on metal
hydroxides for which θ∗ = 178◦ [38] and superoleophobic
ones based on organosilanes (θ∗ > 172◦ [39]).

It would be interesting to calculate the force of adhesion
vs θ∗ for a whole range of values of θp, which can be
performed following the method we have developed. This
would be equivalent to finding the dependence of the force
on the normalized volume of the drop, a parameter normally
used in the context of capillary bridges. Finally, the algebraic
expression for the asymptotic behavior of the excess area that
we find [Fig. 5(c)], makes it possible to obtain, at least in
principle, an analytical expression for the force of adhesion
arising from capillary necks using the formalism of fracture
mechanics [17,19].

An important kind of stability not considered in the present
paper is the effect on the drop shape of disturbances of certain
constraining parameters, such as volume, pressure, and the
position of the pinned line on the backing surface [40–42].
This work is underway.

Finally, we point out that the robustness of the experimental
force of adhesion found with respect to pressure [or equiva-
lently with respect to preload, Fig. 1(c)] is very likely due
to the extremely high surface tension of liquid mercury. The
transition from a Cassie-Baxter state to a Wenzel one (at a
critical pressure) as well as the existence of metastable states in
the presence of nanoprotrusions and the corresponding energy
barriers would have to be carefully considered if other liquids
of smaller surface tension, such as water were to be used
instead [43–46].
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