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Abstract 
 
Complex fluids with embedded thread-like morphologies are interesting systems to study. These 
complex liquids with anisotropic particles are present widespread in nature rather than spherical 
ideal systems, and are widely used in the industry of food, pharmacy, cosmetics, and composite 
material. The advantage of their applications is due to the self-assembly mechanisms in which these 
liquids are involved at a mesoscopic scale. The cylindrical shapes lead to interconnections between 
the components of the liquid suspensions, giving an increase in the rigidity of the systems even when 
the compounds are soft, or stiff which work as a ladder giving rise to a connected network. The 
assembly processes remind us the dynamically arrested states such as colloidal and polymeric gels. 
Experimentally, obtaining the rheological properties of soft materials and their study with scattering 

techniques help us to understand their self-organization processes. Three model systems have been 
studied to understand the mechanisms that increase the rheological responses of interconnected 
thread-like morphologies.  
 
1) A diblock copolymer (1,4 poly(1,3-butadiene)–polyethylene oxide), with degree of polymerization 
� = 37 for the polybutadiene block and � = 57 for the polyethylene oxide block (PBPEO57), was 
characterized in aqueous solution at different weight percentage concentration. The diblock 
copolymer self-assembles in water as worm-like micelles determined by small angle neutron scattering 
(SANS). Rheological experiments found an uncommon non Maxwellian relaxation behavior, rather 
than the worm-like micelles formed with surfactants. Performing microrheology experiments by 
diffusing wave spectroscopy (DWS), the mean square displacement of probe particles in the micellar 
solution was obtained. From the unilateral Fourier transform of the mean square displacement and 
applying a numerical inversion of the generalized Stokes-Einstein equation, the viscoelastic moduli 
at high frequencies was computed. |�∗| exhibits a power law behavior showing that the stress 
relaxation changes as frequency increases, first dominated by the Rouse-Zimm modes and then by 
the bending modes of the Kuhn segments. This allowed the estimation of worm-like micelles 
persistence lengths that depend on the copolymer concentration, in agreement with the results 
obtained by SANS. As a comparison model, the same diblock copolymer was analyzed, but with a 
difference in size of the polyethylene oxide block, with a degree of polymerization of � = 45 
(PBPEO45). The size modification of the polyethylene block produced different changes in aqueous 
solutions. The maximum possible concentration before phase separation for PBPEO45 was roughly 
one third of the maximum achievable for PBPEO57. The mechanical rheology results were quite 
different from PBPEO57, but with a better agreement with microrheology results. Structural analysis 
with SANS revealed a significant change just in the persistence length of the worm-like micelles, 
being stiffer the PBPEO57 worm-like micelles than the PBPEO45 micelles. Additionally, the inverse 
adding doubling method (IAD) was implemented for a first time in a complex fluid suspension in 
order to get the necessary optical parameters to perform DWS experiments. The IAD method 
quantifies the reduced scattering coefficient (inverse of the transport mean free path), the absorption 
coefficient (inverse of the absorption length), and the anisotropy factor of the sample at the same 
time. Several previous tests were done with water, spherical particle suspensions, and PEBPEO45 
with the addition of an agent with absorption of light. These tests guaranteed good final experimental 
results. 
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2) Aqueous solutions of worm-like micelle aggregates done with the cationic surfactant 
cetyltrimethylammonium bromide with the counterion sodium salicylate (CTAB-NaSal) were 
studied. An extra feature presented in this system is the structural modification of the micelles after 
addition of the photo-responsive molecule 4-phenylazo benzoic acid (AzoCOOH, when deprotonated 
we call it AzoCOO). This molecule performs conformational structural changes (trans-cis 
isomerization) when light beams of certain wavelength strike the molecule. DWS microrheology 
experiments were performed and compared directly with mechanical rheology results. The IAD 
method was used to estimate the optical parameters of the samples which is primarily necessary 
because the photo-responsive molecule presents absorption of light. It turned out that the addition 
of AzoCOO reinforce the Maxwellian behavior of the systems when the molecule is maintained in 
trans state, and with no particular changes when it is stabilized in cis state. Hence, it was possible 
to obtain a set of values for the characteristic lengths of worm-like micelles. 
 
3) Nanocomposite suspensions of single wall carbon nanotubes (SWCNTs) were prepared. 
Nevertheless, the poor solubility of carbon nanotubes and the fact that they are not prone to form 
dispersions lead to their potential applications difficult to be reached. Some polymers have been used 
effectively as exfoliation agents of nanotube bundles making possible the incorporation of the 
nanotubes as individual entities or as very thin bundles. Polyelectrolyte suspensions of poly(acrylic) 
acid (PAA) were chosen as dispersing medium candidate for the SWCNTs, with successful results. 
PAA presents a globular conformation in acidic aqueous state, and an almost elongated shape in 
basic aqueous state. Rheological experiments were performed to analyze the mechanical response of 
PAA suspensions at low concentrations, much lower before a gel state is encounter. The suspensions 
presented a viscoelastic regime with an increase in strength as the pH increase. When a small amount 
of SWCNTs is added to the PAA suspensions (CSWCNTs = 0.5, 1, and 2 mg/mL), there is a huge 
change in the rheological response, and with the pH as a parameter to go from viscoelasticity to the 
gel regime. Under certain combination of PAA and SWCNT concentrations, the critical gel was 
found for suspensions at pH = 7 and 9. To characterize the gel point, a critical gel model developed 
by F. Chambon and H. H. Winter was applied. This model assumes a power law behavior of the 
elastic and viscous moduli in the Fourier domain, and the same power law for the relaxation modulus 
in the time domain. The power law exponent found in the studied cases (always below 1), has a 
value in good agreement to the ones got for physical gels. A comparison with the values of the 
exponent for different systems allows to formulate that the exponent is a fingerprint of the studied 
gel, with achievable values below 0.5 for physical gels, and above 0.5 for chemically interconnected 
gels. Also, speculations of the hierarchical structure sizes of the formed gels was done, based on the 
exponent values found. 
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Resumen 
 
Entre los fluidos complejos se consideran una gran variedad de sistemas, como soluciones poliméricas, 
coloides, cristales líquidos, surfactantes, soluciones de macromoléculas como materia biológica: 
proteínas, membranas celulares, ADN o virus. Todos los fluidos complejos se encuentran en la 
categoría de Materia blanda. Este tipo de materia suele construirse a partir de moléculas aisladas 
que se auto-ensamblan debido a fuerzas electrostáticas (van der Waals), interacciones entrópicas o 
interacciones estéricas, para dar origen a estructuras más complejas a escala mesoscópica. La entropía 
juega un papel vital para obtener estructuras que se organizan autónoma y espontáneamente en 
morfologías ordenadas y funcionales a escala supramolecular. Las escalas de longitud involucradas 
en la auto-organización de estos materiales se extienden desde aproximadamente 100 nm hasta 
1.5 µm, donde los fluidos complejos comparten propiedades intrínsecas de distribución, orden y 
transporte que determinan la física del sistema, como la alta reacción a los campos externos, el tipo 
de transferencia de energía, la difusividad, las propiedades viscoelásticas y los fenómenos interfásicos. 
Por lo tanto, existe una fuerte relación entre los bloques de construcción moleculares, su orden a un 
nivel mesoscópico y su comportamiento macroscópico [1] [2] [3]. Además, el comportamiento físico 
de los fluidos complejos ocurre a una escala energética del orden de la energía térmica, por lo tanto, 
los procesos dinámicos y la activación pueden analizarse en condiciones ambientales [3] [4]. 
 
Existe una relación jerárquica entre estructuras a diferentes escalas de longitud. Estas escalas 
incluyen diferentes niveles, desde el microscópico donde las uniones químicas forman moléculas. Sus 
tamaños abarcan órdenes atómicos y moleculares hasta ~ 5 nm. La escala mesoscópica a la que se 
produce el auto-ensamblaje de las moléculas, que abarca tamaños desde ~ 50 nm hasta ~ 1.5 µm. Y 
finalmente, la escala macroscópica que alcanza tamaños por arriba de ~ 2 µm. A esta escala se puede 
observar experimentalmente la mayoría de las respuestas en los fluidos complejos. En casos 
particulares los nano compuestos desarrollan una conectividad entre ellos debido a las interacciones 
energéticas y entrópicas, generando una red interconectada que se extiende hasta los tamaños 
mesoscópicos, formando materiales viscoelásticos fuertes. Existe la posibilidad de traspasar los límites 
de equilibrio termodinámico que dan lugar a la formación de geles físicos y químicos, e incluso vidrios 
cuando las interacciones de volumen excluido se vuelven relevantes. Los pilares básicos de ensamblaje 
para estos diferentes materiales nano estructurados pueden ser partículas esféricas coloidales, o 
partículas anisotrópicas como varillas rígidas; pero también, elementos más alargados y sistemas 
semiflexibles como cadenas poliméricas, que en principio son suaves pero dinámicas y resistentes al 
mismo tiempo. Una revisión con perspectivas futuras en el campo de los materiales poliméricos 
interconectados, con el objetivo de identificar y unificar los principios que controlan los mecanismos 
de endurecimiento y el comportamiento mecánico de autocuración se puede encontrar en [5]. Se 
presume que la anisotropía de las partículas filiformes y sus interacciones atractivas de corto alcance 
pueden afectar significativamente la competencia entre estados cinéticamente arrestados, equilibrio 
de fases, microestructuras auto-ensambladas y propiedades reológicas macroscópicas. El proyecto 
que se detalla en esta tesis tiene la intención de entender y apreciar diversas formas y funciones de 
objetos anisotrópicos que la naturaleza genera a nivel microscópico y macroscópico. 
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Por otro lado, los fluidos complejos han tomado gran importancia en las aplicaciones tecnológicas. 
Los coloides son elementos base en la industria de los polímeros, las pinturas y los adhesivos. También 
se utilizan para la elaboración de cosméticos y alimentos, o incluso como fluidos geológicos. Los 
cristales líquidos son comúnmente utilizados en el diseño de pantallas y biosensores; los fosfolípidos 
son los bloques elementales para la creación membranas celulares y diferentes tipos de jabones. 
Incluso existe el desarrollo de la tecnología robótica suave. Científicos se inspiran en la aparente 
simplicidad y la verdadera complejidad de la naturaleza, soñando para imitarla, lo que da pie para 
desarrollar ingeniería de materia blanda. Hoy en día se emplean toda clase de materiales con una 
amplia gama de propiedades mecánicas, físicas y químicas, desde líquidos y geles hasta sólidos 
orgánicos e inorgánicos. Una buena revisión de las aplicaciones actuales se puede encontrar en [6]. 
 
Los procesos de auto-ensamblaje pueden dividirse en estáticos o dinámicos. Las diferencias entre 
ellos radican en la descripción termodinámica de los sistemas resultantes. Los primeros son 
estructuras que se acercan al equilibrio a medida que se organizan, reduciendo su energía libre hasta 
alcanzar la estabilidad termodinámica. En cambio, los sistemas resultantes de procesos dinámicos 
son estructuras estables con menos entropía, formados fuera de equilibrio. Estas estructuras se 
obtienen como resultado del suministro constante de energía que posteriormente se disipa durante 
un estado cuasi estacionario [7]. Este tipo de auto-ensamblaje se inspira en los sistemas biológicos, 
que son difíciles de estudiar desde el punto de vista físico debido a su complejidad. En general, el 
estudio de sistemas auto-ensamblados se ha convertido en un trabajo cooperativo entre físicos, 
químicos, ingenieros, biólogos y médicos. Una revisión extensa de las diferentes áreas de estudio de 
la materia blanda se puede encontrar en [8], la cual incluye coloides, materiales granulares, espumas, 
emulsiones, cristales líquidos, polímeros, sistemas activos, materia adaptativa, simulaciones y 
macrodatos, con énfasis en la constante cooperación entre el científico experimental, computacional 
y teórico, para obtener grandes resultados. 
 
Existe la posibilidad de adaptar las funcionalidades de los materiales suaves de manera no covalente, 
para construir materiales inteligentes. Explotando las propiedades intrínsecas de la capacidad de 
respuesta a distinto tipo de interacciones, se han desarrollado diferentes mecanismos de auto-
organización de la materia, como sensores, materiales auto-curables, dispositivos piezoeléctricos, 
dispositivos sensibles a estímulos externos o materiales capaces de controlar la entrega de sustancias 
químicas en organismos vivos. La idea general para la construcción de estructuras adaptativas es el 
diseño ingenioso de los bloques base para que respondan a estímulos externos. Los bloques de 
construcción y sus interacciones no covalentes permiten que todo el sistema responda a diferentes 
tipos de estímulos externos, abordados en tres clases de adaptabilidad diferentes: (1) adaptabilidad 
al medio ambiente, incluyendo auto-ensamblajes inteligentes adaptables a cambios de pH, 
temperatura, presión y humedad; (2) adaptación química especial, incluidas las nanoestructuras 
adaptables a enzimas, CO2, iones metálicos, agentes de óxido-reducción, explosivos, biomoléculas, 
entre otras; (3) adaptación a campos externos incluyendo el auto-ensamblado de materiales que son 
capaces de adaptarse a campos magnéticos o eléctricos, irradiación de luz y fuerzas de cizallamiento. 
Se puede encontrar una revisión detallada de los sistemas adaptativos en [9]. 
 
La investigación que se resume en este documento incluye la búsqueda de las propiedades mecánicas 
y la estructura mesoscópica de tres sistemas adaptativos que incluyen estructuras filiformes: 



RESUMEN 

xv | P a g e  

adaptación a los cambios de grado de polimerización en cadenas de polímeros, cambios 
conformacionales bajo exposición a la luz, y cambios cuando se modifica el pH. Los objetivos se 
centran en la comprensión de los mecanismos que aumentan la respuesta reológica de las estructuras 
filiformes para cada sistema. Estos sistemas son: 
 
1) Un copolímero de dos bloques (1, 4 poli (1, 3-butadieno)–polióxido de etileno), con grado de 
polimerización � = 37 para el bloque de polibutadieno y � = 57 para el bloque de polióxido de 
etileno (PBPEO57), caracterizado en solución acuosa a diferente concentración porcentual en peso. 
El copolímero se auto-ensambla en agua en forma de micelas tubulares. Esta estructura ha sido 
determinada con experimentos de dispersión de neutrones de ángulo bajo (SANS, en inglés). También 
se realizó un estudio comparativo con el mismo PBPEO pero con un número diferente de bloques 
para el polióxido de etileno (� = 45) llamado PBPEO45. 
 
2) Resultados preliminares obtenidos en el estudio de soluciones acuosas de agregados de micelas 
tubulares realizadas con el surfactante catiónico bromuro de cetiltrimetilamonio y con el contraión 
salicilato de sodio (CTAB-NaSal). Varios estudios previos han sido realizados con este sistema, sin 
embargo, el sistema estudiado en el proyecto doctoral se modifica con la adición de una molécula 
fotosensible, 4-(fenilazo) ácido benzoico (AzoCOOH, cuando se desprotona lo hemos llamado 
AzoCOO). Esta molécula realiza cambios estructurales conformacionales, de isomerización trans a 
isomerización cis cuando luz de cierta longitud de onda irradia a la molécula. Se ha encontrado que 
la adición de esta molécula, en el estado trans, refuerza el comportamiento Maxwelliano de los 
sistemas micelares de CTAB-NaSal, y no se encontró un cambio sustancial una vez que la molécula 
migra al estado cis. También se estudiaron micelas tubulares auto-ensambladas a partir del 
surfactante zwitteriónico, NtetradecilN,N-dimetil-3-amonio-1-propanosulfonato, con el co-
surfactante aniónico sulfato dodecil de sodio (TDPS-SDS). A estas micelas también se les añadió 
AzoCOOH, sin embargo, los resultados no se presentan en la tesis. De esta manera, el estudio de dos 
sistemas diferentes con afinidades iónicas diferentes ha ayudado a incrementar nuestro conocimiento 
sobre agregados macromoleculares fotosensibles con morfologías anisotrópicas alargadas. 
 
3) Suspensiones de nanocompuestos de nanotubos de carbono de pared simple (SWCNTs, en inglés) 
fueron preparadas. Sin embargo, la escasa solubilidad de los nanotubos de carbono y el hecho de que 
no son propensos a formar dispersiones provoca que sea complicado alcanzar varias de sus potenciales 
aplicaciones. Algunos polímeros se han utilizado efectivamente como agentes de exfoliación de los 
paquetes de nanotubos haciendo posible la incorporación de éstos como entidades individuales o 
como paquetes muy delgados. Suspensiones de ácido poliacrílico (PAA, en inglés) fueron elegidas 
como medio dispersor para los SWCNTs, con resultados acertados. 
 
Antes de presentar los resultados experimentales, en el capítulo II se muestra una introducción a la 
teoría de los polímeros semiflexibles. Aquí se hace una revisión del movimiento de partículas 
Brownianas (sección II.2). Luego, tomando las ecuaciones de Smoluchowski y Langevin como 
elementos teóricos fundamentales, se revisitan los modelos de Rouse-Zimm en el régimen diluido 
(sección II.3). A continuación se muestra una breve introducción a la viscoelasticidad en suspensiones 
poliméricas diluidas (sección II.4). En la sección II.5 se discute el modelo de reptación de los polímeros 
en régimen semidiluido, dando lugar más adelante a la presentación de las características de los 
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polímeros vivos (sección II.6). El modelo común de los sistemas de polímeros vivos es el de micelas 
tubulares, que se introducen en la sección II.7. Al final del Capítulo II se presenta una breve discusión 
sobre la formación de geles (sección II.8) y se dan algunas características de los nanotubos de carbono 
y los polielectrolitos (sección II.9). 
 
En el capítulo III se presentan las técnicas experimentales utilizadas durante la investigación. En las 
secciones III.1 y III.2 se muestra el formalismo de reología y el fondo teórico de reometría 
respectivamente. La sección III.3 está dedicada a introducir los diferentes experimentos de dispersión 
de luz utilizados. Se presenta una introducción a dispersión dinámica de luz (DLS, en inglés) 
incluyendo la espectroscopía de onda difusa (DWS, en inglés) para obtener información 
microreológica. Al final de la sección, se presenta el formalismo de dispersión estática de luz (SLS, 
en inglés), con énfasis en las similitudes entre las diferentes fuentes de luz que se pueden utilizar. En 
la sección III.4 se presentan pruebas y resultados preliminares para los experimentos de dispersión 
de luz, las cuales es necesario realizar antes de llevar a cabo los experimentos finales.  
 
En el capítulo IV se muestra el desarrollo experimental y los resultados. Primero el desarrollo de la 
investigación de las micelas tubulares de copolímeros de bloque (PBPEO) (sección IV.1). Son 
presentados los resultados de los experimentos de reología mecánica. Estas micelas presentan un 
comportamiento de relajación no Maxwelliano, a diferencia de las micelas tubulares comunes 
formadas con surfactantes. También se muestran los resultados de DWS con información 
microreológica, donde se obtuvo el desplazamiento cuadrado medio de partículas trazadoras 
embebidas en la solución micelar. Con los espectros viscoelásticos complejos fue posible extraer 
información estructural de los agregados de micelas tubulares. También fue posible estimar la 
longitud de persistencia de las micelas tubulares mediante la búsqueda de cambios en los mecanismos 
de relajación, desde relajación por modos de Rouse-Zimm a ciertas frecuencias, hasta los modos de 
oscilación de plegado de los segmentos de Kuhn a frecuencias más altas. Estas longitudes de 
persistencia resultaron dependientes de la concentración de copolímero. Las longitudes de persistencia 
encontradas concuerdan satisfactoriamente con los resultados obtenidos por SANS. El análisis 
estructural con SANS reveló un cambio significativo sólo en la longitud de persistencia de las micelas 
tubulares, siendo más rígidas las micelas de PBPEO57 que las micelas de PBPEO45. Adicionalmente, 
el método de duplicación inversa (IAD, Inverse Adding Doubling en inglés) se implementó por 
primera vez en una suspensión compleja para obtener los parámetros ópticos necesarios para realizar 
los experimentos de DWS. 
 
En la sección IV.2 se introducen los resultados preliminares obtenidos en el estudio de soluciones 
acuosas de agregados de micelas tubulares de CTAB-NaSal con la adición de la molécula fotosensible 
AzoCOO (estabilizada en medio básico). Aquí se muestran los resultados de microreología por DWS, 
y se comparan directamente con los resultados de reología mecánica. También se presenta un 
conjunto de valores calculados para las longitudes características de las micelas. Se enfatiza el hecho 
de que la molécula fotosensible absorbe la luz, por lo cual, el uso del método IAD se vuelve totalmente 
necesario para evitar interpretaciones erróneas de los resultados de DWS debidas a las pérdidas por 
absorción de luz. Se muestran los valores obtenidos de los parámetros ópticos de las muestras 
estudiadas. El estudio completo es parte del proyecto doctoral de Natalia Rincón Londoño. 
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En la sección IV.3 se presentan los resultados relacionados con el sistema de SWCNTs y PAA. El 
ácido poliacrílico presenta una conformación globular en estado acuoso a pH ácido, y una forma casi 
alargada en estado acuoso a pH básico. Los experimentos reológicos de las suspensiones de PAA se 
realizaron a concentraciones mucho más bajas que las necesarias para alcanzar un estado de gel. Las 
suspensiones presentaron un régimen viscoelástico con un aumento en la repuesta de los módulos al 
aumentar el pH. Cuando se añade una pequeña cantidad de SWCNTs a las suspensiones de PAA 
(CSWCNTs = 0.5, 1, and 2 mg/mL), hay un cambio considerable en la respuesta reológica, donde el 
pH juega el papel de parámetro sintonizable para lograr una transición de viscoelasticidad a gel. 
Bajo cierta combinación de las concentraciones de PAA y de SWCNTs, el gel crítico fue encontrado 
para las suspensiones a pH = 7 y 9. Se aplicó el modelo de ley de potencia para geles críticos 
desarrollado por F. Chambon y H. H. Winter. Los resultados muestran que el exponente de la ley 
de potencias que se encuentra en los casos estudiados (siempre por debajo de 1), tiene un valor que 
concuerda con los valores encontrados para geles físicos antes estudiados. Una comparación con los 
valores del exponente para diferentes sistemas permite inferir que el exponente es una huella digital 
del gel estudiado. Al final, se hicieron especulaciones de los tamaños jerárquicos de la estructura de 
los geles formados, basados en los valores de los exponentes encontrados. 
 
Por último, se presentan las conclusiones finales en el capítulo V y en el capítulo VI las carátulas de 
los artículos publicados como resultado de las investigaciones. 
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General Goals 
 

• To study the structure and mechanical properties of thread-like morphologies 

embedded in complex fluids. 

 

• To understand the self-assembly dynamics of these systems, how they aggregate, 

and how the aggregation and dynamics have an effect at mesoscopic level. 

 

• Obtaining the optical properties of theses complex fluids, when they scatter and 

present absorption of light, to then perform microrheology experiments with light 

scattering. 
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I. Introduction 
 

The developing of techniques for treating materials has influenced human history. The main 
necessities for human survival were changing in each era of history accompanied by the evolution of 
the different applications of a variety of materials discovered at every moment. Humans have used 
naturally occurred complex materials, much more common than simple ones, without realizing that 
they were dealing with macromolecules. Nowadays, particularly during the 20th century, the develop 
of new techniques try to enhance the quality of life of communities with the use of new theoretical 
approaches and computer simulations. Understanding the basic structures of materials has come 
with the development of never before imaged technologies. In particular, the study of materials in 
the liquid state is now a significant multidisciplinary area of research which combines the knowledge 
of physicist, chemist, engineers, biologists, and experts in medical disciplines. These sort of soft 
systems are commonly called Complex Fluids. 
 
Complex fluids consider a great variety of systems, like polymer solutions, colloids, liquid crystals, 
surfactants, macromolecules solutions like biological matter: proteins, cellular membranes, DNA or 
viruses. All complex fluids lie in the category of Soft Matter which is built up from isolated molecules 
that self-assemble due to electrostatic forces (van der Waals), entropic interactions or steric 
interactions, to give born to more complex structures, already mentioned, at a mesoscopic scale. The 
entropy plays a vital role to get structures that organize autonomously and spontaneously in ordered 
and functional morphologies at a supramolecular scale. These length scales span over from 
approximately 100 nm to 1.5 µm, where complex fluids share peculiar intrinsic properties of 
distribution, order, and transport which determine the physics of the system as the high reaction to 
external fields, energy transfer, diffusivity, viscoelastic properties, and interphase phenomena. 
Therefore, there is a strong relationship among the molecular building blocks, their order at a 
mesoscopic level and their macroscopic behavior [1] [2] [3]. Also, the physical behavior of complex 
fluids occurs at an energy scale of the order of thermal energy. Hence the dynamical processes and 
activation could be analyzed at ambient conditions [3] [4]. Figure I.1 shows the triangle of Soft 

Condensed Matter, taken from the European Journal of Physics E editorial [10] which presents a 
unified vision of different systems studied continuously in the field of soft matter, and emphasizes 
the relationship between their building blocks. 

Figure I.1 Soft condensed matter triangle. It unifies different systems where their amphiphilic character, surface responses, 

electrostatic interactions and flexibility are enlightened [10].   
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It is worth to further mention the importance of complex fluids in technological applications. In 
polymer industry, paints and adhesives, colloids are base elements. They are also used for the 
elaboration of cosmetics and food, or are contained within geological fluids. Liquid crystals are 
commonly used in the design of electronic screens and biosensors; phospholipids are base building 
blocks for cellular membranes and different sort of soaps for cleaning necessities; and there is even a 
development of soft robotic technology. Scientists are inspired by the apparent simplicity and true 
complexity of nature, dreaming to mimic nature to create a world of engineered soft matter devices. 
All conceivable classes of materials with a wide range of mechanical, physical and chemical properties 
are employed, from liquids and gels to organic and inorganic solids. Functionalities never seen before 
are achieved. A nice review of current applications can be found in [6]. 
 
The self-assembly processes can be divided into static or dynamic. The differences among them lie 
in the thermodynamic description of the resulting systems. The former are structures which approach 
to equilibrium as they are organized, reducing their free energy until reach thermodynamic stability. 
The latter are stable structures with less entropy, formed out of equilibrium. These structures are 
obtained as a result of the constant supply of energy which subsequently is dissipated during a quasi-
stationary state [7]. This sort of self-assembly is inspired by biological systems, which are hard to 
study from the point of view of physicists due to their complexity. In general, the study of self-
assembled systems has become a cooperative job among physicists, chemists, engineers, biologists, 
and physicians. An extended review of different areas of study of soft matter (colloids, granular 
materials, foams and emulsions, liquid crystals, polymers, active and adaptive matter, simulations 
and big data), with an emphasis in the constant needed cooperation between experimental, 
computational and theoretical scientist, to obtain great results can be found in [8]. 
 
Among all systems with valuable applications that have been mentioned, there exists the possibility 
to adapt their functionalities in a non-covalent manner, to construct smart materials in various 
fields. Exploiting the intrinsic properties of responsiveness of non-covalent interactions, a great 
number of fancy self-assemblies have been achieved such as controlled-delivery, sensors, self-healing 
materials, piezoelectric devices, mechanochromism, or stimuli responsive devices. The general idea 
for the construction of adaptive architectures is to ingeniously design building blocks which may 
respond to external stimuli, and to produce self-assembly of these building blocks through multiple 
noncovalent interactions. The building blocks and the non-covalent interactions run together to 
allow the whole system to respond to different types of external stimuli, addressed in three different 
adaptiveness classes: (1) environmental adaptiveness, including smart self-assemblies adaptive to pH, 
temperature, pressure, and moisture; (2) special chemical adaptiveness, including nanostructures 
adaptive to important chemicals, such as enzymes, CO2, metal ions, redox agents, explosives, 
biomolecules; (3) field adaptiveness, including self-assembled materials that are capable of adapting 
to external fields such as magnetic field, electric field, light irradiation, and shear forces. A better 
detailed review for adaptive systems can be found elsewhere [9]. 
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1. Microscopic and mesoscopic approach 
 
There exists a hierarchical relation between structures at different length scales for complex fluids. 
These scales include different levels, from the microscopic at the molecular level, where the chemical 
unions form molecules. Their sizes span over atomic and molecular order up to ~ 5 nm. The 
mesoscopic scale at which the self-assembly of molecules occurs, span over ~ 50 nm up to ~ 1.5 µm. 
And finally, the macroscopic scale which reaches sizes above ~ 2 µm. At this scale, we can observe 
experimentally most of the complex fluids responses. In particular cases, the nano-compounds 
develop a connectivity among them due to energetic and entropic interactions, generating an 
interconnected network which extend up to mesoscopic sizes, forming strong viscoelastic materials, 
and even stronger materials as rubbers. There exists the possibility to trespass the thermodynamic 
equilibrium boundaries giving place to the formation of physical and chemical gels, and when the 
excluded volume interactions become stronger, glasses can be formed. The basic building blocks for 
these different nano-structured materials can be colloidal spherical particles, or anisotropic particles 
like rigid rods; but also, more elongated elements and semiflexible systems as polymeric chains, which 
in principle are soft but dynamic and tough at the same time. A review with future perspectives in 
the field of connected polymeric materials, with the aims to identify and unify the underlaying 
principles of controlling toughening mechanisms and mechanical self-healing behavior can be found 
in [5]. It is hypothesized that the anisotropy of rod-like particles with short-range attractions can 
significantly affect the competition between kinetically arrested states, equilibrium phases, self-
assembled microstructures, and macroscopic rheological properties. Hopefully one can appreciate the 
diverse forms and functions of anisotropic objects that nature generates on a microscopic and a 
macroscopic level. 
 
 

2. Outline of thesis 
 
The research includes seeking on the mechanical properties and mesoscopic structure of three 
adaptive systems: adaptiveness to polymerization size changes in polymer chains, conformational 
changes under light exposure, and changes when pH is modified, respectively. The aims are focused 
in understanding the mechanisms that increase the rheological responses of the interconnected 
thread-like morphologies within each system. These systems are: 
 
1) A diblock copolymer (1,4 poly(1,3-butadiene)–polyethylene oxide), with degree of polymerization 
� = 37 for the polybutadiene block and � = 57 for the polyethylene oxide block (PBPEO57), 
characterized in aqueous solution at different weight percentage concentration. The diblock 
copolymer self-assembles in water as worm-like micelles determined by small angle neutron scattering 
(SANS). A comparison study with the same PBPEO but with different number of blocks for the 
polyethylene (� = 45, called PBPEO45) was performed. 
 
2) Preliminary results obtained in the study of aqueous solutions of worm-like micelle aggregates 
done with the cationic surfactant cetyltrimethylammonium bromide with the counterion sodium 
salicylate (CTAB-NaSal). Previous studies have been largely made with this system, however, our 
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system is modified with the addition of a photo-responsive molecule 4-(phenylazo) benzoic acid 
(AzoCOOH, when deprotonated we call it AzoCOO) which perform conformational structural 
changes (trans-cis isomerization) when light beams of certain wavelength strike the molecule. The 
addition of this photo-responsive molecule, even at trans configuration, reinforce the Maxwellian 
behavior of the systems. When the molecule is stabilized at cis state, no particular changes where 
observed. Also worm-like micelle macromolecules of zwitterionic surfactant, N-tetradecyl-N,N-
dimethyl-3-ammonio-1-propanesulfonate with the anionic cosurfactant sodium dodecyl sulfate 
(TDPS-SDS) where studied, with the addition of AzoCOOH as well, however results are not 
presented. Nonetheless, the study of two different systems with different ionic affinities works to 
increment our knowledge in photo-responsive macromolecular aggregates with thread-like 
morphologies. 
 
3) Nanocomposite suspensions of single wall carbon nanotubes (SWCNT) were prepared. 
Nevertheless, the poor solubility of carbon nanotubes and the fact that they are not prone to form 
dispersions lead to their potential applications difficult to be reached. Some polymers have been used 
effectively as exfoliation agents of nanotube bundles making possible the incorporation of the 
nanotubes as individual entities or as very thin bundles. Polyelectrolyte suspensions of poly(acrylic) 
acid (PAA) were chosen as dispersed medium candidate for the SWCNT, with successful results. 
 
Before presenting the experimental results, an introduction to the theory of semiflexible polymers is 
shown in Chapter II. Here, there is a review of particle Brownian motion (section II.2). Then, taking 
Smoluchowski and Langevin equations as the basic formalisms for Brownian dynamics in polymeric 
chain components, the Rouse-Zimm models in diluted regime are revisited (section II.3). Next, a 
brief introduction to viscoelasticity in diluted polymeric suspensions is shown (section II.4). In section 
II.5 the reptation model for polymers in semidilute regime is discussed, giving place later to the 
presentation of the characteristics of living polymers (section II.6). The common model of living 
polymers systems is worm-like micelles, which are introduced in section II.7. At the end of Chapter 
II, a brief discussion about formation of gels is presented (section II.8) and some characteristics of 
carbon nanotubes and polyelectrolytes are given (section II.9). 
 
In Chapter III the experimental techniques used during the research are presented. In sections III.1 
and III.2 the rheology formalism is shown and the theoretical background for rheometry as well 
respectively. Section III.3 is devoted to introducing the different light scattering experiments used. 
An introduction to dynamic light scattering (DLS) including diffusing wave spectroscopy (DWS) to 
get microrheology information is revisited. At the end of the section, the formalism of static light 
scattering (SLS) is reviewed, with an emphasis in the similarities among the different sources of light 
that can be used. In section III.4 tests and preliminary results for light scattering experiments 
necessary to get before performing the final experimental research are presented.  
 
In Chapter IV the experimental development and results are shown. First the concerning to both 
PBPEO diblock copolymers worm-like micelles (section IV.1). Results for rheological experiments 
are shown, which present an uncommon non Maxwellian relaxation behavior, rather than the 
common worm-like micelles formed with surfactants. Additionally, DWS results show 
microrheological information, where the mean square displacement of probe particles in the micellar 
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solution was obtained. With the complex viscoelastic spectra was possible to extract valuable 
structural information of the worm-like micelle aggregates. Estimation of worm-like micelles 
persistence lengths was possible through finding relaxation mechanisms changes, from Rouse-Zimm 
modes to bending modes of the Kuhn segments. These persistence lengths are copolymer 
concentration depended, and sizes results to be in agreement with the results obtained by SANS. 
Structural analysis with SANS revealed a significant change just in the persistence length of the 
worm-like micelles, being stiffer the PBPEO57 worm-like micelles than the PBPEO45 micelles. 
Additionally, the inverse adding doubling method (IAD) was implemented for a first time in a 
complex fluid suspension in order to get the necessary optical parameters to perform DWS 
experiments. 
 
In section IV.2 we introduce the preliminary results obtained in the study of aqueous solutions of 
worm-like micelle aggregates done with CTAB-NaSal with the addition of the photo-responsive 
molecule AzoCOO (stabilized in basic medium). Here there are shown some DWS microrheology 
results which are compared directly with the mechanical rheology results. A set of calculated values 
for the characteristic lengths of micelles is also presented. It is emphasized the fact that the photo-
responsive molecule absorbs light, then the use of the IAD method is primarily necessary to avoid 
misinterpretations of DWS results. Measured values of the obtained optical parameters are shown. 
The complete study is under development of Natalia Rincón-Londoño, as her doctoral project. 
 
In section IV.3 the results related with the system of SWCNT and PAA are presented. Poly(acrylic) 
acid presents a globular conformation in acidic aqueous state, and an almost elongated shape in 
basic aqueous state. Rheological results of PAA suspensions are shown at low concentrations, much 
lower before a gel state is encounter. The suspensions presented a viscoelastic regime with an increase 
in strength as the pH increase. When a small amount of SWCNT is added to the PAA suspensions 
(CSWCNTs = 0.5, 1, and 2 mg/mL), rheology experiments were performed, and the results are also 
presented. There is a huge change in the rheological response, and with the pH as a parameter to go 
from viscoelasticity to the gel regime. Under certain combination of PAA and SWCNT 
concentrations, the critical gel was found for suspensions at pH = 7 and 9. We applied the power 
law model for critical gels developed by F. Chambon and H. H. Winter. Presented results show that 
the power law exponent found in the studied cases (always below 1), has a value in good agreement 
to the ones got for physical gels. A comparison with the values of the exponent for different systems 
allows to formulate that the exponent is a fingerprint of the studied gel. At the end, speculations of 
the hierarchical structure sizes of the formed gels was done, based on the exponent values found. 
 
Finally, the concluding remarks are presented in Chapter V, and the cover headings of the published 
articles are presented in Chapter VI.
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II. Theory of polymers 

 

1. Introduction 
 
As has been mentioned in the last chapter, complex fluids are materials built up from basic 
macromolecular blocks which are assembled in the mesoscopic scale, giving rise to peculiar 
macroscopic behaviors. Depending on the sizes and interactions among the building blocks, the 
resulting mesoscopic structures can present different macroscopical responses: viscoelasticity, 
gelation, vitrification, solidification, etc. The resulting response is also altered by the thermodynamic 
state of the system; in some cases, in equilibrium, and in many other interesting cases, out of 
equilibrium; as well as when the system is subjected to deformation. 
 
This work focuses on the viscoelastic response of certain complex fluids, and in a particular case of 
gelation. To understand the viscoelastic and gel behavior, it is essential to describe the dynamics of 
these macromolecules in liquid state. The most convenient approach is the theory of polymers, which 
is possible to be applied for understanding different thread-like systems like: worm-like micelles and 
carbon nanotubes embedded in a polyelectrolyte matrix; always forming liquid solutions or 
suspensions. One can find in the literature different approaches and explanations for polymer 
dynamics. Here is presented the classic formalism used by M. Doi and S. F. Edwards [11], and M. 
Rubinstein and R. H. Colby [12]. In the case of classic polymers, there exist two limits: (a) highly 
flexible polymers, where, on a sufficiently large scale, the polymer appears as a random walk with a 
step length much smaller than the length of the whole polymer (Figure II.1a), and (b) rigid polymer 
rods (Figure II.1b) with a persistence length larger than the polymer chain length. At ambient 
temperature, these polymers are in thermal agitation, and as individual entities (in diluted regime), 
we are allowed to study them in a Langevin (or Smoluchowski) approximation, figuring out that the 
constituent components of the chains are subjected to a constant interaction with the particles of 
solvent (much smaller than the basic blocks of the polymers). At higher concentrations, (semi-dilute 
and concentrated regimes) as shown in Figure II.1c and d; there must be considered the impeded 
dynamics of a single polymer chain due to the interactions between different polymer chains. Here, 
to understand the relaxation mechanism of polymeric chains, it is useful the concept of tube where 
the polymer is engaged until the moment where the stress relaxes completely. We will come back to 
this concept when the reptation model is described. 
 

Figure II.1 (a) Flexible polymer, (b) rod-like polymer, (c), (d) their concentrated solutions. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

 
 
 

 
 
 
 
 
 

 

           (a)           (b)            (c)             (d) 
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1.1. Polymer concentrations 

 
For ideal polymeric chains, there are no interactions between 
monomers that are far along the chain, even if they approach each 
other in space. Ideal chains are good models for polymer melts, 
concentrated solutions, and solutions at !-temperature. This section 
and subsequent are restricted to the study of ideal chains of 
polymers in good solvent solutions. 
 
Polymer solutions are classified as dilute or semidilute (sometimes 
also concentrated) depending on the polymer mass concentration ", 
the ratio of the total mass of polymer dissolved in a solution, and 
the volume of the solution. An alternative measure of concentration 
is the volume fraction #, the ratio of occupied volume of the 
polymer in the solution and the volume of the solution. These two 
concentrations are related through $, the polymer density; " = #$. 
The pervaded volume %  is the volume of solution spanned by the 
polymer chain, % ≈ '3, where in this case ' is the size of the chain. 
This volume is typically orders of magnitude larger than the 
occupied volume of the chain, which is the sum of the volume 
occupied by each monomer. The volume fraction of a single 
molecule inside its pervaded volume is called the overlap volume 

fraction #∗ or in terms of concentration it is known as the overlap 
concentration "∗. 
 
If the concentration of the polymer solution is equal to the overlap 
concentration, the pervaded volumes of macromolecules densely fill 
space and chains are just at overlap (" = "∗)  (see Figure II.2b). If 
the polymer concentration is below the overlap concentration, the 

solution is diluted (" < "∗) and therefore, the average distance between chains is larger than their 
size (see Figure II.2a). In this case most properties of diluted solutions are very similar to the pure 
solvent. At polymer concentrations above the overlap (" > "∗), the solution is in the semidilute 
regime (see Figure II.2c). The actual values of volume fractions in these solutions is very small, and 
most of the volume is occupied by the solvent. However, polymer chains overlap and dominate most 
of the different physical properties, rather than the solvent, such as viscosity and viscoelasticity. 
 
It is worth to mention here, that depending on the nature of the solvent, polymers will behave 
different due to interactions with the solvent molecules. In general, we classify the solvents as poor 
solvents, when the polymer chains have a coil-like conformation and do not disperse well with a 
probable sedimentation. Theta solvents, when polymer chains are exactly neutrally interacting with 
the solvent with an elongated conformation. And good solvents, when polymeric chains swell and 
prefer to stay totally dispersed an elongated. Flory developed a theory of polymers in good solvent, 
and a good introduction to this can be found in the book of M. Rubinstein and R. H. Colby [12]. 

(a) Dilute (" < "∗) 
 

(b) Overlap (" = "∗)  
 

(c) Overlap (" > "∗)  
 

Figure II.2 Solution regimes of 

flexible polymers. Taken from 

[12]. 
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The next two sections treat with the classical theory of flexible polymers in dilute regime. This 
theory consists of well-known models which describes the relaxation mechanisms of individual 
polymer chains. These approaches are also well applied for the case of thread-like systems in solution 
under deformation, in semidilute regime at very short times of stress relaxation response, compared 
to their typical relaxation times, or in the Fourier domain, at high frequencies beyond the frequencies 
achievable by rheometers. Before starting with the models, it is necessary to introduce the movement 
of individual particles due to thermal agitation. The random motion of particles is the mechanism 
for displacements of all constituents of polymeric chains by the constant interaction with the solvent 
molecules. The Smoluchowski and Langevin equations contain the information regarding the 
displacement of particles immersed in a fluctuating thermal system. 
 
 

2. Brownian motion: Smoluchowski and Langevin equations 
 
Brownian motion dominates various time-dependent phenomena in polymer solutions such as 
viscoelasticity, diffusion, birefringence, or dynamic light scattering. In this section, the discussion 
will be limited to the aspects useful in the application to polymer solutions and suspensions. Here 
we take a phenomenological approach, regarding Brownian motion as a kind of stochastic process 
described with known macroscopic laws, according to the proposed model by A. Einstein [13] [14]. 
This approach is limited to time scales and length scales much longer than those characteristic of 
solvent molecules. 
 
The Smoluchowski equation is derived from a diffusion equation 
which generalize the changes in concentration as a distribution 
function which depends on time and position. The Smoluchowski 
equation has a clear relevance in the thermodynamics of 
stochastic processes. The Langevin equation, on the other hand, 
analyzes the movement of particles from the stochastic forces of 
the medium that give rise to the process of diffusion, which 
permits obtaining a direct relation between fluctuations in the 
system at thermal equilibrium and the response of the system to 
perturbations [11] [15]. In general, the Brownian motion of 
particles is a functional prototype to provide valuable insights 
about the mechanisms responsible for the existence of fluctuations 
and energy dissipation. Figure II.3 sketches this random motion 
of particles within a liquid.  
 
 

2.1. Smoluchowski equation 

 
The diffusion process is phenomenologically described by Fick’s law, which says that if the 
concentration of particles in an erratic movement is not uniform, there exists a net flux -(., /), which 
varies from regions at high concentrations to others with less concentration 
 

Figure II.3 Motion of a particle in a liquid 

is a random walk that results from random 

collisions with molecules in the liquid. 
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 ( , ) ( , )t D c t= − ∇J r r ,  (II.2.1) 

 
where 0 is the diffusion coefficient. The microscopic origin of the flux is the random motion of the 
particles; if the concentration is not uniform, the flux comes entirely from fluctuations in the velocity 
of individual particles. If we have a delimited volume % , by a surface 1, the quantity of matter that 
goes through the surface is described by a Gauss integral 
 

  
S V

d dV⋅ = ∇ ⋅∫ ∫J a J .  (II.2.2) 

 
On the other hand, the flux of particles through the volume is compensated with a change in 
concentration 
 

 
V

d c
cdV dV

dt t

∂
− = −

∂∫ ∫ ,  (II.2.3) 

 
which leads to the familiar continuity equation 
 

 
c

t

∂
∇ ⋅ = −

∂
J . (II.2.4) 

 
Using Fick’s law (equation (II.2.1)), we obtain the diffusion equation 

 

 2( , )
( , )

c t
D c t

t

∂
= ∇

∂
r

r .  (II.2.5) 

 
The diffusion equation allows to calculate the concentration of particles at a site ., and time /, under 
certain initial and boundary condition. For the case of / = 0, centered at . = 0, with a Dirac delta 
shape, the solution of the diffusion equation is 
 

 

( )

2

3/2
( , ) exp

44

N
c t

DtDtπ

  = −   

r
r ,  (II.2.6) 

 
moreover, renormalizing it to one, for identical particles, this quantity is understood as the 
probability of finding a particle at a position . and time /, that we call Ψ(., /). In the last equation 
3  is the total number of particles immersed in the fluid. In this approach, it is considered the motion 
of an ensemble of 3  Brownian particles, placed under equivalent physical conditions, rather than 
considering the motion of a single particle over a length of time. This treatment is known as the 
Einstein-Smoluchowski theory. Using the distribution function, it is possible to calculate its second 
moment, which is 
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 2 4

0

4
( ) ( , ) 6t c t r dr Dt

N

π
∞

∆ = =∫r r . (II.2.7) 

 
This equation is the mean square displacement of Brownian diffusive particles at sufficiently long 
times. The equation represents the average traveled distance by each particle at time /, starting at 
time / = 0. 
 
Generalizing the Einstein-Smoluchowski treatment including an external potential 4(.), which 
exerts a conservative force 5 = −∇4(.), Fick’s law must be modified. Whether this is a weak force, 
the potential gives rise to an average velocity linear in 5, so that 
 

 
1

( )U
ζ

= − ∇v r .  (II.2.8) 

 
The term 8 is a friction constant. When the particles are sufficiently large, spherical with radius 9, 
and are immersed in a solvent with viscosity :, the friction constant can be obtained from 
hydrodynamics, known as the Stokes friction term 
 
 6 aζ πη= .  (II.2.9) 

 
The Fick’s law with an additional flux "; is now 
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c t

t D c t U
ζ

= − ∇ − ∇
r

J r r r . (II.2.10) 

 
We notice that the diffusion coefficient, in the equilibrium state is none other than the Stokes-
Einstein equation 
 

 
6

Bk T
D

aπη
= . (II.2.11) 

 
Using the Stokes-Einstein equation and the continuity equation (II.2.4) to rewrite the modified Fick’s 
law (II.2.10), we obtain a generalized diffusion equation 
 

 
1

B

c c U
k T c

t x x xζ

 ∂ ∂ ∂ ∂ = +  ∂ ∂ ∂ ∂ 
,  (II.2.12) 

 
which is called the Smoluchowski equation. This equation was obtained in one dimension for 
simplicity. If a flux velocity is defined by <= ≡ ? "⁄  (equation (II.2.10) in one dimension), that is 

 

 ( )1
lnf Bv k T c U

xζ

∂
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∂
,  (II.2.13) 
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we can rewrite the Smoluchowski equation as 
 

 ( )f

c
cv

t x

∂ ∂
= −

∂ ∂
,  (II.2.14) 

 
which is the equivalent continuity equation with an external potential. The term 4(A) + CDE ln " is 
the chemical potential of noninteracting particles of concentration ". It stablishes that what must 
be constant in the equilibrium state is not concentration, but the chemical potential. This results in 
a generalization of the Fick’s law. In a more standardized way, it is more appropriate to use the 
normalized probability distribution function Ψ(., /), rather than the concentration term "(., /). 
 
 

2.2. Langevin equation 

 
An equivalent treatment to Smoluchowski’s consist in analyzing the case of just a Brownian particle 
using the Newton’s-like equation 
 

 
where ; is the velocity of the center of mass of the particle with mass �. Langevin described the 
interaction of the colloidal particle with the particles of the solvent assuming that colloidal particles 
are significantly larger than the molecules in the liquid but small enough that collisions with 
molecules noticeable move the particle. He separated the force G(/) in two terms: one term of friction 
(slow and systematic) which accounts for the viscosity of the solvent; and one term of fluctuating 
motion due to the constant collisions with the molecules of the solvent (fast and stochastic), 
 

 ( )
d

m t
dt

ζ ′= − +
v

v F . (II.2.16) 

 
−8; is a drag force which coefficient is the Stokes friction parameter and 5′(/) has a white noise 
behavior due to its stochastic nature, that means that 5′(/) is a Gaussian force with  〈5′(/)〉 = 0, 
but 〈5′(/)5′(/′)〉 = 28CDEK(/ − /′). Taking the vectoral product of equation (II.2.16) with �, and 
averaging on the ensemble, we obtain 
 

 
2

2 2 2

2
2

d d

m dtdt

ζ
+ =r r v .  (II.2.17) 

 
If the particle is in thermal equilibrium with the molecules of the liquid, the energy equipartition 
theorem give us that 〈;2〉 = 3CME �⁄ , and solving the equation, we obtain two results for different 
time approximations: for / ≪ � 8⁄ , at early times it is known as a ballistic regime 
 

 2 23
( ) Bk T
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m
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For / ≫ � 8⁄ , the mean square displacement is 
 

 
2 6
( ) 6Bk T
t t Dt

ζ
∆ ≈ =r .  (II.2.19) 

 
This last equation is the same obtained with the Smoluchowski formalism. Both formalisms are 
equivalent but with clear differences between them. Smoluchowski deals with a probability 
distribution function, derived from the diffusion equation when it considers indistinguishable 
particles for the calculus of different moments of the distribution. On the other hand, Langevin 
approximation is centered in one particle, and it is just capable of calculating averages on the 
ensemble, given the properties of the stochastic forces. 
 
 

2.3. Interacting particles 

 
So far, all the derived equations have considered the displacement of particles in one or three 
dimensions. However, it is useful to consider a system with many degrees of freedom. Furthermore, 
a more realistic situation includes interactions between each one of the colloidal particles suspended 
in a fluid, all having equal size. The study of this system is the basis for the general theory of polymer 
solutions and suspensions. To construct the Smoluchowski and Langevin equations, we have to know 
the relation between the average velocity QR and the external forces given for the Smoluchowski 
equation or the drag forces given for the Langevin equation. Let {TR} ≡ (T0,… , TX) be the position 
of the particles. The sought relation is written as 
 

 n nm m
m

= ⋅∑V H F ,  (II.2.20) 

 
which defines the mobility tensor YRZ. Here, 5Z is the force acting on particle �. This force creates 
a velocity field and alters the velocity of particle � due to hydrodynamic interactions between them. 
To understand the relaxation mechanisms of polymers which are treated in the next section, it is 
necessary to know a proper expression for the mobility tensor. For this, we follow the calculations 
to get the fluid velocity ;(.), created by external forces [11]. In the usual condition of Brownian 
motion, the relevant hydrodynamic equation of motion is that of the low Reynolds number 
hydrodynamics which assumes: 
 

• The fluid is incompressible 
 

 0v
r

α
α

∂
=

∂
, (II.2.21) 

 
where the tensor notation is used. 
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• The inertia force of the fluid is negligibly small, so that if [\](.) and ^\(.) represent the 

stress tensor and the external force per unit volume, respectively, then 
 

 ( )g
r αβ α
β

σ
∂

= −
∂

r .  (II.2.22) 

 
When a strain is applied to the system, assuming this as the constitutive equation, the components 
of the stress tensor are [16] 
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where  _  is the pressure. From the last equations, it follows that 
 

 
2

2
v P g

rr
α α

αβ

η
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.  (II.2.24) 

 
Equations (II.2.21) and (II.2.24) are called the Stokes approximation and are the basis of the 
hydrodynamic interactions in colloidal suspensions and polymer solutions. Calculating the force field 
created by the external forces acting on the particles, one finds that the particles move with the 
same velocity as the fluid [11], and the mobility tensor has the analytical form 
 

 ( )1
ˆˆ( )

8 rπη
= +H r rrI . (II.2.25) 

 
This equation is the so-called Oseen tensor. I  is the unitary matrix and . ̂is a unitary vector in the 
direction of vector .. A simple approximation is adopted in the theory of polymer solutions to avoid 
the failure in which YRR = Y(0) has infinite value, because so far we have considered that the 
particles are regarded as point. Starting from a collection of particles with finite size, this difficulty 
does not arise. However, for finite size particles the solution of Stokes equation is obtained only in 
the form of a perturbation expansion. The approximation is 
 

 ( );           ,      .nn nm n m n m
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  (II.2.26) 

 
With this formalism, we obtain the generalization for the Smoluchowski and Langevin equation for 
interacting particles subjected to an external field 
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respectively. These equations join up the interaction between particles, using the Oseen tensor as a 
result of the hydrodynamic interactions. The external potential 4  is regarded as the interaction 
potential between particles. 
 
 

3. Classical theory of flexible polymers: diluted regime 
 
Having seen the general background of Brownian 
motion, now we have the analytical tools to discuss the 
dynamics of a polymer in solution. Before that, in this 
section is pointed out that the static properties of a 
polymer can be represented by a set of beads connected 
along a chain. Flexible polymers are allowed to take a 
considerable number of different configurations due to 
the rotation of their chemical monomer-monomer 
connections. For this reason, the static properties of 
polymers are more adequately described statistically. 
Here we consider the simple case of the freely jointed 

model. This model consists of a chain with 3  links, each 
of length a0, able to point in any direction 
independently of each other (see Figure II.4). The 
spatial conformation of the complete chain is specified 
by the set of 3 + 1  position vectors {TR} ≡ (T0,… , TX) of the joints, or alternatively by the set 
of joint vectors {.R} ≡ (.1, … , .X), where .R = TR − TR−1 for � = 1,2,… ,3 . Because the joint 
vectors are independent of each other, the distribution function for the spatial conformation of the 
polymer is described by  
 

 { }( )
1
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N

n n
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ψ
=

Ψ = ∏r r ,  (II.3.1) 

 
where c(.R) is the random distribution of a vector with constant length a0, 
 

 ( )02
0

1
( )

4
b

b
ψ δ

π
= −rr , (II.3.2) 

 
which is normalized to one. There is a way to estimate the size of a polymer, considering the end-
to-end vector T of the chain 
 

 

a0 

.1 

.2 

.3 

.X  

T 

Figure II.4 Freely jointed chain for flexible polymers. 
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 0
1
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N n
n=

= − = ∑R R R r . (II.3.3) 

 
The freely jointed polymer chain resembles the displacement of a random walker, known as a random 
coil; hence 〈.R〉 = 0 and 〈T〉 = 0, but 〈T2〉 has a finite value, which can be used as a characteristic 
length of the chain. The value is 
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Using '̅̅̅̅̅ = √〈T2〉, the characteristic size of the chain is then 

 

 0R Nb= .  (II.3.5) 

 
More general models also preserve the proportionality with the number of joints 〈T2〉 ∝ 3  and its 
length a0. Another value which is essential to estimate is the Kuhn statistical segment length 
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b
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,  (II.3.6) 

 
with 'Zij the maximum length of the end-to-end vector T. In most cases, an effective bond length 
a (in the simplest cases it is the constant value a0) is assumed as the Kuhn length. This value permits 
us to elucidate the stiffness of the polymer, and also the persistence length of worm-like chains as 
will be mentioned further in this document. 
 
It is also important to mention the statistic distribution of the end-to-end vector of a polymeric 
chain. Consider Φ(T,3), as the distribution function with the probability T that the end-to-end 
vector of the chain consists of 3  links. Given the conformational distribution for Ψ({.R}), Φ(T,3) 
is calculated by 
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For the freely jointed model with large 3 , the result is 
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The distribution function is Gaussian. The same kind of distribution appears for '̅̅̅̅̅ and the same 3  
in more general polymer chain models. A Gaussian distribution is a widespread used distribution for 
the calculation of the end-to-end vector as well. 
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3.1. The Rouse model 

 
As it has been seen in this chapter, the static properties of a polymer can be 
represented by a set of beads connected along a chain. A typical procedure to 
model the dynamics of the polymer is assuming a Brownian motion of such 
beads [11]. Here, we consider a Gauss chain mechanical model with the beads 
connected by harmonic springs. Such a model was first proposed by P. E. Rouse 
[17] and has been the basic formulation for the dynamics of dilute polymer 
solutions. Consider {TR} as the positions of the beads mentioned already in 
the last section, here starting from the subscript 1 (Figure II.5). The equation 
of motion is described by either the Smoluchowski equation (II.2.27) or the 
Langevin equation (II.2.28). 
 
In the Rouse model, for simplicity the excluded volume and hydrodynamic 
interactions are neglected. Thus the mobility tensor and the interaction 
potential are written as 
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which is the potential of a harmonic oscillator. It includes a phenomenological thermodynamic 
counterpart proportional to the thermal energy CDE  as the “spring constant”, chosen using the 
equipartition of energy principle. In this model, the Langevin equation (II.2.28) is a linear equation 
for TR 
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(II.3.11) 

 

 
As previously mentioned, 5′R is a Gaussian random force. The suffix � can be regarded as a 
continuous variable. Hence, in the continuous limit, equations (II.3.11) are rewritten as a set of 
nonlinear differential equations with boundary conditions. The essence of the Rouse model is in the 
spirit of modeling the dynamics of connected objects, in this case, beads with Brownian motion 
connected by springs. A way of treating such a system is to find the normal coordinates which 
uncouple the motion of the beads, reducing the system of nonlinear equations into a system of linear 

T1 

TX  

Figure II.5 Rouse model 

with beads connected by 

harmonic springs. 
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equations in the new coordinates lm [11]. The motion of the system in these normal coordinates is 

called Rouse modes. The transformation rule to get the normal coordinates is 
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Theses normal coordinates have a physical significance, which is evident when one obtains the inverse 
transform to get the spatial coordinates 
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l0 represents the position of the center of mass with a mean square displacement 6 opq

Xr /, that means 

a diffusive behavior with a definite diffusion coefficient. lm with s > 0 represents the internal 

conformation of the polymer, that is, the normal coordinates generate the local motion of the chain 
which includes 3 s⁄  segments and corresponds to the motion with the length scale of the order 
(3a2 s⁄ )1 2⁄ , for instance, when s = 1, the corresponding Rouse mode includes all 3  segments of the 
polymer, and (3a2)1 2⁄  is the length of the end-to-end vector (equation (II.3.5)). 
 
Using the transformation (II.3.12), it is possible to construct the correlation function of normal 
coordinates. With s > 0, it is 
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where the decaying time tm is 
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from where we can conclude that the lower the Rouse mode (the ones with longer chains in collective 
motion), the slower the Rouse mode. t1 = tu is the slowest mode, known as the Rouse time. 
 
On the other hand, using the inverse transformation, (II.3.13), it is possible to calculate the time 
correlation function of the end-to-end vector. Renaming the end-to-end vector as v(/) ≡ TX(/) −
T0(/), to avoid confusion with the parameter T which will be used later, the correlation function is  
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which behaves as a sum of relaxation mechanisms, with a common relaxation Rouse time.  
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Even when the Rouse model is useful to understand the dynamics of polymers in dilute solutions, it 
does not consider the hydrodynamic interactions between beads, neither the excluded volume 
interactions. B. H. Zimm introduces the generalization when only the hydrodynamic interactions are 
accounted for and later, including also the excluded volume. The role of solvent becomes important 
and allows to extent the usefulness of the model to systems at high densities, as the worm-like 
micellar systems that are introduced later in this text. 
 
 

3.2. The Zimm model 

 
The polymeric suspension presents Θ conditions when the hydrodynamic interactions are taking into 
account. In this model the mobility tensor change and the Oseen tensor has to be used (equation 
(II.2.25)), in this case with x = |.RZ|, and .RZ ≡ TR − TZ, the difference between any two vector 
positions of the beads. With the Oseen tensor, the Langevin equation in the continuous limit, and 
considering the same harmonic potential between particles as previously, is now 
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Since YRZ is a nonlinear function of .RZ, the last equation is quite tricky to handle. To simplify it, 
Zimm proposed an average of the Oseen tensor [18]. After applying it, it is possible to obtain again 
a set of normal coordinates, which are uncoupled under certain approximations. The difference with 
the Rouse model is in the coefficients of the decaying times associated with the correlation functions 
calculated from the transformation rules between coordinates and normal coordinates. Here the 
decaying times are 
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with the corresponding Rouse time (Rouse-Zimm time) 
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If not just the hydrodynamic interactions are considered, but also the excluded volume interaction 
(volume <), the polymer is assumed to be diluted in a good solvent. There is then an addition of a 
new potential 
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As previously, with this model the Langevin equation is nonlinear, but using the normal coordinates 
and using certain approximations, it is possible to find the correct set of linear equations for the 
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normal coordinates. This model is called Rouse-Zimm with excluded volume interactions. Now, the 
decaying times for the correlation functions of the normal coordinates are 
 

 3
p Rp ντ τ −= , (II.3.21) 

 
and 
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τ = ,  (II.3.22) 

 
where y is the exponent of Flory theory for polymeric solutions. For the case of a good solvent, the 
exponent has the value y = 3 5⁄ . Finally, even when the relaxation times are different, they could be 
summarized in the following manner 
 

 p p µτ −∝ , (II.3.23) 

 
with z = 2 for the Rouse model, z = 3 2⁄  for the Rouse-Zimm model with hydrodynamic interactions, 
and z = 9 5⁄  for the Rouse-Zimm model when excluded volume interactions are added. 
 
 

4. Viscoelasticity in diluted polymeric suspensions 
 
Colloidal suspensions and polymer solutions have interesting mechanical properties. In general, these 
materials have a viscoelastic response. The introduction to the study of the rheological properties of 
viscoelastic materials is devoted to Chapter III, but here is given an introduction to the microscopic 
fundamentals of viscoelasticity. For a system under strain, we need a proper expression for the 
macroscopic stress tensor [\], which represents the force per unit area exerted on a surface defined 

by vector |, in the direction of vector }. The stress tensor can be expressed as the sum of an isotropic 

tensor  [̅̅̅̅K\] and an anisotropic tensor [\]
(i) [11]. In an incompressible fluid, the isotropic part is 

determined by the external conditions and is irrelevant in our discussion. The anisotropic tensor, 
which is a constitutive equation, from now just called [\] is conformed by two parts 
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The terms :(�\] + �]\) + 〈_〉K\] represent the stress due to the solvent molecules, which include 

information about its viscosity :, the local velocity gradient �\] (macroscopically is the shear rate 

� = �̇), and pressure _ . The term ( )

1

N

m m
m

pc
F R

N
α β αβσ

=

− =∑  is the contribution of the beads 

conforming the polymer chain. This last part is the one that concerns us to obtain the viscoelasticity 

of the polymer. [\]
(m) contains the contribution of the component of the joint vector between particles 
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'Z, mediated by force �Z = − �
�u�

(CDE ln Ψ + 4), which has the form of a chemical potential, 

with Ψ the probability distribution function which reminds us the distribution function considered 
in the Smoluchowski equation. Rewritten regarding the corresponding potential 
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The factor " 3⁄  accounts for the number of polymers in the unit volume. Passing to the continuous 
limit and transforming to normal coordinates, the equation (II.4.2) is transformed to 
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where it was considered the same potential used for the Rouse model. Here Cm = 6�2opq
XM2 s2. The 

strain imposed on the material induce a velocity gradient in the fluid, and consequently in the 
polymer beads. This velocity gradient changes the distribution function of the polymer particles. 
Hence the Smoluchowski and Langevin equations are modified, adding an extra term. Through the 
Smoluchowski equation, in normal coordinates, it is possible to obtain a result for ⟨�m\�m]⟩ in the 

case of a no constant velocity gradient 
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with tm the relaxation times for different s values, in the Rouse model. Substituting the equation 

(II.4.4) into the equation (II.4.3), and comparing with the equation of linear response for the stress 
tensor (equation (III.1.10)introduced in Chapter III), with the velocity gradient equal to the shear 
rate, � = �̇, it is possible to obtain the relaxation modulus �(/), for the polymer beds, 
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The relaxation modulus includes the contribution for each tm relaxation time, from Rouse modes, 

which considers all polymer segments. From the relaxation modulus, it is possible to calculate the 
storage (elastic) and loss (viscous) moduli, according to the equation (III.1.18) 
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Further analyses of these equations permit us to realize the contribution of viscoelasticity in the 
system at different time scales. We can divide the time scales in two regimes: 
 

1) For �tu ≪ 1. In this case, the elastic and viscous moduli are approximated as 
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The elastic and viscous moduli are proportional to �2 and � respectively. 
 

2) For �tu ≫ 1. Here the sum over s can be replaced by an integral, thus 
• For the Rouse model, z = 2, the moduli are proportional to �1 2⁄ . 
• For the Rouse-Zimm model with hydrodynamic interactions, z = 3 2⁄ , the moduli are 

proportional to �2 3⁄ . 
• For the Rouse-Zimm model with hydrodynamic and excluded volume interactions, z =

9 5⁄ , the moduli are proportional to �5 9⁄ . 
 

 

5. Reptation model: semidilute regime 
 

So far, we have been considering polymeric solutions in the dilute 
regime, with isolated polymeric chains. That was useful to understand 
the fast relaxation mechanisms of the systems or their response at 
high frequencies. Now, in this section, our concern is the relaxation 
mechanism when the polymer chains overlap with others. The 
relaxation response is now a process which involves topological 
constraints on a single chain, due to all the other chains at the 
surroundings. The study presented here is restricted to the case when 
the systems are uncrosslinked, based in the formalism of M. Doi and 
S. F. Edwards [11]. 
 
In the case of semidilute and concentrated solutions, the key concept 
which helps us to understand the relation between a polymer chain 
and its neighbors is the tube model. This tube can be imaged easily 
for a rod-like polymer as in Figure II.6a. In this case, the concept of 
a tube is defined when the free movement of the rigid rod is considered 
on a plane. In the same plane, other polymers are represented by dots, 
and equally rods perpendicular to the plane. Suppose that other rods 
are frozen, and the rod we are interested in is free to move along itself 
but any other movements with perpendicular displacements, are 

(a) Tube for a rigid polymer. 

(b) Tube for a flexible polymer. It 

includes the primitive chain and 

defects. 

Figure II.6 Tube model for different 

polymer shapes. Taken from [11]. 
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forbidden. The tube is formed by the frozen rods, so the displacement of the rod-like polymer is 
suppressed by the topological constrictions. In the case of flexible polymers, the tube model is more 
complicated (Figure II.6b). De Gennes introduced this concept who discussed the Brownian motion 
of an unattached chain moving through a fixed network. The motion of the chain is almost confined 
in a tube-like region denoted by dotted lines in Figure II.6b. Since the chain is rather longer than 
the tube, the slack will constitute a series of defects, which can flow up and down the tube. De 
Gennes visualized this as a gas of non-interacting defects running along a primitive chain [19]. This 
motion was called reptation. As a result of this motion, the tube itself changes with time; part of the 
original tube maintains the polymer chain within, but the new topological restrictions on the 
polymer, generates a new tube. Even though this picture is clear, the time evolution of the polymer, 
at short time scale is regarded as wriggling around the primitive chain. However, we are interested 
in the large-scale motion of the chains so that we may disregard small-scale fluctuations. Our problem 
consists in determining the dynamics of the primitive chain during the reptation process, within its 
tube [11]. To denote a point, the segment � of the primitive chain represents the segment of length 
�, measured from the chain end. T(�, /) is the position at time / and �(�, /) = �

�� T(�, /) is the unit 

tangent vector to the primitive chain. The dynamics of the primitive chain is characterized by 
 

• The primitive chain has constant contour length ��. 
• The primitive chain is allowed to move back and forth only along itself with a diffusion 

constant 0�, which is the center of mass diffusion constant of Rouse model. 
• The correlation of the tangent vectors at positions � and �′, decreases quickly with |� − �′|.  

 
The three assumptions correspond to neglecting the 
fluctuations of the contour length, the reptating motility, 
the Gaussian conformation of the chain on a large length-
scale respectively. The last assumption introduces a new 
parameter into the problem: the length 9, called the step 
length of the primitive chain. Therefore, the mean square 
distance of the end-to-end vector of the chain is ��9. Then, 
the primitive chain is characterized by three parameters, ��, 
0� and 9, which can be represented by the parameters of 
the Rouse model. We find that 0� = CDE 38⁄  and �� =
3a2 9⁄ . The dynamics of the primitive chain is characterized 
by certain time correlation functions, as in the previous case 
of the Rouse model. Consider again the time correlation 
function of the end-to-end vector, previously calculated for 
the Rouse model in the equation (II.3.16), v(/) ≡
TX(�, /) − T0(0, /).  
 
Figure II.7 explains the evolution of the primitive chain 
within the tube. The images explain the principle of 
calculating the correlation function. The conformation of the 
tube is defined at time / = 0 (Figure II.7a). As time passes, 
the chain reptates to the left or right, so some sections of 

Figure II.7 Successive situations of a reptating 

chain. Each step shows the evolution of the 

primitive chain within the tube. Taken from [11].

(a) 

(b) 

(c) 

(d) 
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the primitive chain leave the original tube (Figure II.7b and c). At some time, there is only one 
segment �0 remaining in the tube, while the parts �� and 0� define a new tube (Figure II.7d).  
 
As v(0) = �0�⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ + �0⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 0�0

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and v(/) = ��⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + �0⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 0�⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , the correlation function is  
 

   =2( ) (0) ( )t CD a tσ⋅ =P P

�����

, (II.5.1) 

 
where [(/) is the contour length of the remaining original tube. Here it was considered that ��⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ and 
0�⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  are uncorrelated with v(0). To calculate 〈[(/)〉, we select a segment � of the original tube. This 
segment disappears when it is reached by either end of the primitive chain. Let c(�, /) be the 
probability that this tube remains on time /. 〈[(/)〉 is then 
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Now, let Ψ(�, /; �) be the probability that the primitive chain moves the distance � while the end 
has not reached the segment � of the original tube. This probability satisfies the one-dimensional 
diffusion equation for 0�. Solving the equation with the corresponding initial and boundary 
conditions, it is possible to calculate Ψ(�, /; �), and with its result, c(�, /) 
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where t� = ��

2 0��
2⁄ . With this result, we can obtain 
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As it is evident, the longest relaxation time for the correlation function is given by t�. This is called 
the reptation time because is the time the primitive chain takes to disengage from the tube it was 
confined to at / = 0. If we check the correlation function obtained for the Rouse model (equation 
(II.3.16)) and rewriting t� with the values of 0� and ��, we note that t� is proportional to 33, so 
t� is much larger than tu (depends on 32)  for large N . This demonstrates the crucial effect of 
topological constraints on the conformational change of polymers. 
 
In all the current section it was considered that the system of polymer chains prefers to relax by 
reptation mechanisms, in the semidilute regime (even at concentrated regime or melt states). 
However, the statement for the correlation function of the end-to-end chain makes clear that the 
relaxation mechanisms are influenced by the length and time scales involved in the problem. There 
must be a particular characteristic length which distinguishes between the case of Rouse (or Rouse-
Zimm) relaxation, and the case of reptation relaxation. This length is represented by the step length 
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of the primitive chain (parameter 9), settled in context already; which approximately represents the 
diameter of the constrained tube. Within this framework, one can draw a somewhat simplified picture 
of the dynamics of the polymer in the entangled state. (1) If the length scale of a motion is smaller 
than 9, the entanglement effect is not important, and the dynamics is well described by the Rouse-
Zimm model. (2) On the other hand, if the length scale of the motion is more extensive than 9, the 
dynamics is governed by reptation. To illustrate both cases regarding time scales, consider the mean 
square displacement of a Rouse segment, 〈∆T2(/)〉 (the whole development can be followed in [11]).  
 
(1)  For very short times, / < t� ≪ tu, the segment does not feel the constraints of the network and 

〈∆T2(/)〉 is the same as for the Rouse model in free space, 〈∆T2(/)〉 ~ (/ tu⁄ )1 2⁄ . Here we defined 
a characteristic time t� at which the segmental displacement becomes comparable to 9. Under 
strain, the viscoelastic response characterized by the relaxation modulus is 

( )( ) exp p
p

G t t τ−∑∼ , as previously denoted (equation (II.4.5)). 

 
(2)  For / > t�, the motion of the Rouse segment perpendicular to the primitive path is restricted, 

but the motion along the primitive path is free. For t� < / < tu, the mean square displacement 
behaves as 〈∆T2(/)〉 ~ (/92 ��

2tu⁄ )1 4⁄ . For tu < / < t�, the behavior goes as 
〈∆T2(/)〉 ~ (/ t�⁄ )1 2⁄ . Nevertheless, in the linear regime of deformation, the process of relaxation 
of the contour length (by Rouse-Zimm modes) can be neglected to first order, since the change 
in the contour length by the shear strain is an even function of the strain value. Thus, strictly 
speaking, the relaxation for / > t� is only due to the disengagement mechanism. This can be 
evaluated as follows. At / ≈ t� the polymer is still within the tube, and as time evolves, the 
polymer reptates and the central segments are the only ones staying in the tube. These are the 
only segments that contribute to the remaining stress. Then, the stress is proportional to the 
fraction c(/) of the polymer within the tube, 
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M. E. Cates [20] found that a steepest descents analysis suggests a good approximation of c(/), 
which can be replaced, giving a relaxation modulus 
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In this approximation, all different t� s2⁄  times have collapsed to just one characteristic reptation 
time. In summary, we can say that at short times (or high frequencies), the polymer dynamics follows 
the Rouse-Zimm model for relaxation. At longer times, (of low frequencies), the dynamics are 
dominated by the reptation relaxation mechanisms. 
 
So far, we have been reviewed the relaxation mechanisms for conventional polymers under stress. 
There are other kinds of polymeric systems which present a different relaxation mechanism, involved 
at different time scales. These polymers are called living polymers since the individual chains break 
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and recombine in addition to the already mentioned dynamics. These systems are treated in the next 
section. 
 
 

6. Living polymers 
 
Living polymers are linear chain polymers that can break and recombine on experimental time scales. 
The first formal theoretical studies in these systems were done by M. E. Cates [20], and later in 
collaboration with  S. J. Candau [21], M. S. Turner [22] and R. Granek [23]. Cates and Candau 
introduced a model to understand the processes of scission and recombination. It is worth to mention 
that these reactions do not avoid the fact of occurrence of reptation relaxation; it will be present, 
but its importance will depend on the time scales where the measurements are carried on. In this 
model, it is assumed that [21] 
 

• Scission of a chain is a unimolecular process, which occurs with equal probability per unit 
time per unit length on all chains. The rate of this reaction is constant and is inversely 
proportional to the lifetime tM, of a chain of mean length ��

̅̅̅ ̅̅ ̅̅, before breaking into two pieces. 
• Recombination occurs as a bimolecular process, with a rate that is independent of the 

molecular weights of the two reacting subchains. There are sufficient ends in the system 
that a chain is unlikely to recombine with its former partner. Thus, the lifetime of a free 
chain before recombination is also tM. 

 
Even with these restrictions, they allow the coupled reaction/reptation equations to be cast as a one-
dimensional stochastic process, whose statistics can be worked out numerically. Here it was defined 
the breaking/recombination characteristic relaxation time tM. 
 
Additionally, Cates mentioned some experimental results as motivations to develop the theoretical 
framework. In particular, some studies of surfactant organization in micellar systems demonstrated 
that under special conditions, the equilibrium structure consists of a concentrated solution of tubular 
micelles that are very much longer than an appropriately defined Kuhn length; that can be treated 
theoretically as polymers [24]. Theoretical work on micellization [24] [25] suggest that, under certain 
conditions, there may be no upper limit to the length of the micelles in equilibrium. Presumably, 
therefore, there exists a regime of parameters in which the reptation times of the micelles is so long 
that it exceeds the time scale characterizing the dynamic equilibrium of their breakage and 
recombination. In the next section, it is specified more about the conformation of these cylindrical 
micelles, that we called worm-like micelles, and there will be mentioned some experiments with 
conclusive results. 
 
For the theory of breaking and recombination kinetics, it is necessary to calculate the fraction of 
polymer that remains at a time / in the definite original tube, as in the case of reptation, since this 
fraction will be proportional to the relaxation modulus. The remaining stress in the system is 
precisely the probability of a section of the polymer that stays still within the tube. Cates estimated 
this fraction considering a section of the original tube as a particle with diffusion 0� which starts its 
motion with equal probability on the line segment [0, ��] with absorbing walls at either end. Due to 
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the processes of breaking and recombination of the living polymer, the absorbing walls are allowed 
to make jumps, increasing or decreasing the size of the original polymer segment. This stochastic 
process was solved numerically by Cates, and he found two limiting cases. 
 
In the first case, in the limit where tM ≫ t�, the fraction of polymer, c(/), remaining at a time / 
within the tube (or the stress relaxation function), has the same form as in the case of reptation 
(equation (II.5.5)). On the other hand, for the case where the breaking and recombination time is 
shorter than the reptation, tM ≲ t�, the stress relaxation (or the relaxation modulus) behaves as a 
monoexponential 
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therefore, in the frequency domain, the elastic and viscous moduli get the form 
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In this case there is only one characteristic relaxation time, which is 
 

 ( )1 2

b dτ τ τ⋅≃ . (II.6.3) 

 
For � ≪ 1 t⁄  the approximation for the viscoelastic moduli is �′(�) ~ �2 and �′′(�) ~ �, the same 
values as obtained in the case of the Rouse-Zimm modes. The form of the relaxation time emphasizes 
that the dominant relaxation process involves cooperation between the breaking and reptation 
mechanisms. For times shorter than t  it is expected that the processes of breaking and recombination 
be frozen, and the preferred dynamics at these time scales will be Rouse like. 
 
The equation (II.6.1) reminds the response of Maxwellian fluids, characterized for one relaxation 
time, applied to viscoelastic systems. An extended introduction to this model is presented in Chapter 
III. In addition, a Cole-Cole plot produces a typical semicircle in Maxwell fluids [23] [22] [26], 
observed in worm-like micelle systems, made of surfactants. 
  
 

7. Worm-like micelles 
 
It was mentioned earlier that there is a vast variety of systems formed by self-assembled molecules 
(Chapter I). A particular and widespread subject to study is amphiphilic molecules characterized for 
having two sections with opposite affinities to the solvent where they are dissolved. In the case of a 
polar solvent, the common amphiphiles known as surfactants, have a hydrocarbon chain 
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(hydrophobic) and a polar head (hydrophilic). The contact with the polar solvent with the 
hydrocarbon chain, and an entropic-energetic interplay of the system, incite the self-organization of 
these molecules in aggregates with diverse structures, as spherical micelles, inverted spherical micelles 
(for nonpolar solvents), cylindrical micelles (worm-like), lamellae, bilipid layers or vesicles. Some of 
the possible morphologies can self-assemble at a higher level as occur with lyotropic liquid crystals 
formed with surfactants or with amphiphilic block copolymers, colloidal amphiphilic cumulus, soft 
nano-engines and even living organisms. 
 
 

7.1. Surfactant worm-like micelles 

 
Size and shape of micelles at a mesoscopic scale depend on the surfactant geometry, charge, 
concentration in suspension, temperature, pH, ionic force, among other characteristics. Nonetheless, 
the morphology of these micelles could be explained using a geometric model, despite it does not 
include shape and size changes directly, modifying the already mentioned parameters. Even so, the 
geometric model is a good approximation for visualizing the micelles shape. In this model, the 
relevant parameter is called packing parameter after J. N. Israelachvili [27], s = < 90¤�⁄ , with < the 
occupied volume by a molecule, 90 the effective area corresponding to the polar head and, ¤� the 
hydrocarbon chain length. For s < 1 2⁄  it is predicted that the molecules will form a sphere; for 
1 3⁄ ≤ s ≤ 1 2⁄  the aggregates will have a tubular or worm-like shape. Other values correspond to 
other geometries. Figure II.8 shows the way amphiphilic molecules arrange to form a micelle. There 
is also a computer simulated worm-like micelle which shows a possible self-assembly of surfactants 
[28].  
 
The preferred morphology will be fixed by the spontaneous curvature of the assembly that is 
determined by the most efficient packing of the involved aggregates [2] [27] [29]. The spontaneous 
curvature optimizes the system energetically. However, it does not account for the effects of entropy 
that also can stabilize some structures and defects. The quantity of surfactant in solution determines 
the formation of worm-like micelles when a critical micelle concentration (CMC) is reached, defined 
as the concentration at which each new molecule added to the solution has an equal probability to 
go in a micelle or to stay as a disperse monomer. Below the CMC, entropy favors a uniform 
dissolution of the amphiphile in the solvent, and aggregation is negligible. Above the CMC, 
interaction dominates and entropy effects are reduced. Consequently, the number of aggregates 
usually for a spherical form sharply increases. Subsequently, cylindrical micelles are formed when 
the amphiphiles have a moderate spontaneous curvature, lower than spherical micelles but larger 
than vesicles or bilayers. Here, energy is optimized when the curvature is uniform everywhere, 
forming worm-like micelles (WLMs). Nevertheless, entropy introduces in the system a degree of 
randomness through bending of cylindrical micelles, which adds conformational entropy like the 
configurational entropy of polymeric chains, and through topological defects, in the form of end-caps 
and branch junction points. When these two defects appear, regions with different local curvatures 
are formed but incurring in different energetic penalties. The overall entropic gain associated with 
end-caps is higher than that of branch points. Although the appearance of topological defects 
introduces an entropy gain, the type of defect that dominates is set by the amphiphile spontaneous 
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curvature. If the scission energy of a WLM (the energy required for creating two end-caps from an 
infinite cylinder) is large enough, then the semi-flexible linear micelles may become very long and 
entangled. End-caps increase entropy by increasing the number of micelles in the system. Thus, 
lowering the scission energy shortens the total contour length of the linear micelles.  
 
On the other hand, branch junction points increase the number of possible configurations, enabling 
percolation, and the formation of extended micellar networks, which lead to a multi-connected rather 
than an entangled network of cylindrical micelles. A review about junctions and end-caps formation 
can be found elsewhere [30]. The final structure is an interplay between minimization of total energy 
reducing the formation of end-caps, against the increment of entropy decreasing the contour length 
of WLMs. The thermodynamic equilibrium is reached with stable WLMs in solution but with 
constant breaking and recombination processes in addition to the reptation mechanisms, typical of 
polymer chains.  
 
The aggregation and self-organization of WLMs in thermodynamic equilibrium, at mesoscopic level 
influences directly the behavior we can observe at macroscopic scale, as viscosity or viscoelastic 
properties under applied stress. WLMs self-assembly strongly depends on the concentration in 
solution, in the same way as polymer concentration affects the behavior of polymeric solutions. This 
dependence can be described as follows: just above the CMC concentration, the fluid with embedded 
WLMs is in a so-called diluted regime, where each micelle is isolated. The WLM solutions also 
present a low viscosity. Once the micellar concentration increases, the system reaches an 
entanglement concentration "∗ (as the overlap concentration), from which WLMs start to entangle 
with each other, forming a mesh of size �, which inversely depends on the micellar concentration. At 
this point, the solution has reached the semidiluted regime, where viscosity has considerably 
increased, and arrangement of WLMs is isotropic. When the cylindrical micelles are long enough, it 
is probably that the bending energy of the micelles overcome the thermal energy of the solvent. The 
straight segments length that micelles possess before the bending energy exceeds the thermal energy 
is called persistence length, ¤m. The persistence length of WLMs affects the entanglement between 

(a) (b) 

Figure II.8 (a) Micelle formation considering the geometric model. The sizes of the amphiphiles are shown to make clear each 

element of the packing parameter [27]. (b) Computer simulation of a worm-like micelle. Here we are not making any difference 

between colors [28]. 
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them and the mesh size directly. When � < ¤m the system has reached a concentrated regime. When 

the system has just reached the concentrated regime, the viscosity of the system has not changed 
considerably. Figure II.10 presents the self-organization of surfactants with the steps that form 
micelles and WLMs depending on concentration [31]. 
 
In the concentrated regime, orientational correlations start to appear. At high surfactant 
concentration there has been found nematic phases due to the arrangement of WLMs and hexagonal 
ordering even at higher concentrations [32]. Figure II.9 presents a typical diagram where there are 
shown different transitions a system of WLMs experiment when the concentration of these structures 
is increased [33].  
 
In semidilute and concentrated regimes, under a deformation WLM solutions present viscoelasticity 
and the stress decays with just one characteristic relaxation time due to the faster scission and 
recombination times rather than the reptation mechanism. For this reason, WLMs made of 
surfactants are living polymers, and a robust approximation to a Maxwellian fluid at long times 

 
Adding of  
surfactant 

Dense 

Concentration 

 

 

 

CMC 
"∗ 

� 

� < ¤m 

Figure II.10 WLMs organization under the dependence of surfactant concentration. There can be appreciated the different regimes 

reached by the WLM solutions. Taken from [31]. 

Figure II.9 Different concentrations regimes encountered in wormlike micellar solutions with increasing concentration. � is the mesh 

size of the entangled network and O denotes the average distance between colinear micelles in the concentrated isotropic, nematic 

and hexagonal phases [33]. 
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(10 − 1000 ms) or low and intermediate frequencies (� < 100 s−1), within the linear regime. At high 
frequencies, when time scales are shorter than those of WLMs breakage time, the Maxwellian stress 
relaxation processes are essentially frozen, and the micelles can be regarded as semiflexible polymer 
chains, as mentioned in the last section. Stress relaxes via intramicellar processes: first, it is 
dominated by the Rouse-Zimm modes and then by the internal relaxation of individual Kuhn 
segments [34]. At this frequency range, �∗ exhibits a power-law behavior, �∗ ~ �§, with the 
exponent y ~ 5 9⁄  in the Rouse-Zimm regime mentioned previously, which changes to y ~ 3 4⁄ , where 
the internal bending modes of Kuhn segments dominate. This change occurs at a critical frequency, 
�∗, corresponding to the shortest relaxation time in the Rouse-Zimm spectrum [35]. 
 
There exist other characteristic lengths involved at the 
mesoscopic level of WLMs, although these lengths can be 
generalized to polymeric solutions. Figure II.11 presents the 
structural arrangement of these systems where the polymeric 
shape structures maintain an isotropic organization [36]. The 
contour length, the persistence length and the mesh size have 
been mentioned earlier. In addition to these lengths there exist 
the entanglement length ¤¨ which is the contour length between 
two consecutive crossing points with other polymer chains; and 
the thick O of the polymer (or diameter of the micelle). When 
the structures under study are living polymers (or WLMs made 
of surfactant), it is possible to estimate some of the polymeric 
network characteristic lengths through their rheological 
properties. The mesh size is obtained from the elastic modulus value at intermediate frequencies, 
that is, knowing �0 which is the value where �′(�) and �′′(�) overlap and cross each other. The 
equation with this relation is [11] [37] 
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With the already mentioned critical frequency �∗, where a change of relaxation modes takes place, 
it can be found the associated parameter for the stiffness of the WLMs (or polymeric chains). So, 
the persistence length is obtained with the expression [35] 
 

 
3

*
8

B

p

k T

l
ω

η
= ,  (II.7.2) 

  
with : the solvent viscosity. With the persistence length and the mesh size, it is possible to calculate 
the entanglement length [23] 
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Figure II.11 Mesoscopic polymeric structure. 

The different characteristic lengths are 

shown. Taken from [36]. 
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equation which is obtained from a Poisson renewal model for living polymers. From the same 
treatment, the contour length can be computed 
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≈ ,  (II.7.4) 

 

where �min
′′  is the minimum of �′′(�) after the first crossing between �′′(�) and �′(�), at 

intermediate frequencies, where the relaxation mechanisms are led by reptation. 
 
Several investigations have been developed where the design and understanding of worm-like micellar 
systems made of surfactant is the main topic. In addition to the already mentioned references, here 
are quoted some other works: [38] [39] [40] [41].  

 
 

7.2. Block copolymer worm-like micelles 

 
At the beginning of this section it has been pointed out that some of the possible morphologies which 
self-assembled at high level to form worm-like micelles are surfactant molecules or amphiphilic block 
copolymers. Even when the affinities with different sort of solvents are very similar for both kind of 
building blocks, however, block copolymers assemble into worm-like micelle morphologies with 
certain different mechanical properties rather than the ones built up by surfactants, that complicates 
the understanding. F. S. Bates and G. H. Fredrickson made a nice introduction to the design of soft 
materials with block copolymers as building blocks [42]. 
 
In diblock copolymers, recent advances have shown that stability of different morphologies can be 
tuned by varying the solvent composition [43] [44], because of the free energy contribution from the 
interfacial tension between the solvent and the insoluble block. Therefore, a complex interplay 
between molecular geometry and the amphiphilic character of the diblock copolymer determines the 
organization of supramolecular structures. This interplay leads to taking into account the micellar 
core that could be partially swollen by poor solvent, the surface free energy per chain associated to 
the core-shell interface, and the structure of the shell; the latter is determined from a balance among 
the elastic stretching of their constitutive blocks, and the repulsive interaction among their 
monomers. The long morphology of each copolymer can provoke a peculiar structural conformation 
of the WLMs which causes different rheological properties of the micellar solutions, as has been 
studied in some cases. 
 
We are interested in the study of diblock copolymers of the type polybutadiene-polyethylene oxide, 
due to their amphiphilic behavior. The polybutadiene is extremely hydrophobic while the 
polyethylene oxide is hydrophilic. In a polar solvent, water in particular, these copolymers can form 
WLMs. The most extensively studied diblock copolymers of the type polybutadiene-polyethylene 
oxide in water solution are those rich in the 1, 2-microstructure (IUPAC name: poly1-vinylethylene) 
[45] [46] [47] [48] [49] [50] (see Figure II.12). They will be referred to as P(1,2)B-PEO from now on. 
Morphology of the supramolecular structures of these copolymers depends on the weight fraction 
(wPEO) of polyethylene oxide (PEO) in the copolymer, which is related to the hydrophilic block 
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length, and on the degree of polymerization of the hydrophobic block, polybutadiene P(1,2)B. Even 
though the full phase diagram of these systems is not known, the weight fraction where the different 
structures (micelles, WLMs, lamellas, etc.) are located is approximately known. Aggregation in dilute 
aqueous solutions leads to spherical micelles approximately at wPEO > 0.6, WLMs approximately in 
the range of 0.47 < wPEO < 0.59, and bilayers at wPEO < 0.47 [47] [51]. One important difference 
between small non-ionic surfactants and diblock copolymers dispersed in a polar solvent, such as 
water, is the value of the CMC. For the former ones, the CMC is not too low; molecular exchange 
and equilibration are relatively rapid. On the contrary for the latter ones, molecular exchange is 
extremely slow due to the very small CMC (≤ 10−6Mol L−1) and decreases as temperature increases; 
the presence of free chains in solution is practically negligible. This impediment of micellar 
rearrangement has its origin on the extremely high hydrophobicity of the P(1,2)B block. Therefore, 
observed aggregates are not necessarily at equilibrium. 
 
A more recent work done by B. Arenas-Gómez and coworkers [52], treats the case of the self-
assembled aggregates made of 1,4 poly(1,3-butadiene)-polyethylene oxide diblock copolymer (from 
now on: P(1,4)B-PEO; IUPAC name: poly(but-2-ene-1,4-diyl)-block-polyoxyethylene) in water. The 
hydrophobic block, P(1,4)B (polybutadiene, PB) is rich in 1,4 microstructure,(see Figure II.12). The 
degree of polymerization of the P(1,4)B and PEO blocks used here are � = 37 and � = 45, 
respectively, so the system will be called PBPEO45 from now on. This system is similar the those 
made with P(1,2)B-PEO [48], which self-assembles in spheres, cylinders or bilayers, when the 
polymer blocks have a degree of polymerization (� = 46, and � = 35, 39, 42, 44, 56) relatively close 
to those of the blocks used in this work. The solution concentration was limited to CPBPEO45 ≤
2.5 wt%, to avoid phase separation. First, B. Arenas-Gómez and collaborators obtained the 
morphology of the self-assembled structures with small angle X-ray scattering (SAXS, explained in 
Chapter III) experiments, from where it was determined a cylindrical shape and a core-shell cross-
section structure with a diameter of ~12nm (Figure II.13i). Also, rheological experiments were 
developed in which the main results show a deviation from the Maxwellian behavior, according to 
oscillatory experiments at low and intermediate frequencies, and Cole-Cole plots (Figure II.13ii), 
which is atypical in a WLM solution. This uncommon behavior for a WLM system is explained by 
the slow dynamics of the self-assemble; there is an impediment of any micellar rearrangement 
through water, due to the extremely high hydrophobicity of the PB block [52], and the system is 
dynamically arrested. This feature has been observed in similar diblock copolymers of the type 
P(1,2)B-PEO in other circumstances, already mentioned above [53] [48]. 

Figure II.12 Diblock copolymers of the type polybutadiene-polyethylene oxide showing two different polybutadiene microstructures: 

(a) P(1,2)B; source name: 1,2-poly(1,3-butadiene); IUPAC name: poly 1-vinylethylene. (b) P(1,4)B; source name: 1,4 poly(1,3-

butadiene); IUPAC name: poly(but-2-ene-1,4-diyl). At the very end, both terminal groups end up with hydrogen. Taken from [52]. 

 



CHAPTER II. THEORY OF POLYMERS 

34 | P a g e  

 
 

8. Gels 
 
So far, we have been stablished some models to understand the dynamics of polymers in liquid state, 
in dilute and semidilute regime. Also, we have seen briefly the behavior of living polymers which 
reptate as polymers to liberate energy, but also break and recombine to maintain thermodynamic 
equilibrium. In special cases when the living polymers have Maxwellian behavior, it is also possible 
to extract structural information on the systems. Now, I introduce the case when polymer chains 
possess crosslinks with other chains, phenomenon present in many materials in transition from liquid 
to solid states. This behavior is called gelation. Here I summarize important aspects of polymer 
gelation that are well explained as introductory level by M. Rubinstein and R. H. Colby [12]. 
Although in general, polymer gelation processes are different from colloidal gelation processes and 
furthermore, different among colloidal particles with different shapes (anisotropic), some 
fundamental concepts are the same, hence here there are included some ideas for colloidal gelation, 
taken mainly from E. Zaccarelli review [54]. 
 
Linking chains together leads to progressively larger branching polymers (Figure II.14a). The 
polydisperse mixture of branched polymers obtained as the result of such a process is called the sol, 
since the molecules are soluble. As the linking process continues, still larger branched polymers are 
obtained (Figure II.14b). At a certain extent of reaction, a molecule spanning the whole system 

Figure II.13 (i) SAXS intensity vs. µ for the solution of PBPEO45 in water. Experimental data ( ) for SAXS at CPBPEO45 =

2 wt%. Experimental data for SLS ( ) at CPBPEO45 = 1 wt%. ¶�
·¸q (µ) (red line) is the cross-section scattering function computed 

with the Fourier transform method, and ¶�
�¹Rº(µ) is the cross-section scattering function obtained with the deconvolution method

(blue line). Both scattering functions correspond to cylindrical geometries. Insets: a) X-ray scattering intensities in a 2-dimensional 

multi-wire proportional counter. b) s�(x) is the cross-section pair distance distribution function, s�
·¸q (x) computed with the Fourier 

transform method (in red) and s�
�¹Rº(x) computed with the deconvolution method (in blue). c) $�(x) is the radial electron density 

distribution function. (ii) Viscoelastic spectra for the PBPEO45 in water at different concentrations. Inset: �′′ vs. �′ for

CPBPEO45 = 2 wt% and 2.5 wt%, with fittings (Cole-Cole plots). All plots taken from [52]. Details are found in the same reference.

(i) (ii) 
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appears. Such a huge molecule will not dissolve but may only swell 
in a solvent. This “infinite polymer” is called the gel or network and 
is permeated with finite branched polymers (Figure II.14c). The 
transition from a system with exclusively sol, to a system containing 
also a gel is called the sol-gel transition or gelation and the critical 
point where gel first appears is called the gel point. Later in the text 
we introduce a model to know where the critical gel is found with 
rheology experiments. For the case of colloids, a more general 
definition follows. A coherent mass consisting of a liquid in which 
particles are either dispersed or arranged in a low density disordered 
arrested state, which does not flow but possess solid-like properties 
such as a yield stress is commonly named a gel. Similarly to glasses, 
the gel structure does not show any significant order, and in this 
respect, it is similar to that of a liquid. However, for dilute systems, 
a gel often displays a large length scale signal associated with the 
fractal properties of its structure [54]. 
 
Different types of gelation transitions are summarized in Table II.1. 
Here, gelation is divided in two main groups: physical gelation and 
chemical gelation. The chemical gelation involves formation of 
covalent bonds and always results in a strong gel. There are three 
main chemical gelation processes: condensation, vulcanization 
(crosslinking polymers), and addition polymerization, whose 
gelation transition was associated with the formation of an infinite 
network with finite shear modulus and infinite zero-shear viscosity 
(this feature was also found in our experiments for single wall carbon 
nanotubes within poly(acrylic) acid matrix, which presumably 
reaches the weak physical gelation). A more extended explanation 
of these gels can be found in [12]. For further understanding the chemical gelation process, refer to 
the work of E. Zaccarelli [54], in which a distinction between gelation and vitrification is shown, in 
terms of the polymerization process that interconnects monomers. A length scale dependent analysis 
of the chemical gel and glassy states should be able to discriminate between the two cases. Indeed, 
while the glass is nonergodic at all relevant length-scales, the gel only has a correlation, dictated by 
the infinite network, strictly at large length scales, while all other length scales retain a quasi-
ergodicity [54]. Examples of computational and experimental studies on chemical gels are mentioned 
in [54]. 
 
 
 

Physical Chemical 

Weak Strong Reacting monomers Crosslinking polymers 
  Condensation Addition End-linking Random cross linking 

Table II.1 Classification of gelation transition. Taken from [12]. 

(a) 

(b) 

(c) 

Figure II.14 Crosslinking of linear 

chains. (a) Four crosslinks, (b) eight 

crosslinks, (c) ten crosslinks. The 

largest branched polymer is highlighted 

and the 10th crosslink (dark) formed an 

incipient gel. Taken from [12]. 
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The physical gel can be strong or weak. Strong physical gels have strong bonds between polymer 
chains that are effectively permanent at a given set of experimental conditions. These gels are solids 
and can only melt and flow when the external conditions change. Strong physical gels are kind of 
analogous to chemical gels. Weak physical gels have reversible links formed from temporary 
associations between chains, which bonds originate from physical interactions of the order of CDE . 
These associations have finite lifetimes, breaking and reforming continuously. Among this sort of 
gels, we can find bonds as hydrogen bonds, block copolymer micelles above their glass transitions, 
ionic associations, or hydrophobic interactions. Such reversible gels are never truly solids but if the 
association lifetime is sufficiently long they can appear to be solids on certain time scales. Hence, 
whether a reversible gel is weak or strong depends on the time scale over which it is observed.  
 

A formal definition of gelation refers that it is a connectivity transition, or percolation transition. 
The mean-field theory of percolation was developed by P. J. Flory [55] and W. H. Stockmayer [56] 
[57], under the following two assumptions: independent bonds and absence of bonding loops. 
Percolation describes a process by which sites or links on a (potentially random) graph or lattice can 
be connected. In the context of material physics, the theory of percolation has three obvious 
applications: understanding the flow of fluid through a disordered porous medium, in the 
conductivity of random networks, and involved in the formation and physical properties of gels, 
formed when a minimum percolation threshold fraction of bonds has been formed between the 
clusters making up the gel. Gelation can be described by a bond percolation model. Imaging a 
container fill of monomers, which occupy the sites of a lattice. In simple bond percolation model, all 
sites of the lattice are assumed to be occupied by monomers. The crosslinking reaction between 
monomers is modeled by randomly connecting monomers on adjacent sites by bonds. The fraction 
of all possible bonds that are formed at any point in the reaction is called the extent of reaction s, 
which increases from zero to unity as the reaction proceeds. In this model, a polymer is represented 
by a cluster of monomers (sites) connected by bonds. When all possible bonds are formed, the 
reaction is completed (s = 1) and the polymer is a fully developed network. At the percolation 
threshold or gel point, the system undergoes a connectivity transition. Slightly below the gel point, 
the system is a polydisperse mixture of branched polymers, but one structure percolates through the 
entire system. This morphology is a tenuous structure which is quite different from the fully 
developed network that exists far above the gel point. This connectivity transition from a sol below 
the gel point, to a gel permeated with sol above the gel point is called the gelation transition. The 
gel fraction is defined as the fraction of all monomers belonging to the gel. Every monomer must be 
either part of the sol or part of the gel, so the sum of the sol and gel fractions is unity. Below the 
gel point, all monomers are either unreacted or belong to finite sized polymers and therefore the sol 
fraction is unity and the gel fraction is zero. Above the gel point, the gel fraction is non-zero and 
the sol fraction is less than unity. Therefore, the gel fraction is the probability that a randomly 
selected monomer belongs to the gel, and it is the order parameter for gelation. The order parameter 
indicates the gel fraction, when the reaction has passed the gel point. The order parameter is 
continuous through the sol-gel transition, which means that gelation is analogous to a continuous 
phase transition. For a further review of gelation models, refers to [12].  
 
In standard percolation studies, the bond lifetime, and hence the lifetime of the spanning cluster, is 
not taken into account. For chemical gels, the bond lifetime is infinite and thus percolation theory 
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has been the theoretical framework for describing the gel transition. In the case of chemical bonds, 
where bond formation and bond duration are coupled, the percolation concept is connected to the 
dynamics and thus it can describe the chemical gelation transition. For colloidal gels, and polymeric 
physical gels, bonds are transient. Clusters break and reform continuously. Percolation theory can 
thus be applied only to describe static connectivity properties [54]. It turns out that percolation is 
not a sufficient condition for physical gelation. However, it should be at least a necessary condition, 
if one follows the idea that a gel arises from a stable percolating network. Within this picture, 
attraction should be a necessary ingredient for gel formation. However, some systems may form 
arrested states at extremely low densities, and their properties be not at all related to percolation. 
This happens primarily in systems with sufficiently long-range repulsion, that in the end acts as the 
stabilizing mechanism for arrest. The question that naturally arises is whether these states should 
be considered gels or glasses in general terms. According to [54], it is proposed that a gel should 
necessarily have attraction as the leading mechanism for gelation, while a glass can be driven either 
by repulsion (hard-sphere or Wigner glass), or by attraction just in the high-density region 
(attractive glass). 
 
More recent computational studies for colloidal spheres, developed by P. D. Godfrin and coworkers 
[58], have stablished a general phase behavior view on systems with an excluded volume with short-
range attraction (SA) and long-range repulsion (LR), or SALR potentials. The investigation in [58] 
is motivated by previous experimental and simulation results that obtained structural information 
of particle aggregates (small angle neutron scattering and small angle x-ray scattering), which have 
provided direct evidence that low-q peaks in the scattering patterns are not necessarily a consequence 
of clustering as envisioned in the earlier sense, but rather, are a general representation of the presence 
of intermediate range order (IRO) in the fluid. Hence, a low-q peak in the structure factor is not an 
accurate indication of cluster formation and is more accurately termed an IRO peak. Using the so-
called extended law of corresponding states, and after surveying different interaction potentials (with 
different relative strengths of repulsion to attraction), they found four different phase states in terms 
of a critical temperature and particle fill fractions: dispersed fluid, clustered fluid, random percolated 
and cluster percolated. One of the asseverations is that gel or glass formation must be preceded by 
the formation of a cluster percolated network. Further studies are necessary to include interactions 
between anisotropic particles with high aspect ratios and different persistence lengths, as the single 
wall carbon nanotubes systems in which we have worked. For rods, bond orientation can significantly 
affect the surface attraction strength, which can vary significantly depending on the Hamaker 
constant, angle of alignment, aspect ratio, and surface separation distance. Hence, the percolation 
process is quite different from the spherical isotropic case [27]. An extended rheological and structural 
study of rod-like systems with different short-range interactions and not so long aspect ratios can be 
found in [59]. 
 
 

8.1. Model for critical gels 

 
H. H. Winter and co-workers have characterized critical gels where dynamic arrest leads to gelation 
due to attractive interactions [60]. Sometimes it is possible to extract information about the gelation 
point of a system when rheology experiments are applied. In this sense, a critical gel exhibits an 
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unusually simple and regular relaxation behavior, which expresses itself in a self-similar relaxation 
modulus �(/)  =  1/−R, where �(/) is the real relaxation modulus [60] where 1 and � are the two 
fitting material parameters that characterize the gel. 1 is the "strength" of the network, and � 
reflects the nature of the size distribution of the mesoscale superstructure. A higher value of � means 
a broader aggregate size distribution, consistent with a slightly more open structure [61] The values 
of � range between 0 and 1, and provide structural information. 
 
Close to the gel point in the frequency domain, performing oscillatory rheology experiments and if 
the resulting plots allow us, it is easy to fit a power law function as 
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where ��

′  and ��
′′ represent two material constants. F. Chambon and H. H. Winter [62] using the 

Kramers-Kronig relation (III.1.24), found out that both exponents must be equal, and within the 
range  0 < � < 1. The elastic moduli is 
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where Γ(�) is the gamma function, and clearly �′′(�) > �′(�) for � > 1 2⁄ , �′(�) > �′′(�) for � <
1 2⁄ , and �′(�) = �′′(�) for � = 1 2⁄ .  To assure that a system is around the gel point, using Flory’s 
principles (:0 → ∞, and �∞ = 0) [63] is experimentally difficult [61] [62]. A more general method 
to find the gel point in a system consists in the calculation of the tangent of the phase angle between 
the dynamical moduli, tan K = �′′(�) �′(�)⁄ . When the tangent of the phase K is independent of the 
frequency, we can assure that the system is in the gel point, and the value of � can be estimated 
directly, for 0 < � < 1, 
 

 ( )tan tan 2nδ π= .  (II.8.4) 

 
 

9. Single wall carbon nanotubes and polyelectrolytes 
 
Liquids with dispersed rod-like particles present different microstructural orderings that exhibit 
different rheological responses [64]. For applications, it is essential to foresee the rheological response 
of these suspensions from the underlying properties of the rods and the dispersant agent, as well as 
other features that affect their response as percolation, phase stability, aggregation, flexibility, 
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polydispersity, etc. It is not uncommon that rod-like colloidal suspensions in highly viscous polymers 
flow at low shear stress with quiescently formed rod networks which rapidly break down and then 
re-gel upon cessation of flow. Single-wall carbon nanotubes (SWCNTs) dispersed in a polymer are a 
clear model example of this case. It is stated that when the rod length is such that the suspension is 
in the colloidal domain, four properties control the microstructure, dynamics, and rheology of rod-
containing materials [64]: interparticle forces, aspect ratio, particle number density, and flexibility. 
The principal way to generate a significant level of elasticity in colloidal suspensions is to arrest 
particle dynamics at the microscopic level, although dynamic arrest can lead to gelation with slow 
dynamics due mainly to attractive interactions and bonding, or to vitrification with slow dynamics 
due primarily to excluded volume interactions and packing. However, the microstructures linked to 
these two kinds of slow dynamics are different [64], heterogeneous fractal clusters of rods for the 
former and homogeneous rod network for the latter. The volume fraction range for the transition 
between these two limiting cases is strongly aspect ratio dependent. 
 
The poor solubility of carbon nanotubes (CNTs) is a direct consequence of their strong van der 
Waals interactions that produce the formation of large nanotube bundles. Here, the attraction is 
directly proportional to the diameter of the nanotubes and inversely related to the inter-tube distance 
[27]. Therefore, even at a modest concentration, the inter-tube attraction yields the formation of 
aggregates or bundles constituting this attraction the most significant challenge towards the 
dispersion of SWCNTs in a polymer matrix. However, some polymers have been used effectively as 
exfoliation agents of nanotube bundles making possible the incorporation of the nanotubes as 
individual entities or as very thin bundles. Many mechanisms have been mentioned for explaining 
why they are so effective [65] [66]. Some examples of polymers dispersing SWCNTs can be found in 
the literature [67] [68] [69] [70]. To improve the dispersion, CNTs can be modified noncovalently 
[71], covalently [72] [73] [74] [75], using surfactants [76] [77] [78], DNA [79] or proteins [80]. These 
chemical and physical approaches can be successful at low and intermediate CNTs concentrations. 
Nonetheless, the dispersion of CNTs is still a challenging problem at high concentration. 
 
The behavior of CNTs dispersed in a polymer matrix can be characterized into three regimes 
according to its concentration and their orientational or structural correlation [81]. In the dilute 
regime, dispersed nanotubes or completely exfoliated behave as individual tubes or as thin dispersed 
bundles. In this regime, short-range intertube interactions are present, but long-range interactions 
are negligible. The transition from dilute to semidilute regime coincides with a percolation event. As 
exfoliation is improved, the percolation transition occurs at a lower concentration. In the semidilute 
regime, the extent of exfoliation of the nanotubes, or their small bundles, and their interaction with 
each other control the overall rheological behavior of the nanocomposite. Close to this percolation 
threshold, dramatic changes in the rheological properties are observed that arise supposedly from 
the inter-tube interaction. Incorporation of CNTs in the polymer gradually transforms the liquid-
like behavior to solid-like behavior where the storage and loss modulus are almost frequency 
independent at low frequencies and �′(�) > �′′(�) [81]. The percolation threshold decreases with 
an increase in CNTs aspect ratio suggesting the formation of a matrix spanning path at a low or 
modest nanotube loading. At concentrations significantly larger than the percolation concentration, 
the excluded-volume interactions lead to an isotropic-nematic transition as occurring in CNTs 
dispersed in acid, [82] where the concentrated regime starts, and the rheological properties tend to 
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reach asymptotic values. More about the rheological 
behavior of CNTs in a polymer matrix can be found 
elsewhere [81]. A very ilustrative image which coincides with 
the transition from dilute to semidilute regime and the 
percolation threshold, is the one introduced by K. I. Winey 
and coworkers [83]. The system they used is a mixture of 
SWCNTs embedded in a polymer matrix of poly(methyl 
methacrylate) (PMMA), in dimethylformamide (DMF) 
suspension (Figure II.15). In this image they propose a so-
called rheological percolation threshold (or mechanical 
percolation threshold) at the semidilute regime, where the 
polymer chains are connected with the help of nanotubes 
bundles, and as a consequence the whole systems presents a 
typical gel rheological behavior. When SWCNTs 
concentration increases, but the system is still in the 
semidilute regime, the system gets the electrical percolation 

threshold, which means that the suspension in gel state has 
form a percolating conductive path along the nanotubes 
that are now in touch. They conclude that the required 
tube-tube distance has to be less than ~ 5 nm for the 
nanocomposites to be electrically conductive. However, as 
long as the tube-tube distance is comparable to the diameter 
of random coils of PMMA chains, the nanotube network can 
effectively restrain polymer motion. Thus, the required 
tube-tube distance for electrical conductivity percolation is 
smaller than that for the rheological percolation, so that 
more nanotubes are required to reach the electrical 
conductivity threshold. Furthermore, note that the 
nonmetallic tubes do not contribute significantly to the 
electrical conductivity, although they can restrict polymer 
motion. The same idea is applicable to the system we have 

studied, but with the difference that we decided to disperse SWCNTs in a polyelectrolyte matrix, 
which possesses an extra degree of freedom to get adapted under certain external conditions. 
 
Some polyelectrolytes are stimuli-responsive polymers that show significant reversible structural 
changes in response to small changes in their environment, such as pH [84]. The environmental 
adaptiveness of polyelectrolytes leads to smart self-assembly processes with intriguing results. Polar 
solvents can dissociate polymers with ionizable groups leaving charges on the polymer chains and 
releasing counterions into the solution [85]. Electrostatic interactions between charges in the polymer 
lead to a rich behavior different from those of uncharged polymers, for example: the crossover from 
dilute to semidilute solution regime occurs at much lower polymer concentrations than that in 
solutions of neutral chains, polyelectrolyte chains in semidilute regime follow unentangled dynamics 
in a much wider concentration range and the crossover to the entangled dynamics occurs further 

Figure II.15 Schematic of SWNT/polymer 

nanocomposites in which the nanotube bundles 

have isotropic orientation. (top) At low nanotube 

concentrations, the rheological and electrical 

properties of the composite are comparable to 

those of the host polymer. (middle) The onset of 

solid-like viscoelastic behavior occurs when the 

size of the polymer chain is somewhat large to the 

separation between the nanotube bundles. 

(bottom) The onset of electrical conductivity is 

observed when the nanotube bundles are 

sufficiently close to one another to form a 

percolating conductive path along the nanotubes. 

Taken from [83]. 
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away from the chain overlap concentration than in solutions of uncharged polymers, among other 
characteristics [85]. 
 
One example is the poly(acrylic) acid (PAA) [86]. The carboxyl groups of polyacid polymers in 
aqueous solution are protonated at low pH and neutrally charged; thus, hydrophobic interactions 
promote a relatively compact polymer structure. Electrostatic repulsion between some charged, not 
protonated carboxyl groups, leads to the formation of extended polymer structures; a sort of loose 
coil. This pH-responsive conformational change just occurs in relatively high molar mass PAA (>
16.5 kDa) [86]. PAA is protonated in an aqueous medium at pH < 3, as the pH increases, carboxylic 
groups are deprotonated, forming a polyelectrolyte that becomes highly charged (pH ~ 5), and its 
backbone becomes stretched, forming a 3D interacting network of polymer chains. As a consequence, 
the size of the PAA and the regular polymer-polymer interactions both lead to a significant change 
in the rheological behavior of this polymer in water solution with different H+ content. 
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III. Experimental techniques 
 

1. Rheology 
 
Flow constraint and deformation of materials are subjects that rheology studies. In practice, it is 
normal to restring the rheological experiments to the study of the constitutive relations between 
stress and strain (typically under the application of a shear: [ and � are shear stress and shear strain 
respectively). The way a material flows is determined by its mesoscopic structure which is an intrinsic 
characteristic of its physical state. A solid corresponds to a material with strong attractive 
interactions between molecules, instead of the behavior in gas, with its constitutive molecules almost 
without interactions. Among these structures, we can find a liquid with short ranged repulsive 
interactions and long ranged attractive interactions. Of course, these physical states are subjected 
to the surrounding thermodynamic conditions, which determine the final rheological properties of 
the system. The classical theory of elasticity considers the mechanical properties of elastic solids by 
the Hooke’s law, where the strain is proportional to the applied stress, [(/) = ��(/), with � the 
relaxation modulus. On the other hand, theory of hydrodynamics deals with the properties of viscous 
liquids according to Newton’s law, where the response of the stress is proportional to the rate of 
deformation (or shear rate), but independent of the applied strain, as occur in a damped system, 
[(/) = :�̇(/), where : is the instantaneous viscosity of the system [87] [88]. The SI unit of stress is 
Pascal (Pa), the strain is dimensionless, so the relaxation modulus has units of Pascal as well, and 
because the shear rate has units of the inverse of a second, the IS viscosity unit is Pa s. 
 
Figure III.1 clarifies the mechanical behavior of a system under a shear strain. If the system is a 
Hookean solid, its response will endure as long as the strain persists, unlike Newtonian liquids which 
response decays instantaneously. A system with an intermediate mechanical response is called 
viscoelastic which response at short times is similar to a solid, but after some time it relaxes like a 
liquid. The time it takes to relax is called relaxation time, and the decaying shape depends on the 
structure at different mesoscopic length scales. 

 
 
 

 
Figure III.1 Different stress responses when a square-like pulse strain is applied. The solid response is proportional to the strain 

applied, unlike the Newtonian fluid response. The viscoelastic system contains mechanical response similar to a solid at earlier times 

and a liquid at longer times. 
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1.1. Maxwell model 

 
Polymers are viscoelastic, but generally under stress, they have different relaxation mechanisms as 
is outlined in Chapter II (Theory of polymers). These mechanisms depend on the regime of 
concentration of the polymers in liquid solutions, and in the sort of interactions with the solvent. 
Other systems of interest are the living-polymers in solution, which present a particular relaxation 
mechanism above the semi-dilute regime as pointed out in Chapter II. This is the simplest model of 
viscoelasticity called Maxwell model after J. C. Maxwell [16] [12], which combines a perfectly elastic 
element with a perfectly viscous element in series. The total shear strain � is the sum of the shear 
strains in each element 
 

 ( ) ( )e vt tγ γ γ= + , (III.1.1) 

 
where �¨(/) is the shear strain in the elastic element and �º(/) is the corresponding viscous element. 
Consequently, each part must possess the same stress 
 
 ( ) () )( M e M vtt G tσ γ η γ= = ɺ .  (III.1.2) 

 
Here, the Ã  subscripts specify the Maxwellian relaxation modulus and viscosity. The ratio between 
the viscosity and the modulus defines a characteristic relaxation time, tÄ ≡ :Ä �Ä⁄ . If we assume 
a strain step experiment, where the total strain � is constant, the combination of equations (III.1.1) 
and (III.1.2) gives a first order differential equation for the time-dependent strain in the viscous 
element 
 

 
( )

( )v
M v

d

dt

t
t

γ
τ γ γ= − .  (III.1.3) 

 
With an initial condition of �º(0) = 0, it is possible to solve the differential equation 
 

 ln ( )v
M

t
Ctγ γ

τ

− − = +  ,  (III.1.4) 

 
with the constant of integration � = ln �. This last equation leads us to rewrite the equation (III.1.1) 
as, 
 

 ( )) exp /( ) (e v Mt t tγ γ γ γ τ= − = − .  (III.1.5) 

 
Using equation (III.1.2), we can see that the stress relaxes exponentially towards zero on the time 
scale tÄ , for a viscoelastic Maxwellian system, 
 

 ( )( ) exp /M e M Mt G G tσ γ γ τ= = − . (III.1.6) 
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or rewriting it, the stress relaxation modulus has a simple exponential decay 

                     ( )( )
e) /p( xM M

t
G t G t

σ
τ

γ
≡ = − . 

 

(III.1.7) 

 
The relaxation modulus depends explicitly on time for a viscoelastic system. Analyzing the equation 
(III.1.5), it is easy to observe two characteristic regimes in a viscoelastic Maxwellian fluid. If / ≪
tÄ , the strain is due just for the elastic element. On the other hand, if / ≫ tÄ , the viscous 
contribution of the strain is much more significant. We can be sure that the relaxation time tÄ  is a 
fundamental dynamic property of all viscoelastic liquids. 
 
In practice there exist two different viscoelastic materials, the so-called viscoelastic solid and the 
viscoelastic liquid. For a viscoelastic solid, the equation (III.1.7) is not a good approximation for long 
times. In this case the relaxation modulus tents to a constant, lim

Æ→∞
�(/) = �¨Ç, due to the original 

shape the solid possesses before the applied strain, in contrast to a viscoelastic liquid, where the 
behavior at long times agrees with the equation (III.1.7). This equation decays up to zero when time 
goes to infinity. At short times, / ≪ tÄ , both viscoelastic specimens tend to an initial value �Ä . 
 
In general, polymer liquids have multiple relaxation times, described as power laws with an exponent 
that is a fingerprint of the mechanical properties of the polymeric solution. Any stress relaxation 
modulus of this kind can be described by a series of Maxwell elements. There exist several models 
depending on the degree of complexity of the problem. There is even a mathematical formalism 
which includes fractional calculus to obtain the viscoelastic response of the systems [89] [90] [91] [92]. 
 
 

1.2. Linear response: the Boltzmann superposition principle 

 
All materials have a region of linear response at sufficiently small values, where the relaxation 
modulus is independent of strain. For longer deformations, the relaxation modulus is not anymore 
independent of strain, what is called nonlinear viscoelasticity. Boltzmann suggested that small strain 
values correspond to small stress response [93], 
 

 (( ) (( ) ))i i i i iG t t t tt Gδσ δγ γ δ= = ɺ .  (III.1.8) 

 
The stresses resulting from any linear combination of small step strains, K�È, applied at a time /È is 
the total stress detected at time /, 
 

 ( ) ( )( ) i i i i i
i i

t G t t G t t tσ δγ γ δ= − = −∑ ∑ ɺ , (III.1.9) 

 
where the summation increment on the right side of the equation was transformed into time. This 
equation states that for linear response, the stress resulting from each step is independent of all other 
steps. The relaxation modulus tells how much stress remains at a time / from each past deformation 
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K�È through the elapsed time / − /È that has passed since that deformation was applied at the time 
/È. The sum of smooth strains can be changed for an integral over the strain history, 

                             ( )( ) ( )

t

t G t t t dtσ γ

−∞

′ ′ ′= −∫ ɺ . 

 

(III.1.10)   

 
The integration is over all past times, up to the time of stress response, to ensure that all 
deformations are taking into account. The equation (III.1.10) is the constitutive model for the linear 
viscoelastic behavior which it is algebraically identical to the fundamental linear response equations, 
like the ones developed by R. Kubo [94]. Identically to the linear response theory, the integer of the 
last equation consists of two terms: one characteristic from the material, and the other inherent to 
the process of deformation. 
 
A change of variables in the equation (III.1.10) provides a better suitable way for integration 
 

 ( )
0

( ) ( )t G s t s dsσ γ

∞

= −∫ ɺ .  (III.1.11) 

 
In the case of simple steady shear, the shear rate is a time-independent constant, and it can be pulled 
out of the last equation. The relaxation modulus �(/) eventually decays to zero for any liquid. Thus, 
the last equation is nothing more than the equation for a Newtonian fluid, with a viscosity equal to 
the time integral of the relaxation modulus, constant during time, 
 

 

0

( )G t dtη

∞

= ∫ .  (III.1.12) 

 
The viscosity for a viscoelastic Maxwellian fluid, using the equation (III.1.7), under a steady shear, 
takes the simple form 
 

 ( )
0

exp /M M M M MG t dt Gη τ τ η

∞

= − = =∫ .  (III.1.13) 

 
Reminding that lim

Æ→∞
�(/) = �¨Ç for a viscoelastic solid, the viscosity tends to infinity at very long 

times, in accordance with Flory’s principle. On the other hand, for most viscoelastic liquids the stress 
decays to zero in a nearly exponential fashion on time scales longer than the relaxation time t . 
 
If the applied shear rate is too large for linear response, an apparent viscosity (or instantaneous 
viscosity) is defined as the ratio between shear stress and shear rate, or what is the same, the slope 
of a plot of shear stress against shear rate. For a viscoelastic material, this slope changes with time, 
so this viscosity should not be taken as the same as the zero shear rate viscosity. Most viscoelastic 
materials exhibit shear thinning of the apparent viscosity at large shear rates. The instantaneous 
viscosity has also been observed to increase with shear rate for some colloidal suspensions and worm-
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like micelles, what is called shear thickening. For instance, a system of colloids studied by N. J. 
Wagner and J. F. Brady can be found in [95]. 
 
 

1.3. Oscillatory shear 

 
Under the linear regime, there exist several different experimental procedures to obtain the 
viscoelastic spectrum of the system. These are experiments which allow us to obtain the basic 
information from the mechanical response of the system. In typical oscillatory experiments the 
applied shear strain and the shear rate change in a sinusoidal way, 
 

 ( )0( ) sint tγ γ ω= , (III.1.14) 

 

 ( )0( ) cost tγ γ ω ω=ɺ .  (III.1.15) 

  
The linear response of the stress for a viscoelastic material oscillates at the same frequency as the 
applied strain, but generally out of phase, because the response is not instantaneous as has been 
pointed out in Figure III.1, 

                        ( )0 sin( ) tt ω δσ σ= + . (III.1.16) 

 
In general, 0 ≤ K ≤ � 2⁄  and can be frequency dependent. There are two special extreme cases: 
when K = 0, the system is in phase with the strain, so it has a response of a solid; on the other case, 
when K = � 2⁄ , the system is in phase with the shear rate. Thus, it corresponds to a Newtonian 
liquid. Substituting the equation (III.1.15) in the equation of the Boltzmann superposition principle 
(equation (III.1.11)), we find that 
 

 ( ) ( ) ( ) ( )0

0

( ) ( ) cos cos sin sint G s t s t s dsσ γ ω ω ω ω ω

∞

 = + ∫ . (III.1.17) 

 
The viscoelastic moduli are defined in this equation in the manner 
 

 

( )

( )

0

0

( ) ( )sin ,

( ) ( )cos .

G G s s ds

G G s s ds

ω ω ω

ω ω ω

∞

∞

′ =

′′ =

∫

∫

  (III.1.18) 

 
�′(�) is defined as the storage modulus or elastic modulus, and �′′(�) is defined as the loss modulus 
or viscous modulus. If one observes the equation (III.1.16), it is possible to relate K with the moduli, 
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 tan
G

G
δ

′′
=

′
. (III.1.19) 

 
The magnitudes of the moduli with respect to � are known as viscoelastic spectrum and are related 
to the complex modulus 
 

 *( ) ( ) ( )G G iGω ω ω′ ′′= + .  (III.1.20) 

 
Substituting the equations (III.1.18) in the viscoelastic spectrum, we obtain, 
 

 ( ) ( ) ( )*

0 0

( ) sin( co )e) s ( xpG G s s i s ds G s i s dsω ω ω ωω ω

∞ ∞     = + =      
∫ ∫ ,  (III.1.21) 

 
hence [16], 
 

 { }*( ) ( )G i G tω ω= ℑ . (III.1.22) 

 
The complex modulus is the unilateral Fourier transform of the relaxation modulus. All the 
mechanical information of relaxation of a system under stress is contained in the viscoelastic 
spectrum. Experimental obtaining of the moduli to study viscoelastic fluids, is the most relevant 
procedure in rheology. For Maxwellian fluids with one characteristic stress relaxation time (equation 
(III.1.7)), after substituting �(/) in the equations (III.1.18), the form of the viscoelastic spectrum is 
 

 

( ) ( ) ( )
( )

( ) ( )
( )

2

2
0

2
0

( ) sin exp ,
1

( ) cos exp ,
1

M
M

M

M
M

M

G dt t t

G dt t t

ωτ
ω ω ω τ

ωτ

ωτ
ω ω ω τ

ωτ

∞

∞

′ = − =
+

′′ = − =
+

∫

∫

  (III.1.23) 

 
which are exactly the same expressions found for polymer beads bonded with harmonic springs, 
presenting Rouse modes (equation (II.4.6)) but with only one relaxation time tm = tÄ . 

 
Also, according to the equation of linear response, where the relaxation modulus behavior is a causal 
effect of past events, and considering the relation between moduli in the complex space, the Kramers-
Kronig relations are a natural way to relate the viscoelastic moduli [96] [97], 
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y
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ω ω ω
ω

π ω

ω ω
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π ω

∞

∞

′′
′ =

−

′
′′ = −

−

∫

∫

  (III.1.24) 

 
where É is an integration variable and _  denotes the principal value of the integrals. 
  
 

2. Rheometry 
 
Now that we developed an introduction to the rheology principles, here it is presented a brief 
introduction to the theoretical framework behind the operation of a rheometer. A rheometer measures 
the stress and strain history of a material. The results exposed here follow the same ideas shown by 
C. W. Macosko [16]. 
 
The goal is to determine the relation between deformation and responsive stress within a fluid. In 
Chapter II it was included the analysis of a continue flux under concentration gradients. We started 
with the Fick’s law, and at the end we obtained a description of diffusive particles with the 
Smoluchowski and Langevin equations. In the middle, the continuity equation (II.2.4) was found 
which explains that changes of concentration in time induce a divergence in the flux of particles. 
The same idea is applicable to the case of variation of mass within a certain volume, % . Temporal 
changes of the mass density are directly related with the divergence of a flux of mass $;, through 
the boundary surface of the volume, 
 

 
t

ρ
ρ

∂
= −∇ ⋅

∂
v ,  (III.2.1) 

 
with $ the mass density of the material, and ; the flux velocity. On the other hand, the momentum 
associated to a volume element within the material is 
 

 

V

m dVρ= ∫v v . (III.2.2) 

 
It is possible to transfer momentum to %  by different processes: mass convection through the surface, 
contact forces acting on the surface from out the volume, and provoked by external fields. 
 
Convection: this contribution to changes in momentum within %  is due to a flux traveling through 
the surface and is −(Ê̂ ∙ ;)$;O1. 
 

Contact: the three-component vector ËR is the stress acting on the surface, which is written as 
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 ˆ ˆ ˆ ˆ

n nn nm noσ σ σ σ= + + = ⋅t n m o n ɶ ,  (III.2.3) 

 
with the first term normal to the surface and the other two tangent to it. The first subscript in the 
stress magnitude deals with the plane where the force is acting, and the second subscript gives the 
direction the force takes on the plane. The last term is the tensor notation, where σɶ  is the stress 
tensor. 
 
External fields: the unique contribution that is accounted here is the gravity force. The force per 
unit volume is $Ì. 
 
The total changes of momentum in time within the volume, are described as 
 

 ( )ˆ ˆ

V S S V

d
dV dS dS dV

dt
ρ ρ σ ρ= − ⋅ + ⋅ +∫ ∫ ∫ ∫v n v v n gɶ ,  (III.2.4) 

 
and using the divergence theorem it is rewritten as 
 

 ( )
t

ρ
ρ σ ρ

∂
= − ∇ ⋅ + ∇ ⋅ +

∂
v

v v g . (III.2.5) 

 
The equations (III.2.1) and (III.2.5) are the fundamental equations for conservation of mass and 
momentum and are the equations of motion of the current problem. It is now required to obtain a 
relation between the flow velocities, the shear rate and the stress response, which is sensed by the 
rheometer. In general, the velocity in the fluid is a function of position and time, ;(Í, /). The relative 
rate of separation of two points within the material, can be calculated using the velocity gradient 
function, which is 
 

 
∂

∆ = ⋅ ∆ = ⋅ ∆
∂
v

v x L x
x

,  (III.2.6) 

 

where the velocity gradient tensor Î, was defined. ∆Í is the separation distance between the two 
points. The velocity gradient tensor has two directions: one the direction of the velocity and the 
other of the gradient. Also, the velocity gradient Î is often written out as the dyad product of the 
gradient vector and the velocity vector, which are related as 
 

 ( )T= ∇L v .  (III.2.7) 

 
It is easy to see that the index order of ∇; is the reverse of that for Î. Moreover, after using a 
deformation gradient tensor in terms of stretch and rotation tensors, we can define the rate of 
deformation tensor 2Ð (which we called �̇ in vector form), and the vorticity tensor 2Ñ written as 
 

 ( )2
T

= ∇ + ∇D v v ,  (III.2.8) 
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which is a symmetric tensor, and the antisymmetric counterpart 
 

 ( )2
T

= ∇ − ∇W v v .  (III.2.9) 

  
These two last equations condense in one by the velocity gradient tensor, 
 
 = +L D W .  (III.2.10) 
  
It is worth to mention that the tensor 2Ð is associated with the rate as the constituents of a fluid 
are separated during time (rate of squared length change). To this, note that 
 

 
( ) ( )2

2
d d d

dt dt dt

∆ ∆ ⋅ ∆ ∆
= = ∆ ⋅

x x x x
x .  (III.2.11) 

 
Using the equation (III.2.6), the equation (III.2.11) gives 
 

 

2

2 2 2
d

dt

∆
= ∆ ⋅ ⋅ ∆ = ∆ ⋅ ⋅ ∆ + ∆ ⋅ ⋅ ∆

x
x L x x D x x W x .  (III.2.12) 

 
In each of the right-hand terms the tensor is operating on two ∆Í vectors. Because these vectors 
are identical, we can reverse the operations, operating on the other one first. However, changing the 
operation order requires the tensor to be symmetric. Thus, the last term is 0 and we have 
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which is the expected result. Now, with all necessary equations, we can use the relation for 
conservation of momentum applied to a cone-plate geometry, to evaluate the relation between 
deformations and stress.  
 
Consider Figure III.2, which shows the geometry. Between the cone and plate the sample is settled. 
The plate has a radius ', and the cone possesses and angle | with the horizontal. The cone rotates 
with an angular velocity Ω. Spherical coordinates are used, therefore ! is measured from the cone 
surface to the plate surface, and the flow velocity is %Ó in the direction of cone rotation. Isothermal, 

laminar and stationary flow is assumed. The flow velocity is only a function x and !, hence %Ó(x, !), 

%Ô = %Õ = 0. Also, the angle | is enough small (< 6°). Note that under this flow, the stress tensor 
component applied to a surface normal to ! in the direction of # is the shear stress [ÕÓ, and the 

shear rate is in the same direction. The boundary conditions assume that there is not slip of fluid at 
the surfaces, and 
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Solving the equation (III.2.5) in spherical coordinates, considering the equations (III.2.8) and 
(III.2.10), and the boundary conditions (III.2.14), we found out that the only concerning expression 
in the equation (III.2.5), is the component in the direction of #, 
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Integrating gives 
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where � is a constant of integration that does not depend on !. Now the torque × is computed, 
which is exerted on the plate. Note that O5 = [ÕÓO9, therefore |O×| = |. × O5| = x[ÕÓ|Õ=� 2⁄ xOxO#. 

Integrating this expression 
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Using equation (III.2.16), the expression for the shear stress is 
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In the last equation it was considered that sin(� 2⁄ − |) ≈ 1. The equation (III.2.18) relates the 
torque that the sample applies on the plate, with the shear stress. 

Figure III.2 Cone-plate geometry for a rheometer. The sizes are not in scale. The aperture angle is overdone just to make it clear. 
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Now, computing the shear rate for a small angle |, evaluating the velocity gradient tensor we found 
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where the boundary conditions were used. One advantage for using the cone-plate geometry is the 
independence of x in the shear rate, therefore the sample is always under a constant shear rate 
whatever the position between the geometry. Another advantage is the no dependence of shear stress 
in the shear rate. As can be seen from equations (III.2.18) and (III.2.19), a rheometer in cone-plate 
geometry, obtains the shear stress component with measuring the torque sensed by the geometry, 
and computes the shear rate after measuring the angular velocity of the geometry. 
 
 

3. Light Scattering 
 
The nature of light has played a vital role in our understanding of the physical world. The discovery 
of the dual nature of light has been essential which permitted the development of technological 
advances during the last century and with even more promising achieves in future years. For 
particular interests in Condensed Matter Physics, light serves as a nonperturbative probe that can 
be used to obtain information about the structure and dynamics of macromolecules. For that reason, 
the study of transport and localization of light through matter has to become a cornerstone in the 
physical and chemical sciences [98] [99]. 
 
A totally homogeneous medium does not scatter radiation away from the incident direction. 
Scattering is caused by fluctuations in the medium. Usually these fluctuations are associated with 
variations in the density of scattering material within the medium. It is well known that for a specific 
sort of radiation the interaction with matter is different. In Soft Matter it is a standard procedure 
to analyze systems with visible light, where the interaction is governed via changes in the dielectric 
constant of the medium (or index of refraction); X-rays that interact according to variations in the 
electronic density of the material and neutron beams which detects a contrast of the nucleons of the 
atoms of the sample under study.  
 
When the energy of the photon is preserved during the scattering mechanism, the mechanism is 
called elastic scattering for an ideal situation (quasi-elastic in the laboratory). There exist different 
regimes of elastic scattering depending on the size of the macromolecules involved in the process 
(Table III.1), which differ with each other by the preferred direction of the scattered light.  
 
Approximation Regime Preferred scattering direction 

Rayleigh  Spherical particles, 9 < Ù 10⁄  Isotropic 

Rayleigh-Debye  Arbitrary shape particles, 9 ≥ Ù Forward 

Mie  Arbitrary shape particles, 9 ≫ Ù Forward, high dependence on scattering angle 
Table III.1 Different scattering regimes. 9 is the radius of spherical particles and Ù the wavelength of light. 
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In addition, the intensity of the scattered light is dependent upon the spatial arrangement of the 
scattering centers at any instant in time. In fact, in a liquid solution, the macromolecules are 
undergoing constant motion because of the collisions with the solvent molecules. When the analysis 
of the scattered light is carried out considering the fluctuations of macromolecule displacements, the 
convention is to call it Dynamic Light Scattering (DLS), otherwise when an average of the dynamics 
of the macromolecules is analyzed, independent of the time evolution of the system, the process is 
called Static Light Scattering (SLS). It is usual to perform DLS experiments in the visible range of 
the light spectrum, and for SLS it is common to do it also in the range of visible light, X-rays and 
with neutrons. 
 
DLS experiments are performed when dynamic properties are likely to be obtained as the diffusion 
coefficient of colloidal particles, their mean square displacement (MSD), their hydrodynamic radius 
and their size distribution. On the other hand, SLS experiments recover information resulting from 
the average fluctuations of the complex system as the radius of gyration, the molecular weight in 
some cases, the second virial coefficient, the form factors for diluted suspensions and the structure 
factors in concentrated ones. In the next section the DLS formalism will be mentioned, restricted to 
our convenient approach, and at the end of the chapter, Small Angle Neutron Scattering (SANS) 
will be pointed out to obtain the structure of different systems in water suspensions.   
 
 

3.1. Dynamic Light Scattering (DLS) 

 
In this kind of experiments [100] [101] [102], laser light (coherent source of light) with an incident 
wave vector Û0 strikes on to a sample of colloidal spheres embedded in a complex fluid transparent 
to the incident light. If the concentration of the particles is dilute enough, there will be just one 
scattering event for each wave passing along the sample. The scattering is due to the difference in 
polarizability (dielectric constant) between the particles and the solvent. The electromagnetic wave 
then induces a dipolar moment which irradiates in all directions. This scattered light is detected at 
a particular angle ! in the direction of the wave vector Û�, in the far field. If the scattered field at 
the detector from a single particle is Ü0, then the total field Ü is a superposition of scattered fields 
from all 3  particles in the scattering volume 
 

 0
1

exp (( ))
N

i
i

t i t
=

 = ⋅ ∑E E q r ,  (III.3.1) 

 
where Ý = Û� − Û0 is the scattering wave vector, .È(/) is the position of the ith particle, and the 
amplitude of the wave contents all information related with the polarizability of the molecules. The 
argument of the exponential represents a phase shift introduced by the differences in the optical 
pathway each wave will take after the scattering event. This shift for each scattered wave will induce 
an interference pattern at the plane of detection. This pattern is called speckle that is not other than 
the fluctuation of the intensity of the light directly related with the motion of the particles. These 
fluctuations can be characterized by their temporal autocorrelation function  
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(III.3.2)   

 
which is related through the Siegert relation to the time-averaged light intensity autocorrelation 
function ^(2)(/), measured experimentally,  
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where | is an instrumental factor determined by the collection optics, related with the coherence 
area, ��¹ℎ~ Ù2'2 �92⁄  (' is the distance from the scattering volume to the detector), that accounts 
for the number of speckles observed on the detector of area 9 at the same time. Its value varies from 
0 to 1; in our experiments, the value is very close to 1. Ü∗(/) is the complex conjugate of the electric 
field. 
 
In general, in the Rayleigh regime for spherical particles, the field autocorrelation function is given 
by [103] 
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with � a constant which depends on the refraction index of the medium, the intensity of scattered 
light, the wavelength of the light and the distance from the scattering volume to the detector. For 
non-interacting particles, the cross-terms vanish, then 
 

 (1) exp ( )( )g A i tt  = − ⋅ ∆ q r , (III.3.5) 

 
with ∆.(/) ≡ .(/) − .(0). If ∆.(/) is a Gaussian variable, then 
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where µ is the magnitude of the scattering vector, µ = 4�Z0

à sin(Õ
2) (�0 is the refraction index of the 

medium), and 0 is the diffusion coefficient of the scattering particles. In the expression of the right, 
it was assumed a diffusive motion of the probe particles. 
 
In the laboratory, the experiments are not limited to be developed with small scatterers; in fact, it 
is usual to perform measurements with particles in the Rayleigh-Debye regime, with not necessarily 
spherical shape. A detailed discussion of the formalism of DLS for large anisotropic particles is found 
in the work of S. R. Aragón and R. Pecora [104]. In the Rayleigh-Debye approximation, it is assumed 
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that every portion of the scatterer captures the same incident radiation. Its validity is assured when 
the condition 2C0�(� − �0) ≪ 1 is satisfied, where � is the refraction index of the probe particle 
and � is a characteristic size of the particle. The main problem is that one particle possesses several 
scattering centers which contribute to the speckle pattern at the detector. For monodisperse 
dispersions of a single type of particle and in a dilute or ideal solution, the correlation function is 
considerably simplified since there are no correlations between different particles for nonzero 
scattering vector. Even, if we consider a molecule composed just by isotropic segments, the associated 
polarizability tensors are scalars, resulting in a simplified autocorrelation function 

                       
2 2(1) 2

0ˆ ( , )ˆ( ) q Dtg NAe S tt α−= ⋅ qε ε , 

 

(III.3.7) 

 
where á−Ç2âÆ is the contribution due to the translation of the center of mass of the particles, ã0̂ and 
ã ̂are the directions of polarization of the incident wave and the scattered one respectively, } is the 
spatial Fourier transform of the whole particle, and 1(Ý, /) is the internal correlation function with 
the form 
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where � is the number of scattering centers in the particle and $ä represents the position of the jth   

segment within the particle. The zero-time value of the internal correlation function is the form 
factor, 1(Ý, /) = _(µ�). The last equation could be solved in cylindrical coordinates, which takes 
the form 
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l
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with Θ⊥ representing the rotations of the molecular symmetry axis and Oæ = 1

º ∫ O3$?æ(cos !)
º

, where 

?æ is a spherical Bessel function and < the total volume of the molecule. For a particle with spherical 
shape, the only accountable value is ¤ = 0, and integrating over the whole angular space, the result 
is  
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For this geometry, the internal correlation function is equal to the form factor, and it does not 
depend on the distance between different scattering centers. For this reason, it is possible to use 
DLS experiments for spherical particles in the Rayleigh-Debye regime connecting the autocorrelation 
function for the contribution of different segments. Hence, the autocorrelation function for the 
particles in this regime is 
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where � is a constant amplitude value. With this autocorrelation function, we are able to correct 
the results obtained in the experiment. Moreover, there are specific angles at which the 
autocorrelation function is maximum, depending on the size of the particles. Monitoring these sites, 
we can obtain a better estimation of the diffusion coefficient of the particles. 
 
However, DLS has the power to analyze just the large quadratic displacements of particles to assure 
at least an out of phase of � in the wavelength of different scattered beams, due to the difference in 
the optical paths of light. If we are interested in the estimation of shorter length and time scales of 
the dynamics of the probe particles, an affordable experiment is DWS. 
 
 

3.2. Diffusing Wave Spectroscopy (DWS) 

 
DWS is a light scattering technique that extends the analytical power of DLS to the limit of multiple 
scattering events. Due to this, it is possible to examine opaque samples such as concentrated 
suspensions, obviating the need to dilute or index-match. For typical experiments in complex fluids, 
a turbid suspension is prepared with adding colloidal probe particles at a certain concentration to 
assure multiple scattered light but at the same time to avoid interparticle interactions. A time 
autocorrelation function of the intensity of the scattered light is obtained which is related to the 
mean square displacement of the tracers. We will follow the formalism developed by D. J. Pine and 
D. A. Weitz towards the late eighties [105] [106]. 
 
Obtaining of a speckle pattern at the detector and hence a temporal autocorrelation function in 
DWS, imply two fundamental approaches: diffusion approximation of the light intensity along each 
path taken by the photons through the medium and an average of scattering events instead of 
considering individual events, where each one plays a less critical role. Unlike DLS, the angle between 
the incident and detected light is not crucial in DWS, and although it does not yield explicit 
information of the so-called dynamic structure factor of the particles, it can provide unique 
information on particle motion on very short time scales. However, since light is scattered from a 
large number of particles, each particle must move only a small fraction of a wavelength for a 
cumulative change in the path length to be a full wavelength so that DWS can probe motion on 
very short length scales, from ~ 1 nm up to ~ 1 µm [107]. As a consequence, there are different 
allowed experimental geometries, where the most suitable are total transmission and backscattering. 
Therefore, the multiply scattered light loses information of its origin and the direction of propagation 
after traveling a distance called transport mean free path, ¤∗, where the light starts to take a random 
direction. The transport mean free path is related to the mean free path ¤, which is the distance 
traveled among every scattering event, according to 
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with $ the particle density, [ the scattering cross section, ! is the scattering angle and …   

represents an ensemble average upon plenty scattering events. For small particles, near the Rayleigh 
scattering limit, when C09 ≪ 1 (C0 = 2� Ù⁄  is the wave vector and 9 is the radius of the particles), 
the single particle scattering is isotropic, and the direction of light is randomized after one scattering 
event (¤∗ = ¤). In the case of larger particles, in the Mie scattering limit, they reach their maximum 
point in the forward direction, so that, there are necessary several scattering events, on average, to 
randomize the direction of propagation (¤∗ > ¤). Also, the transport mean free path is a parameter 
that has to be calculated independently from the DWS experiment. In our laboratory we established 
the Inverse Adding Doubling method to get the optical parameters of the studied systems; it will be 
mention in detail in the next section once we introduce the problem of light absorption in 
suspensions. 
 
For calculation of the electric fields autocorrelation function, consider a total transmission geometry 
measurement. A laser beam is impinging towards the sample with a thickness � ≫ ¤∗, where every 
incident photon is emerging in the opposite site after been scattered 3  times, with a phase that 
depends on its total path length �. Figure III.3 shows a sketch of this phenomenon.  
 

 
Figure III.3 Sketch of the path followed by a multiply scattered photon through a sample. Each point represents a particle embedded 

in the fluid. The small blue spheres represent the unions between macromolecules within the complex fluid. The green sphere is a 

probe particle. Modified from [108]. 

The total pathway of the photon will be 
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where ÛÈ is the wave vector after i scattering events, .È is the position of the particle i, .0 is the 
position of the light source and .X  is the position of the detector (photomultiplier). If we assume 
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quasi-static scattering, all wave vectors have the same magnitude, then the total phase shift #(/) for 
each photon is 
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On the other hand, we note that the total amplitude of the scattered electric field is the superposition 
of all the fields due to all the different pathways of light through the sample, 

                      ( )
( ) p t

p
p

i
E t E e

φ= ∑ , 

 

(III.3.16) 

 
with s representing each one of the different trajectories of light and ém is the total electric field 

amplitude for trajectory s. Notice that this sum is over each path the light is allowed to take and 
not over each scattering element. The equation (III.3.16) involves two sums, one over light paths 
and another over the particles in each path. Similar to the equation (III.3.2), the autocorrelation 
function is given by 
 

 
(0) ( ))

*

*(

2

1
(0) ( ) 1

( ) p pi i

p p

t

p p

tg
t

E e E e
I

φ φ ′
′

′

−
      = =        
∑ ∑

E E

E
, 

 

(III.3.17) 

 
 
where ¶ is the total average scattered intensity at the detector. This field autocorrelation function 
is related to the time-averaged light intensity autocorrelation function ^(2)(/) through the Siegert 
relation as in DLS (equation (III.3.3)). 
 
For independent particles, the field from different trajectories are to an excellent approximation 
uncorrelated, thus in the equation (III.3.17) the terms with s ≠ s′ do not contribute, and we obtain 
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with ¶m ≡ ⟨∣ém∣

2⟩ the average intensity from path s. Here we assumed the independence of phase 

and field amplitude ém at the detector. After some treatment of the equations, we can obtain an 

expression for the phase shift ∆#m(/) = #m(/) − #m(0), as 
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where ÝÈ ≡ ÛÈ(0) − ÛÈ−1(0), is equivalent to the scattering vector defined for DLS but this time for 
each particle i, and ∆.È(/) ≡ .È(/) − .È(0). It is possible to evaluate the phase shift in the equation 
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(III.3.18), noting that ∆#m(/) is a Gaussian variable for large 3  and using the central limit theorem, 

we have 
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Using the equation (III.3.19) we obtain 
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where we have assumed the independence of successive phase factors and that the scattering vector 
ÝÈ and displacement vector ∆.È(/) are independent. If we relate the average over µ2 with the mean 
free paths, we get 
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equation in which we consider that � = 3¤ for 3 ≫ 1 scattering events. Notice that the average of 
the squared phase shift depends only on the parameter � so that, we can change the sum over paths 
for a sum over path lengths, provided that we replace the fraction of scattered intensity ¶m ¶⁄  in path 

s, with the fraction of scattered intensity _(�) = ¶� ¶⁄ , in paths of length �. Furthermore, passing 
to the continuum limit and applying the equations (III.3.19) and (III.3.22) on (III.3.18), we obtain 
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The equation (III.3.23) is the basis of the calculation of autocorrelation functions in DWS. It states 
that a light trajectory of length � corresponds to a random walk of � ¤∗⁄  steps and that such a path 
contributes on average exp[− 1

3 C0
2〈∆x2(/)〉] per step to the decay of the autocorrelation function. 

Seeing forward for further analysis, we rewrite the equation (III.3.23) as 
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where t = (C0

2〈∆x2(/)〉 6/⁄ )−1. For diffusive particle motion, it is possible to write 〈∆x2(/)〉 = 60/ 
(thermal motion as previously mentioned in Chapter II, for the Smoluchowski and Langevin 
equations), with 0 the diffusion coefficient of the particles. From here it is easy to convince ourselves 
that equation (III.3.23) is the Laplace transform of the path length distribution, 
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The calculation of _(�) is highly dependent on the geometry of the setup for obtaining the scattered 
light. It is not complicated to imagine that larger paths will be involved in a total transmission 
experiment rather than the shorter paths occurring for a backscattering setup. However, the main 
feature to get _(�) is the accurate modeling of the transport of light by a diffusion equation for 
scales greater than the transport mean free path. 
 
Consider a thought experiment: an instantaneous pulse of light is incident to the sample. The 
scattered light executes a random motion until it escapes. Thus, there is some delay between the 
light reaching the detector and the incident pulse due to the scattering events. The light that reaches 
the detector a time / after the pulse was emitted, has been traveled a distance � = "/, where " is the 
average velocity of light inside the sample. Thus, the flux of photons -¹îÆ(.¹îÆ, /) arriving at the 
point .¹îÆ will be directly proportional to _(�). Then, as mentioned earlier, a diffusion equation 
describes the transport of light, deduced from the Fick’s law as pointed out in Chapter II (equation 
(II.2.1)), 
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with 4  the energy density of light or the number of photons per unit volume in the sample, and 
0æ = "¤∗ 3⁄  is the diffusion coefficient of light. To solve equation (III.3.26) we consider that the light 
path becomes random at a distance close to ¤∗; for that reason, the source of diffuse light should be 
an instantaneous pulse at a distance ï = ï0 inside the illuminated face of the sample. In accordance, 
ï0 ~ ¤∗ and the initial condition is 
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Additionally, the boundary conditions ensure that there is no net flux of diffusive photons entering 
the sample (from the boundary), hence if we consider a sample with thickness �, the inflow and 
outflow must be zero, ?+(ï < 0) = 0 and ?−(ï > �) = 0, or equivalently 
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(III.3.28) 

 
Considering the Fick’s Law and equation (III.3.28), we get the relation 
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(III.3.29) 

 
Exploiting the fact already stated in the equation (III.3.25), instead of solving the diffusion equation 
for light to obtain _(�), we can solve the Laplace transform of the diffusion equation and obtain 
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^(1)(/) directly without explicit calculation of _(�). We introduce a change of variables into the 
diffusion equation (/ = � "⁄ ), and multiplying both sides of the equation (III.3.26) by exp−m�; we 
obtain the Laplace transform of the diffusion equation after integration, 
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where 4̅(., s) is the Laplace transform of 4(., �), and 400(.) = lim

Æ→0
40K(ï − ï0, /). It is also necessary 

to consider the Laplace transform of the boundary conditions (equation (III.3.28)). Taking the 
Laplace transform of the equation (III.3.29), we can relate this solution, 4̅(., s), to the Laplace 
transform of _ (�), which is precisely the expression of the equation (III.3.24) for ^(1)(/). Thus, we 
obtain 
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where 4̅(., s) has been normalized so that ^(1)(0) = 1. 
 
These equations can then be solved using Green’s function techniques to obtain 4̅(., s), as discussed 
by H. S. Carslaw and J. C. Jaeger [109]. The most used geometry in the laboratory is the transmission 
one due that it allows one to probe motion over length scales much shorter than the wavelength of 
light. For the case of a sample with thickness � and parallel plane faces, and with uniform 
illumination (a circular spot of around 1.5 cm) of a plane wave beam, the autocorrelation function 
is solved as 
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,  (III.3.32) 

 
with A ≡ √C0

2〈∆x2(/)〉 and }∗ ≡ ï0 ¤∗⁄ . As it is evident, the only free parameter is ¤∗, which as has 
been mentioned earlier, it is calculated experimentally in an independent way, with the Inverse 
Adding Doubling experimental formalism. On the other hand, ï0 ~ ¤∗, but numerical values are 
insensitive to the exact choice of ï0, since � ≫ ï0. A different choice of ï0 would affect only the first 
few steps in a random walk that consists of a large number of steps. There is a way to calculate the 
exact experimental value according to [110], with a backscattering geometry. 
 
 

3.3. DWS for media with light absorption 

 
The classical formalism of DWS does not allow to study liquid systems that absorbs or scatters light 
prior to the incorporation of probe particles. However, many systems with biological interests, 
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magnetic fluids, photo-responsive liquid materials, suspensions with metal nanoparticles, carbon-
based suspensions, among others, are not able to be studied if absorption effects are not evaluated 
and corrected theoretically. Recently, E. Sarmiento-Gómez, B. Morales-Cruzado and R. Castillo 
[111] applied a technique never used before in complex fluids, to circumvent absorption issues. They 
corrected the theory, first discussed by D. A. Weitz and D. J. Pine [105] [106], pointing out that 
absorption exponentially attenuates light paths according to their path length, cutting off the longest 
paths; however, Weitz and Pine did not derive analytical results. 
 
Whether _(�) is the path length distribution in the absence of absorption, the path length 
distribution in the presence of absorption will be _(�)exp(−� ¤i⁄ ), where ¤i is the absorption length 
of the sample; zi ≡ 1 ¤i⁄  where zi is the absorption coefficient. Therefore, the field autocorrelation 
function (equation (III.3.24)) is rewritten as 
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Here it is evident that the effect of absorption is mathematically just a shift in the time axis. As for 
conventional DWS, a diffusion equation for the energy density is necessary to get an analytical 
relation for ^(1)(/), but in this case, it has to be included an absorption term to get the correct path 
distribution function of scattered photons. Monte Carlo simulations have revealed that a useful 
model considers an absorption independent diffusion coefficient 0æ for light [112]. Thus, the diffusion 
equation must be written as 
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It is possible to derive this diffusion equation from the radiative transfer equation, by considering a 
nearly isotropic light distribution and assuming that ¤i ≫ ¤∗ [113] [114]. Before get the diffusion 
equation solution with the absorption correction, it is necessary to follow the same reasoning used 
earlier in the absence of absorption. For transmission geometry, the procedure can be followed in 
[111]. After some algebraic calculations, the equation for the field autocorrelation function is 
obtained, 
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where : ≡ √3¤∗ ¤i⁄  and Ai ≡ √C0

2〈∆x2(/)〉 + :2. This equation seems more complicated than its 
counterpart with no absorption. Nevertheless, when ¤i → ∞, we recover the equation (III.3.32). It 
is not sufficient to estimate the value of ¤∗; it is necessary the calculation of ¤i as well, with an 
independent experiment. For this purpose, E. Sarmiento-Gómez, et al., have established the use of 
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the Inverse Adding Doubling method (IAD), developed by S. A. Prahl for biomedical applications 
[115] [116] [117]. The IAD is a method for generating the optical parameters of materials with 
scattering and absorption of light. It consists on the experimental measurement of the total 
reflectance, total transmittance and collimated transmittance of incident light to the sample. All 
these measurements are performed using an integrating sphere. The obtained optical parameters are 
the scattering coefficient z�

′ = 1 ¤∗⁄ , the absorption coefficient zi = 1 ¤i⁄ , and the anisotropy factor 
^. In technical terms, in the IAD method a general numerical solution for a radiative transport 
equation is given through the following steps: (1) A guess for a set of the optical parameters is given. 
(2) The reflection and transmission of the samples are evaluated using the Adding Doubling method 
developed by H. C. van de Hulst [118] [119]. (3) Transmittance and reflectance are compared with 
the experimental measurements. (4) If the match is not good enough, the set of optical parameters 
is modified using a minimization algorithm. This process is iteratively followed until a match with 
the experimental measurements at some specific level is made. IAD also takes into account several 
features experimentally challenging to assess, such as light lost out the edges of the sample cell and 
non-linear effects in the integrating sphere measurements. 
 
Forward in subsequent sections, there will be visible the importance of applying this numerical 
method to perform the DWS experiments. In the experimental results section, there are mentioned 
the details of the experimental arrangement in order to get the optical parameters and the 
measurements of light scattering.  
 
 

3.4. Microrheology 

 
In previous sections, an introduction to rheometry was presented. It was pointed out that a 
mechanical rheometer can perform oscillatory experiments to deform the material under study and 
measure the relaxation after the application of stress. However, the frequency achievable by the 
mechanical engine is limited to work below � ~102 s−1. Furthermore, it is necessary to be sure that 
the measurements are maintained in the linear regime, otherwise the deformation of the material 
with this mechanism can provoke destruction and reorganization of the structures within the sample, 
leading to an erroneous measurement. During the last three decades, the microrheological techniques 
have boomed for their advantageous application to extract information at smaller length and time 
scales, only possible with the minimization of the probing device, as for the use of force microscopy 
through the sensitivity of a microcantilever [120] [121] [122]. There also exists the implementation 
of colloidal particles as mentioned in the DWS section, as probes to extract mechanical information 
of the system under study. This kind of microrheology is what concerns to us [123] [124]. Due to the 
almost negligible inertia of the probe particles, the frequency interval that could be reached is 
considerably extended (up to � ~106 s−1) [39]. 
 
Here we will detail the microrheological technique we implement for colloidal particles. It relates the 
mean square displacement of the particles in the Laplace or equivalently, in the Fourier domain, 
with the viscoelastic spectrum of the complex fluid. T. G. Mason et al., developed a generalized 
Stokes-Einstein equation, which takes into account the thermal fluctuation of the particles due to 
the presence of a surrounding complex fluid. If we consider a stochastic displacement of the particles, 
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statistical physics theory approaches the dynamics of these systems more simply. A modified 
Langevin equation is used which includes a causal memory function to consider the viscoelasticity 
response of the medium. The equation has the following form, 
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t
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d
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ζ − ′+ ′= ∫

v
f v ,  (III.3.36) 

 
where the hydrodynamic resistance is 8(/ − /′), which satisfy the fluctuation-dissipation theorem. 
This term includes the energy storage due to the elasticity of the fluid. � is the particle’s mass and 
;(/) its velocity; and ñu(/) is a Gaussian random force, that incorporates both instantaneous and 
reactive stochastic forces of the solvent particles against the probe spheres, and therefore differs from 
the white spectrum of a viscous fluid. 
 
8(/) is causal, meaning 8(/) = 0 for / < 0 +, therefore, the limits of integration for the convolution 
term can be changed to (0,∞). Then, applying the unilateral Fourier transform to the equation 
(III.3.36), and retaining the initial conditions for the velocity, we get 
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Here we have to assume for an arbitrary function that the unilateral Fourier transform is 
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Now, to calculate the transform of the velocity autocorrelation function, we multiply the equation 
(III.3.37) by ;(0), and ensemble average, 
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(III.3.39)    

 
Causality guarantees that the distribution of random forces is decoupled from the distribution of 
velocities at / = 0, 〈ñu(/) ⋅ ;(0)〉 = 0, then formally in the frequency domain, the first term on the 
right side of the equation (III.3.39) has the same result. On the other hand, equipartition energy sets 
the value of the instantaneous average square velocity, �〈;(/) ⋅ ;(/)〉 = CDE , so the second term on 
the right of the equation (III.3.39) is equivalent to this. Also, the term ó�� represents inertia of the 
colloidal particle. This term is only significant at high frequencies (> 106 s−1) for latex particles of 
micron diameter sizes. The achievable limit for DWS and this microrheological technique coincides 
with this limit frequency so that we can neglect the inertial term in a good approximation. Using 
these considerations and solving for the local memory function, we find 
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For � > 0 and using the identity { } ( ) { }22 6 (0) )) ((u ur t i tω
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(III.3.40) is rewritten as 
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This equation is also consistent with the fluctuation-dissipation theorem. The generalized Stokes-
Einstein equation, as the classical one, assumes that the complex fluid is treated as a continuum 
around the spherical particle. This argument is valid when the length scales of the structures giving 
rise to the elasticity are much smaller than the particle’s radius. We also assume that the Stokes 
relation for the drag of a purely viscous fluid can be used to determine the complex viscosity (8∗(�) =
6�9:∗(�)) over all frequencies and the relation with the complex modulus, :∗(�) = �∗(�) ó�⁄ , as 
well. With these relations, we obtain 
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valid for � > 0, with 9 the radius of the spherical particle. This equation is the generalized Stokes-
Einstein equation which relates the complex modulus of a viscoelastic fluid with the unilateral 
Fourier transform of the mean square displacement of the tracer particles; consistent with the 
conventions of mechanical rheology. As mentioned above, there is an equivalent result in the Laplace 
domain, but the development in the frequency domain permit us to compare directly with mechanical 
experiments. 
 
 
3.4.1. Evaluation of experimental data 

 
Even when it is possible to use the generalized Stokes-Einstein equation to obtain the mechanical 
information of the system under study from a DWS experiment, there are technical complications 
for using MSD experimental data. In experiments, each measurement occurs at discrete times over 
a limited temporal range, i.e., we do not have a well behaving mean square displacement function 
for input in equation the (III.3.42). Computation of transforms into the frequency domain may 
introduce errors in the moduli. To overcome this problem, we followed two procedures: 
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Bellour’s equation 

 
First, we adjusted a functional form to the experimental data of the MSD, proposed by M. Bellour, 
et al., [125]. They introduce a master function that describes the MSD of the particles in the entire 
time range. This function was developed primarily for Maxwellian fluids and a straightforward 
interpretation of the relaxation mechanism and relaxation times was given for a system of wormlike 
micelles made of surfactants. Nevertheless, the application of Bellour’s fitting equation is not limited 
to Maxwellian fluids when we are not seeking a significant physical interpretation to each term in 
the equation, but instead we just need a continuous well-behaved MSD, mainly at low and high 
times where there is a lack of data, to be able to manage it numerically. 
 
The equation proposed by M. Bellour and coworkers is 
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For the time window achievable for the MSD in DWS experiments, it is possible to distinguish three 
different regimes for the motion of particles, each one represented with the different terms in the 
equation (III.3.43). At short times the dynamics is Brownian, where 00 is the local diffusion 
coefficient; at intermediate times, the MSD remains constant for a certain time, where 6K2 is the 
value of the MSD at the inflection point; at longer times, the motion is diffusive again, with 0Z the 
long-time diffusion coefficient corresponding to the macroscopic viscosity of the solution [125]. The 
first term in brackets times 6K2 represents the MSD of a particle harmonically bounded and executing 
a Brownian motion around a stationary mean position. Notwithstanding, the system of WLMs is 
viscous at long times, and the cages in which particles are trapped fluctuate due to the 
breaking/recombination – reptation mechanisms, hence, the MSD displays the longer times behavior 
with the second term in brackets. Finally, to fit Bellour’s equation to the characteristic MSD at the 
plateau onset, it is necessary to include the parameter �, which accounts for the broad spectrum of 
relaxation times at this site. � = 1 corresponds to a monoexponential relaxation and a decrease in 
the value corresponds to a larger relaxation spectrum. For a detailed explanation for understanding 
the meaning of equation (III.3.43), it worth it to check reference [125]. 
 
 
Logarithmic derivative of the MSD 

 
To overcome the problem at the edges of the MSD, T. G. Mason introduced the second procedure 
[124]. Usually to implement the Laplace transform numerically, people use the classical trapezoid 
rule as an integration method; or for calculating the Fourier transform numerically, the Fast Fourier 
Transform (FFT) is the most common procedure. Both of them introduces errors near the frequency 
extremes due to the truncation of the data set. Mason estimate the transforms algebraically by 
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expanding the MSD locally around the frequency of interest, � (or �), using a power law and retaining 
the leading term, we get 
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power law exponent describing the logarithmic slope of the MSD. For Brownian particles, this slope 
lies between zero for elastic confinement and one for viscous diffusivity. Evaluation of the Fourier 
transform leads to the relation 
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Substituting in the generalized Stokes-Einstein equation (III.3.42), and using the Euler´s equation 
to separate real and imaginary parts, we obtain 
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where 
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and Γ is the gamma function. This algebraic estimation method provides much better values for the 
moduli at the frequency extremes, at the cost of small errors introduced where the logarithmic slope 
of the MSD varies rapidly. It also can be implemented when time-sampled data are logarithmically 
spaced, and finally, the method is also faster than the FFT. 
  
 

3.5. Static Light Scattering (SLS) 

 
Now that DLS techniques are explained, including the limit of multiple scattering events, here the 
introduction of light scattering techniques is extended to the static cases, where an average of the 
dynamics of the macromolecules is analyzed, independent of the time evolution of the system, with 
the aims to obtain structural information. Scattering measurements are performed in the Fourier 
(also called reciprocal) space, not real space like microscopy. For this, scattering data have to be 
either inverted back to real space or fitted to models describing structures in reciprocal space.  
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In the equation (III.3.1) we saw a simplified version of the electric field of a scattered wave by a 
sample, where each term of the sum corresponds to the contribution of each particle to the total 
scattered electric field. If we consider relative big particles, which possess more than one scattering 
center, we have to deal with the phenomenon in the Rayleigh-Debye approximation. It was already 
expressed that the main problem is that one particle has several scattering centers which contribute 
to the total scattered light at the detector. For dispersions of a single type of particle with isotropic 
segments and in an ideal solution, the DLS autocorrelation function was considerably simplified since 
there are no correlations between different particles for nonzero scattering vector (see the equation 
(III.3.7)), where the 1(Ý, /) is the internal correlation function of the scattering particles. Also, it 
was mentioned that the zero-time value of the internal correlation function is the form factor, 
1(Ý, /) = _(µ�), which contains structural information. 
 
A more general expression for the amplitude é�(T, /), of the electric field of the radiation scattered 
to a point detector at position T in the far field, due to discrete scatterers (with more than one 
scattering center, see Figure III.4) is given by 
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Here we consider 3  particles in the scattering volume % , 
whose centers of mass at time / are described by position 
vectors {Tä(/)}. .ä(/) is the position of volume element 

O%ä(= O3xä) in particle ö relative to its center of mass. 

÷ø (., /) is the local dielectric constant at position .ä in 

particle ö, ÷ù is the average dielectric constant of the 
liquid, and ÷0 is the average dielectric constant of the 
whole suspension. The term with the inverse of ' 
describes a spherical wave of scattered radiation 
emanating from the origin; the final term exp[−óÝ ∙

Tä(/)] takes account of the shifted in phase by the 

radiation scattered by the volume element at the center of mass (at Tä relative to the origin ü, and 

time /), as explained for DLS; and the central element in the equation (III.3.48) integrates the 
contribution per particle, for the phase shift but now due to the scattering centers at positions .ä, 

relative to the center of mass for each particle, modulated by the difference in dielectric constant 
within each particle, and summed up for the 3  particles. We define the term 
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that can be regarded as a local density of scattering material. With the appropriate identification of 
∆$(.ä, /), the henceforth results will apply also to X-ray and neutron scattering. The physical 

principles are the same for all scattering cases, with the proper change of dielectric constant to 

O%ä 

.ö(/) 

.ö
�(/) Tö(/) 

Tö
�(/) 
ü 

Figure III.4 Coordinates for discrete scatterers, 

relative to an origin O. 
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electronic density, or contrast of nucleon density of the atoms, for X-rays and neutron scattering 
respectively. Another definition is done to the integral in the equation (III.3.48), as follows 
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called the scattering length of particle ö. Experimentally one measures the scattered intensity 
¶(Ý, /) = |é�(Ý, /)|2, as function of the scattering vector, rather than the position of the detector. 
The two are equivalent, but now it is analyzed in the reciprocal space. For structural information 
the ensemble average is required, so the intensity has the form (equivalent to a time average when 
we are dealing with ergodic samples) 
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For diluted systems, there is a simplification of the last equation. In this case the individual particles 
are, on average, widely separated spatially so that their behaviors are uncorrelated. Omitting for 
simplicity the prefactors, the equation (III.3.51) is rewritten as 
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where we have considered that in the average, the exponential terms are randomly distributed about 
zero, thus, their ensemble average is zero. For identical particles, 
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where we have introduced the form factor _(µ) = 〈|a(Ý)|2〉 〈|a(0)|2〉⁄ , which is defined so that _(µ) →
1 as µ → 0, and provides information on the structure of the individual particles. For spherical 
particles, it was computed already and it is shown in the equation (III.3.10). 
 
An extended data analysis treatment is out of the scope of the thesis, but here it is introduced the 
possibility for obtaining structural information within a particle, about the different sizes in spatial 
space. This treatment was developed by O. Glatter and can be found elsewhere [126] [127] [99]. 
 
For dilute suspensions, consider the equation (III.3.53). Various approaches to data analysis can be 
taken. One can try comparing data spanning a wider range of µ with specific models for the form 
factor _(µ), as will be introduced later; however, if a good fit of the data cannot be obtained in this 
way, one is forced to a more general inversion approach from the reciprocal space. 
 
After some algebraic considerations, one finds that 
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where 
 

 
2 2( ) ( )p R R ρ= ∆ R   (III.3.55) 

 

is known as the pair-distance distribution function, with 2 3( ) ( ) ( )d rρ ρ ρ∆ = ∆ ∆ −∫R r r R .  

Finally, Fourier inversion of the equation (III.3.54) gives 
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= ∫ q . (III.3.56) 

 
Thus, the pair-distance distribution function for the particles can be obtained by numerical Fourier 
transformation of scattering data, using the equations (III.3.53) and (III.3.56). It can be seen from 

2( )ρ∆ R  and the equation (III.3.55), that s(') essentially describes the number of ways in which 

one can choose a vector length |T| which connects scattering material within the particle, and 
contains information of the particle structure. Figure III.5 sketches the relation between the typical 
functional shape of s('), with the particle shape. An emphasis is done here; s(') depends totally 
on the local density of scattering material which in turn depends on the kind of incident radiation 
and the molecular and atomic components of the sample to analyze. It is completely different to use 
light, X-rays or neutrons, and the resolution to resolve the diferent curves in Figure III.5 depends 
on these considerations. 
 
For concentrated systems the exponential terms in the equation (III.3.52) are not annulated. For 
simplicity we consider identical homogeneous spheres, so that all aä(Ý) = a(µ), then at the end the 

scattered intensity has the general form 
 

 ( )2 2

1 1

( ) ( ) exp (0) ( ) ( )
N N

j k
j k

I q b q i Nb P q S q
= =

 = − ⋅ − = ∑ ∑ q R R ,  (III.3.57) 

 
where 1(µ) is the static structure factor defined by 
 

 ( )
1 1

1
( ) exp

N N

j k
j k

S q i
N = =

 ≡ − ⋅ − ∑ ∑ q R R .  (III.3.58) 

 
The structure factor represents the modification of the intensity due to the spatial correlation of the 
particles, as is clear in the equation (III.3.57), where 3a2(0)_ (µ) describes the scattering by 3  
uncorrelated particles. In a dilute system, 1(µ) = 1. 
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It can be demonstrated that the structure factor is related 
to the radial distribution function by 
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which Fourier inversion gives the radial distribution 
function 
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Figure III.6 shows sketches of a typical radial distribution function, for instance for a concentrated 
suspension of hard-sphere colloids, and the corresponding structure factor. Since two particles cannot 
occupy the same space, ^(') is zero for center-to-center interparticle separations smaller than the 
particle diameter. The main peak in ^(') describes the nearest neighbour shell of particles around 
any given particle. At large interparticle separations ^(') → 1 implying that spatial correlations are 
usually short-ranged (but not in a crystal). The peak in 1(µ) can be considered, approximately, to 
be a Bragg refection from planes of particles separated by distances equal to the mean nearest 
neighbour separation. Thus, one finds that the positions 'Zij and µZij of the main peaks in ^(') 
and 1(µ) are related by an approximate Bragg condition µZij'Zij ≈ 2�. For this reason, we say 
that a scattering experiment, operating at scattering vector µ, measures structure on a spatial scale 
2� µ⁄ . Nevertheless, this rule should not be taken literally, because the value 1(µ) at a particular 
scattering vector µ, is determined by the values of ^(') at all ' [99]. 
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Figure III.5 Different shapes associated with a 
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Figure III.6 (a) 1(µ) and (b) ^(') for a suspension of concentrated colloidal suspensions. 
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3.5.1. Small Angle X-ray Scattering (SAXS) and Small Angle Neutron Scattering (SANS) 

 
Aside from the different mechanisms by which the radiation is scattered, a major difference between 
light, X-rays and neutrons is their wavelengths; ~ 400 − 600 nm for light, ~ 0.1 nm for X-rays and 
neutrons. For various scattering angles, Table III.2, taken from [99], shows approximate values of 
the scattering vector Ý, and the spatial scale 2� µ⁄  probed by scattering. 
 

X-rays, neutrons (ý = þ.� Ê�) Light (ý = �þþ − �þþ Ê�) 

� (degrees) µ (nm−1) 2� µ⁄  (nm) � (degrees) µ (nm−1) 2� µ⁄  (nm) 

0.01 0.01 600 1 3 × 10−4 2 × 104 

0.1 0.1 60 10 3 × 10−3 2000 
1 1 6 100 2.4 × 10−2 300 
10 10 0.6    

Table III.2 Approximate magnitudes of the scattering vector and its reciprocal for X-rays, neutrons and light at various scattering 

angles. Reproduced from [99]. 

 

To reach scales of interest, > 10 nm in much of soft matter, scattering angles smaller than 1° must 
be used (that is the reason of the names SAXS and SANS). The minimum scale probed by light 
scattering at large angles overlaps the maximum scale of very small-angle X-ray and neutron 
scattering. While the X-ray scattering lengths of atoms are simply proportional to the atomic 
number, neutron scattering lengths vary irregularly with the type of nucleus and can be negative as 
well as positive. Furthermore, different isotopes of the same atom can have very different scattering 
lengths. Neutron scattering in general is sensitive to fluctuations in the density of nuclei in the 
sample. X-ray scattering is sensitive to inhomogeneities in electron densities [128]. 
 

The advantage of SANS over other small-angle scattering methods is the deuteration method. This 
consists in using deuterium labeled components in the sample in order to enhance their contrast. 
This is reminiscent of contrast variation in microscopy whereby the level of light incident upon a 
sample is varied using a diaphragm. Labeling is difficult to achieve with SAXS since this involves 
heavy atom labels that change the sample drastically. SANS can measure density fluctuations and 
composition (or concentration) fluctuations. SAXS can measure only density fluctuations. The 
deuteration method allows this bonus. SANS is disadvantaged over SAXS by the intrinsically low 
flux of neutron sources (nuclear reactors or spallation sources using cold source moderators) 
compared to the higher orders of magnitude of fluxes for X-ray sources (rotating anode or 
synchrotrons). 
 

Microscopy has the advantage that data are acquired in direct (real) space whereas static scattering 
methods measure in reciprocal space. Although electron microscopy (EM) and SANS are 
complementary methods, EM is applied on very thin samples only and it cannot measure samples 
at different concentrations and temperatures directly. Also, the observed images are a 2D projection. 
SANS can do all these things but cannot produce an image in real space [128]. 
 
SANS data analysis is performed at many levels. The initial level consists of follow the trends type 
of approach using standard plot methods. These are linear plots of functions of the scattered intensity 
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¶(µ) plotted against functions of the scattering variable µ. The next level uses nonlinear least squares 
fits to realistic models. The final trend makes use of sophisticated ab-initio or shape reconstruction 
methods in order to obtain insight into the structure and morphology within the investigated sample 
[128]. Note that the absolute intensity ¶(µ) is a short hand notation for the macroscopic scattering 
cross section OΣ(µ) OΩ⁄  (explained in the next section). 

 
In the following, a few standard plots are mentioned to understand the basic information the 
scattering patterns could offer. However, in most cases, these plots fall short to get all the structural 
information, hence it is necessary to use more sophisticated functions to fit the scattering patterns. 
 
 
The Guinier plot 

 
When the scattering vector tends to zero there is an analytical approximation to the total scattered 
intensity 
 

 

2 2

0( ) exp
3

gq R
I q I

  = −    
.  (III.3.61) 

 
Rewriting it in a linear approximation, to plot ln[¶(µ)] vs. µ2, 
 

 

2 2

0ln ( ) ln
3

gq R
I q I   = −    ,  (III.3.62) 

 
where '�2 is the radius of gyration of the scattering object which is contained in the slope of the last 

equation. It represents the effective size of the scattering particle whether it is a polymer chain, part 
of a protein, a micelle, or a domain in a multiphase system. The first term gives information in the 
regime of µ−0 (independent of µ values), at the intercept ¶0, related with the volume of the particle, 
and then gives an estimation of the total size of the structures. The range of a Guinier plot 
corresponds to µ'� <

√
3, that is obtained when the probed range 2� µ⁄  is larger than the particle 

size. 
 
There is a modification to the Guinier plot when we are treating elongated objects. For a cylinder 
of length � (the contour length ��, in the case of worm-like micelles or semiflexible polymers) and 
radius ', the low-q Guinier approximation remains as in the equation (III.3.61), but this time with 
 

 
2 2
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12 2g

L R
R = + . (III.3.63) 

  
The intermediate-q Guinier approximation is different, 
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where '�−��

2 = '2 2⁄ , the cross-sectional radius of gyration. Then, the intermediate linear plot 

becomes ln[µ¶(µ)] vs. µ2. 
 
 
The Porod plot 

 
The Porod region corresponds to a probed range smaller than the scattering objects (at large-q) so 
that the scattering radiation is probing the local structure. The Porod plot, log[¶(µ)] vs. log[µ], yields 
information about the fractal dimension of the scattering objects. At large-q one can approximate 
 

 ( )
n

A
I q B

q
= +    or   ( )log ( ) log log( )I q B A n q − = −   . (III.3.65) 

 
A Porod slope � = 1 is obtained for scattering from rigid rods; a slope � = 4 represents a smooth 
surface for the scattering particle; whereas a slope � between 3 and 4 characterizes rough interfaces 
of fractal dimension D with � = 6 − D. This is called a surface fractal. Moreover, in the case of 
polymer coils, the Porod slope � is related to the excluded volume parameter as its inverse � = 1 y⁄ \. 
A slope � = 2 is a signature of Gaussian chains in a dilute environment, a slope � = 5 3⁄  is for fully 
swollen coils, and a slope � = 3  is for collapsed polymer coils. A slope between 2 and 3 is for mass 
fractals such as branched systems (gels) or networks. 
 
 
The Zimm plot 

 
A plot of 1 ¶(µ)⁄ vs. µ2 which found wide use in light scattering from dilute polymer solutions where 
extrapolation to zero µ and zero concentration yields the molecular weight, the radius of gyration 
and the second virial coefficient. The Zimm plot is also useful in polymer blends [128]. For this plot, 
there is an assumption of a Lorentzian form for the q-dependence of the scattering intensity 
 

 
0
2 2

( )
1

I
I q

q ξ
=

+
, (III.3.66) 

 
with � the correlation length, related to the radius of gyration in the low-q region assuming an 
expansion of the equation (III.3.66). Low-q departure from the linear behavior of the Zimm plot is a 
signature of non-homogeneity in the sample or of chain-branching. Also, a negative value of the 
intercept ¶0 is a sign of phase separation. It is also possible to consider an expansion of the equation 
(III.3.66) at high-q, with the extra consideration of excluded volume interactions. 
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The Kratky plot 

 
This plot emphasizes a deviation from the high-q behavior of the scattering intensity. For polymer 
chains, the Kratky plot (µ2¶(µ) vs. µ) emphasizes the Gaussian chain nature or departure from it. 
Since the form factor for Gaussian chains varies like ¶(µ) ~ 1 µ2⁄  at high-q, this plot tends to a 
horizontal asymptote. Deviation from a horizontal asymptotic behavior indicates a non-Gaussian 
characteristic for the scattering chains. For rigid rods this plot would go to a linearly increasing 
asymptote because the form factor for a rod varies like ¶(µ) ~ 1 µ⁄  at high-q. And also, for branched 
systems (or mass fractals), the plot would behave as ~ µ−1, because the form factor at high-q goes 
like ¶(µ) ~ 1 µ3⁄ . 
 
Figure III.7a presents a scattering pattern used for SANS and SAXS. Different regimes are depicted, 
each one with a power law fingerprint in the scattering vector. In each achievable regime it is possible 
to estimate different shapes and geometry of the studied particles within the sample. Figure III.7b 
clarifies the Guinier regimes, in a pattern for a system with cylindrical shape. 

 
The presentation of more complex functions to reproduce the scattering SANS patterns is out of the 
scope of the thesis. Further information can be found in [99] [128]. In Chapter IV, section of PBPEO 
worm-like micelles, where the experimental results of the research are shown, we present the SANS 
pattern analysis of PBPEO diblock copolymers, where we used the standard intermediate-q Guinier 
plot to obtain the cross-sectional radius of gyration of the aggregates, '�−��. Additionally it was 

necessary to use two more sophisticated functions: a core-shell cylinder model to extract useful 
information from the intermediate and large-q regions, which makes possible to know that the 
PBPEO aggregates have elongated morphologies with internal cross-sectional structure; and at the 
low-q region, we used a flexible cylinder model with a circular cross-section and a uniform scattering 

Figure III.7 (a) Scattering patterns where different µ dependent regimes are shown. Depending on the power law followed by the 

scattering vector, it is possible to estimate the shape of the elements studied. (b) Form factor for a cylinder showing the low-q

Guinier region, the intermediate-q Guinier region and the high-q Porod region. Taken and modified from [128]. 
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length density to fit the data, which permit us to get some approximate values of the persistence 
lengths in these cylindrical systems. 
 
 

4. Experimental details and procedure 
 
Every project starts with a planification of the procedures and steps to be followed, to get the 
proposed goals. In particular experimental cases, it is necessary to make a plan considering the 
facilities to which we have access, and to perform organized experiments. Occasionally it is also 
necessary to book and schedule the pertinent dates and consuming time to obtain the results in a 
desirable time. The most critical tests before DWS experiments start are mentioned in this section, 
and the technical information about DWS and SANS facilities used as well. 
 
 

4.1. Diffusing Wave Spectroscopy (DWS) 

 
Our DWS setup is a homemade instrument, assembled several years ago in the group. It has been 
used for studying many different systems. For its construction there were considered the respective 
technical details, tested formerly for other scientific groups [110] [129] [130]. With the pass of time, 
the DWS set up has been improved. Figure III.8 shows the current set up. In a typical DWS 
experiment, we use special optical glass cuvettes where the liquid sample is verted. The path length 
of the cells is 1, 2, 2.5, 4 or 5 mm, depending on the sample, the fill fraction of probe particles added, 
and the amount of light absorption of the sample. In a standard experiment, light travels several 
tens of meters within the sample, due to the multi-scattering events, for that reason the source of 
light has to be coherent enough to be able to produce an interference pattern (speckle) at the 
detector. We used an argon laser which produces a beam of wavelength of 514.5 nm. The first step 
the light pass is a spatial filter to eliminate the internal spurious structure of the beam (to make it 
completely Gaussian), and then to expand it (BE). Here, a set of two convex lenses is used with a 
pinhole in the middle of a 2 µm aperture. After that, the beam passes through a shutter (P1) which 
eliminates the external parts of the Gaussian beam and approximate it to a plane wave. Next, the 
laser beam strikes a slab formed by a turbid suspension made of the liquid under study and probe 
colloidal particles (the sample, S). The sample (S) is thermally stabilized in a bath (TB). The 
scattered light passes through an achromatic doublet (AD) which forms an image of scale 1:1 of the 
back side of the sample, on the plane of the iris (I), along the CCD camera detection branch. Next 
to the achromatic doubled there is a beam splitter (BS) which separates the scattered light in two 
directions: the CCD camera detection branch, and the photomultipliers (PMT) detection branch. If 
the system to analyze is ergodic, a mirror is set instead of the beam splitter. In the PMT detection 
branch, the scattered light is collected by an optic fiber. Then, the light within the fiber is divided 
50/50 to reach two PMT detectors. After the increment of electric signal inside the PMT, the signal 
is converted to TTL pulses and the autocorrelation function is processed by a correlator card, in 
cross correlation mode, to extend the initial sampling time (12.4 ns) [106], and to eliminate the 
correlation due to the after pulsing (electronic noise). The correlator card is controlled by a computer. 
In the CCD camera detection branch, the iris acts as an incoherent source of light, hence, when the 
iris aperture is changed and also the distance to the camera, the detection at the camera is optimized, 
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since the size of the speckle pattern is modified with respect to the size of a pixel. The detection 
with the CCD camera is almost instantaneously, with each pixel representing an individual system 
of a set of systems in an ensemble. A Matlab software controls every pixel of the camera, making a 
direct ensemble average to generate a time autocorrelation function. The camera can be used directly 
to analyze non-ergodic samples, but the CCD camera response is as fast as ~ 11 ms, taking into 
account the frame rate and the acquisition time. For short lag times, the non-ergodicity problem can 
be avoided by remixing the scattered light coming from the sample by the use of a slowly rotating 
diffuser disk (DD) placed before the collection optics of the PMT (2-cell technique [131] [132]). This 
procedure provides a true ensemble-averaged time correlation function over ~ 7 − 8 decades of time. 
Multi-scattered light is depolarized; if the autocorrelation function is processed directly, the contrast 
(| factor) is reduced by half. To avoid this decrement, two polarizers (A1 and A2) are set at the 
entrance of the detectors, with cross polarization compared to polarization of the incident beam 
(linear polarization). 
 

 
For determining the values of ¤∗ and ¤i, a mirror (M) is set next to the spatial filter. We make use 
of an integrating sphere (IE) [133]. Between the mirror and the integrating sphere, we set two iris 
(I2 and I3), separated a fixed distance, to obtain three measurement values: reflectance, 
transmittance and collimated transmittance (or unscattered transmittance), which are the input 
parameters for the Inverse Adding Doubling method (IAD). After a numerical inversion procedure 
in the IAD method, the values of ¤∗, ¤i and the anisotropy factor ^, are obtained [111] [115] [134]. 
Each one of these last measurements have a precise experimental setup, if not followed, it could lead 
to erroneous readings on the sample. 
 

 

Figure III.8 DWS experimental setup. All components are shown. 
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4.1.1. Reflectance and transmittance  
 

In order to measure the total reflectance and total transmittance of light on and through the sample 
respectively, with the integrating sphere, it is necessary to consider the next equations 
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Each term of the equations is measured independently, according to Figure III.9. The values Ãu 
and Ãq  are the total reflectance and total transmittance respectively. Standard usage is that 
reflection is the light being reflected by the sample, while the reflectance is the light being reflected 
by the sample normalized by the incoming light. Reflectance has no units. The same idea applies to 
transmission and transmittance; the transmission has units while the transmittance is normalized to 
the incident power. For reflectance, x�Æ� is the reflectance value of the integrating sphere walls, 
'(x�Æ�, x�Æ�) is the reflection measurement for a standard sample (we used the same value of reflection 
obtained for the walls), '(x�

�ÈÔ¨�Æ, x�) is the reflection measurement for the sample, and '(0,0) is the 
measurement of the intensity of light without sample and light is allowed to go out of the sphere. 
For transmittance the back wall of the sphere is never open (light that does not interact with the 
sample bounces around in the sphere). E (0,0) is the measurement of the intensity of light when the 
light strikes inside the sphere without sample, E (x�

�ÈÔ¨�Æ, x�) is the transmission measurement through 
the sample, and E�iÔo is the measurement of the intensity of light with the entrance port blocked. 

Figure III.9 Setup of the integrating sphere to obtain Ãu and Ãq . Taken from [117]. 
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4.1.2. Collimated transmittance 

 
It was necessary to follow the research carried out by B. Morales-Cruzado and coworkers [134], in 
which a computational development is described, where the propagation of photons is simulated 
through an optical system composed by a biological tissue, to estimate the amount of light that is 
not scattered by the sample, and the amount of light scattered in the same direction as the incident 
beam of light. The analysis of photons through the sample is determined with a multilayer Monte 
Carlo simulation, which considers a Gaussian beam as the source of light. Several tests were done, 
to compare with the expected theoretical results, for different optical parameters in turbid media. 
The parameters used in [134] were: 5 × 105 photons, for samples with scattering coefficient z� <
100, and 1 × 106 photons, for samples with z� > 100 or when the expected collimated transmitted 
value drops down 1 × 10−5. To have enough data, they performed 25 simulations. 
 
The experimental setup is shown in Figure III.10, which is the first branch shown in Figure III.8, 
when the mirror is set next to the spatial filter. 
 

 
The elements in Figure III.10 can be identified as follows: 1. Argon laser with wavelength of 
514.5 nm, 2. Filter with neutral optical density, 3. Sample, 4. Two iris, 5. Integrating sphere, 6. 
Detector, 7. Voltmeter. The distances and iris apertures were chosen according to tests in [134]. 
Ideally, D → ∞ to assure a clean light scattering just in the direction of incidence. If D is too short, 
scattered light in all other directions would have more possibilities to reach the detector. Results 
showed that above a distance D ≈ 25 cm, the results are good enough. In the laboratory, the chosen 
configuration was with D = 68 cm. The iris apertures where chosen taking into account simulations 
which considers an incident Gaussian beam, and a scattered Gaussian beam with a wider profile 
waist, than for the incident beam. The aperture should be approximated the same size as the profile 
waist. Thus, the chosen value was r = 0.15 cm. Ideally, both iris must be as close as possible to the 
sample, and to the integrating sphere. Due to technical limitations, the chosen separation was d =
5 cm. 
 
Collimated transmittance is related theoretically with the Beer-Lambert law, which relates the light 
attenuation with the optical properties of the sample traversed by the light. The law determines a 

Figure III.10 Experimental setup for collimated transmittance. For simplicity, the spatial filter is not shown. Each element is set 

in strategical way to obtain favorable results according to [134]. 
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logarithmic dependence between the transmittance T of light through the sample, and the 
attenuation coefficient times the traveled distance by the light within the sample 
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In the last equation, the coefficient of attenuation considers the attenuation due to scattering and 
due to absorption of light, namely z = z� + zi = z� + 1 ¤i⁄ , with z� = z�

′ (1 − ^)⁄ = 1 ¤∗(1 − ^)⁄ . 
The term z�

′  is properly named the reduced scattering coefficient, which is a lumped property 
incorporating the scattering coefficient z� and the anisotropy factor ^. The purpose of z�

′  is to 
describe the diffusion of photons in a random walk step size (the transport mean free path, ¤∗), where 
each step involves isotropic scattering (considered in the term 1 − ^). This equation is the same 
mentioned in the DWS section, which relates the mean free path of light with the transport mean 
free path (equation (III.3.13)). So, ^ = 〈cos !〉, with ! the deflection angle due to each scattering 
event. 
 
We made two tests to corroborate the proper operation of the collimated transmittance experiment. 
The first test comprises deionized water filling a cuvette made of optical glass, with a wall thickness 
of 1.5 mm, an optical path of 1 mm, and index of refraction of 1.523. The second test comprises an 
experimental proof of Beer-Lambert law. For this, we used a suspension of spherical particles made 
of polystyrene in water, with a diameter of 800 nm and a fill fraction of # = 0.00021. In both cases, 
we used an optical filter which absorbs 88.1 % of light, settled just outside the laser, with a beam 
light power of 50 mW. This help us to have a stable beam and at the same time, low intensity of 
light to avoid saturation in the detector. 
 
In the case of water, the measured collimated 
transmittance was Ã� = ¶È ¶0⁄ = 40.2 mV 44.4 mV⁄ =
0.905 → 90.5 %, where ¶È is the intensity of the laser 
beam with the sample, and ¶0 is the intensity of the laser 
beam without sample, both measured in terms of volts. 
This result was compared theoretically considering the 
Fresnel coefficients of the sample [135]. Figure III.11 
shows a scketch of the cuvette with the index of refraction 
of the glass, the internal and external media. The result, 
applying the coefficients is 
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There exists just a percentage difference of 0.33 %, as a 
reason of the theoretical result with the experimental one. 
Then, there is a good agreement between both, and the 
first test is consistent. 

glass glass water 

air air 

�iÈÔ = 1 

��iÆ¨Ô = 1.33 

��æi�� = 1.523 

Figure III.11 The bars are the walls of a cuvette, 

filled with water and immersed in air. The 

respective index or refraction are indicated. 
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In the case of the spherical particles, we varied the optical path length, from 1 mm to 5 mm. We 
made the proper corrections due to the reflection of light onto the cuvettes walls and the water, 
using the results of the former test. The results are shown in Figure III.12. The exponential fit in 
the plot is perfect, with a correlation factor of '2 = 0.9967, and an exponential decay coefficient of 
1 z⁄ = 0.9799 mm. With these results, with a decaying exponential behavior, we conclude that the 
collimated transmittance setup is well settle. 
 
After the tests for collimated transmittance, we performed reliability measurements for IAD method. 
We used the same system of spherical particles as before, with the same parameters. The results of 
the optical parameters computed by the IAD method were compared with theoretical results for Mie 
scattering [136] [113]. Table III.3 shows all obtained results. To get the value of Ã�  we used the 
exponential fit from plot in Figure III.12, and the IAD values of z�

′ , zi and ^. This result proves the 
auto-consistency of the method. We got a good adjustment between theory and experiments. The 
percentage deviation among them is 9.2 % (Mie-IAD), and 6 % (Mie-Ã� ). 
 
The tests have proven that the experimental setup in combination with the IAD method, are reliable 
to get the optical parameters of the liquid samples we are interested on, to perform DWS. 

 
 
 
 

Microspheres ¤∗ (mm) ¤i (mm) ^ 

IAD 10.8120 75.2445 0.9116 
Mie theory 11.9492  0.9166 
Ã�  (fit) 11.2311   

Table III.3 IAD tests results in comparison with Mie theory and collimated transmittance (Beer-Lambert law) which proves auto-

consistency of all measurements.  

 

 

Figure III.12 Collimated transmittance plot for different optical path length in the cuvettes. A suspension of polystyrene spherical 

particles (800 nm) was used. The line represents an exponential fit.  
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4.1.3. Light absorption 

 
Other experimental tests with samples with absorption of light are necessary to corroborate the 
validity of IAD. We tried with different suspensions of spherical polystyrene particles (diameter = 
2 µm) at a fill fraction of # = 0.030, and with solutions of PBPEO45 diblock copolymer (1,4 poly(1,3-
butadiene)–polyethylene oxide), prepared at concentrations of 1 wt%, 1.5 wt%, 1.7 wt% and 2 wt%. 
Above 2.5 wt% phase separation was found. The followed procedure was the same followed in [111]. 
Indian ink is added (previous tests confirm that at high dilution, indian ink do not scatters light, 
but just has absorption effects) diluted up to a 1 vol% of the original concentration when purchased. 
The ink was added in 3 ml suspension of the corresponding sample, in aliquots of 5 µl for each 
measurement, up to 45 µl, to ensure on the one hand that ¤i ¤∗⁄ ≥ 30, and on other hand that 9 ≤
� ¤∗⁄ ≤ 25. Both values permit the applicability of the theory of diffusion of light within the sample. 
The first value refers whether the quantity of absorption agent is too much. In that case the light 
paths can be attenuated more than sufficient, provoking a lack of scattering events and consequently 
a lack of diffusing light beams. The second relation refers to the number of scattering events. Whether 
the relation � ¤∗⁄  is too small, the possibility for diffusing light beams decreases a lot, and if � ¤∗⁄  is 
too long, the possibility of colloidal particles interacting with each other increases. In the same way, 
the addition of ink should not affect the value of ¤∗ because the transport mean free path is linked 
just to a leakage of light by scattering events, and not to absorption. 
 
The results for the polymer particles are shown in Figure III.13. The autocorrelation function (Figure 
III.13a) shows a shift to longer times due to the addition of ink. This displacement could lead to a 
misinterpretation of the results. Also, in Figure III.13b and c, the MSD is shown first for the case 
when the equation (III.3.32) is used. Once the correction for absorption is implemented (equation 
(III.3.35)), all MSD plots fall on the same line. A good correction is notorious because all plots lie 
where the MSD of the original particle suspension lies. In Figure III.13c there is a small deviation in 
the case of 35 µl of ink added to the sample; this is associated to the more diluted suspension due 
to the addition of more water (we did not take care to recalculate the final particle concentration). 
Even though, the agreement is satisfactory.  
 
Before addition of ink to the PBPEO45 samples, optical parameters were obtained with the IAD 
method. For this system (and for PBPEO57 mentioned later) it is crucial to know the amount of 
light scattered by the sample before addition of probe particles. Even at very low concentration the 
PBPEO45 samples are opaque which is a signal of scattered light (see Figure III.14). The results 
after application of IAD method are shown in Table III.4 for a sample at concentration of 1.2 wt%. 
A cuvette of optical path length of 5 mm was used, due to the low light scattering compared to the 
case when particles are added.  
 
 

PBPEO45 ¤∗ (mm) ¤i (mm) ^ 

IAD 109.5 59.2 0.8954 
Ã�  91.17   

Table III.4 Optical parameters for PBPEO45 obtained with the IAD method and collimated transmittance. 
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According to the results, the sample presents more absorption of light 
rather than scattering. Also, the transport mean free path is three 
orders of magnitude longer than the transport mean free path values 
of typical particle concentrations used in DWS. Therefore, it is 
possible to make DWS experiments with a neglected contribution of 
scattered light by the PBPEO45. 
 
After IAD measurements for PBPEO45, probe particles are added 
(diameter = 2 µm, # = 0.030), and indian ink as well. The results for 
PBPEO45 concentrations of 1.5 wt% and 2 wt% are shown in Figure 
III.15 and Figure III.16 respectively. In all cases, including the ones 

not shown for concentrations of 1 wt% and 1.7 wt%, the correction for absorption is well enough. 
The results are satisfactory compared to the case shown in [111], where ~ 100 nm particles were 

Figure III.14 PBPEO45 samples at 

concentrations of 1 wt%. 

10
-6

10
-5

10
-4

10
-3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

 
|g

(1
) (t

)|
2

 no absorption

 5 µl

 10 µl

 15 µl

 20 µl

 25 µl

 30 µl

t (s)

10
-6

10
-5

10
-4

10
-3

10
-1

10
0

10
1

10
2

10
3

 

 

 

 

 no absorption

 5 µl

 10 µl

 15 µl

 20 µl

 25 µl

 30 µl

t (s)

<∆
r2

(t
) >

  
(n

m
2
)

10
-6

10
-5

10
-4

10
-3

10
-1

10
0

10
1

10
2

10
3

 

 

 

 
<∆

r2
(t

) >
  
(n

m
2
)

t (s)

   MSD with absorption correction
 no absorption with correction

 5 µl

 10 µl

 15 µl

 20 µl

 25 µl

 30 µl

 no absorption
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short times. (c) Mean square displacement corrected for absorption. All plots overlap on the plot with no absorption. For 
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used. In that case, the shift to longer times with the addition of ink is more pronounced, probably 
due to the isotropic scattering of light by particles of those sizes (Rayleigh regime). Figure III.15d 
and Figure III.16d also show plots where an extension of the MSD is obtained to longer times, when 
the plots have been corrected. This is an effect of the attenuation of longer paths of light within the 
sample. In the case of ~ 100 nm the extension to longer times is more evident, reaching an extension 
of almost an order of magnitude. Thus, the preferred scattering direction of light contributes to this 
phenomenon. Further research in this direction is underway. 
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Figure III.17 presents the variation of ¤∗ in terms of ¤i for the four PBPEO45 analyzed 
concentrations. ¤∗ values are almost constant in all cases, but with a tendency to increase towards 
the addition of more ink. This behavior is normal because we always used the same sample with 
each addition of ink, and we did not recalculate and correct the real fill fraction of particles. The 
dashed line refers to the theoretical value of ¤∗ = 150 µm, which varies from experimental values 
because sedimentation of particles is fast in this low viscous samples. Error bars represent the 
maximum and minimum ¤∗ measured values before and after DWS experiments. 

 
Figure III.18 shows the variation of � ¤∗⁄  as a function of ¤i ¤∗⁄ . The fact of being within the valid 
range for the diffusion of light approach was always taken care of. The shadowed region is the 
allowed to keep ~ 9 ≤ � ¤∗⁄ ≤ 25. Above the vertical line we keep ¤i ¤∗⁄ ≥ 30. 
 
All successful results presented are as expected, in accordance with [111]. These allowed us to 
continue with other DWS experiments after applying the IAD method. 
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Figure III.16 Results for PBPEO45 at 2 wt%, adding indian ink. (a) Autocorrelation function where each curve is for a different 

ink concentration. (b) MSD for different ink concentrations with no absorption correction. (c) MSD with absorption correction for 

all different ink concentrations. (d) A zoom in at longer times found in the MSD corrected for absorption. Here it is notorious a 
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Figure III.17 Variation of ¤∗ in terms of ¤i for the four PBPEO45 analyzed concentrations. (a) Shows concentration of 1 wt% and 

indicates the quantities of ink added. All other plots emphasize the ¤i values with just added ink, in correspondence to the ink 

added values indicated in (a). (b) Concentration of 1.5 wt%, (c) concentration of 1.7 wt%, and (d) concentration of 2 wt%.

Dashed lines refer the theoretical value of ¤∗ = 150 µm. Error bars include the maximum and minimum value of measured ¤∗. 
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4.2. Small Angle Neutron Scattering (SANS) 
 

SANS involves the basic four steps used in all scattering techniques: monochromation, collimation, 
scattering and detection. Monochromation is performed mostly using a velocity selector. Collimation 
is preformed through the use of two apertures (a source aperture and a sample aperture) placed far 
(meters) apart. Scattering is performed from either liquid or solid samples. Detection is performed 
using a neutron area detector inside an evacuated scattering vessel.  
 

A general scheme of the experiment is shown in Figure III.19, taken from [128]. The large collimation 
and scattering distances make SANS instruments very large (typically 30 m long) compared to other 
scattering instruments [128]. SANS facilities could have a distance of ~ 15 m from the source to the 
sample, and an additional distance of ~ 13 m from the sample to the detector; while for SAXS 
experiments, if the experimental line is not a synchrotron, distances could be ~ 3 m, from source to 
detector, limiting the achievable low-q values. Every SANS experiment begins with the choice of one 
(or more) instrument configurations to be measured. Decisions are made based on the characteristic 
features of the investigated system (characteristic sizes and scattering level). A program is used to 
simulate configurations by choosing a neutron wavelength and wavelength spread, source and sample 
aperture sizes, source-to-sample and sample-to-detector distances. The µ range, neutron beam 
current and beamstop size are obtained for each configuration. 
 
For our research, SANS measurements were performed within the NG7 SANS beamline at the NIST 
Center for Neutron Research (NCNR) at the National Institute of Standards and Technology 
(Gaithersburg, MD, USA). A broad scattering vector range was set at various neutron wavelengths 
with three sample-detector distances: 1 m, 4 m  and 13 m with eight, four, and one beam guides, 
respectively; ∆Ù Ù = 0.12⁄ , where Ù is the neutron wavelength. The PBPEO samples (which will be 
detailed in Chapter IV) were measured in titanium cells (2 nm path length with quartz windows) at 
a constant temperature of 20 °C. The scattering data were averaged over 2000 s. 
 

Figure III.19 Schematics of the SANS technique. It is not to scale with vertical sizes in centimeters whereas horizontal distances 

are in meters. Taken from [128]. 
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Raw data is obtained in a 2D detector (as is shown in Figure III.19, with the circular scattering 
pattern), collecting all scattered neutrons subtending a solid angle. This 2D information is reduced 
to a 1D typical ¶(µ) vs. µ pattern. Using the neutron beam counts ¶0(Ù) (empty beam transmission), 
the scattering intensity is scaled to an absolute cross section (units of cm−1) as O∑(µ) OΩ⁄ =
¶(µ) (¶0(Ù)E (Ù)O∆Ω)⁄ , where E , O and ∆Ω are the sample transmission, thickness and solid angle 
subtending one detector cell, respectively. SANS data in peripheral detector cells and those close to 
the beamstop are masked out in order to keep only the reliable data. Then the 2D corrected and 
scaled data are radially averaged to produce the 1D data. Circular binning is the norm for isotropic 
scattering. Sector or rectangular averaging is used for scattering with anisotropic features [128]. 
 
Data is reduced and then analyzed using the Igor Pro SANS software according to standard methods 
[137]. Finally, all data were corrected for detector response characteristics before their analysis. 
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IV. Experimental results 
 

1. PBPEO worm-like micelles 
 

1.1. Motivation and purpose 

 
It was mentioned in Chapter II, in the section devoted to block copolymer worm-like micelles, a 
recent study of the PBPEO45 (1,4 poly(1,3-butadiene)–polyethylene oxide diblock copolymer) in 
water, with a degree of polymerization � = 37 for the PB block and � = 45 for the PEO block. Still, 
there are some open questions related to the structure and rheological behavior of this system. This 
former work was limited to low concentrations of diblock copolymer in solution to avoid a phase 
separation, and microrheology was never performed to analyze the possibility of a Maxwellian 
behavior. Also, the form factor obtained with SAXS was limited to not so small values of µ, so only 
information about the cross section of the WLMs was obtained, and an insight of cylindrical 
structures was extracted. Additionally, a comparison with a common surfactant made WLMs, and 
with another 1,4 poly(1,3-butadiene)–polyethylene oxide copolymer with a different degree of 
polymerization is needed to understand the self-assembly processes involved in the formation of this 
kind of WLMs. 
 
The main purpose is to present: (1) the rheology and microrheology of water solutions embedded 
with self-assembly aggregates of a PBPEO diblock copolymer, where the PB block is rich in 1,4-
microstructure, and with the same degree of polymerization of the PB block in the PBPEO45, but 
with the PEO block larger, i.e., with a degree of polymerization � = 57. This will be called 
PBPEO57, and as seen below, this system also self-assembles in WLMs; (2) the microrheology of 
the micellar solution of PBPEO45; and (3) a comparison for the first time of the rheological behavior 
at a high frequency of both micellar solutions with those of conventional surfactants. The 
concentration of PBPEO57 (CPBPEO57 in wt%) was limited in this study to CPBPEO57 ≤ 9 wt% to 
avoid a phase separation. The rheology of the aqueous solution of PBPEO57 in water was 
determined, i.e., flow curves and the viscoelastic spectra at different polymer concentrations. To 
apply local rheological measurements (microrheology), the mean square displacement (MSD) of 
particles embedded in the micellar solutions under study was determined using diffusive wave 
spectroscopy (DWS). From the MSD, the high-frequency complex modulus �∗(�) was obtained.  
 
 

1.2. Specific goals 

 
The questions that we would like to answer in this study are: can we obtain structural information 
about the systems of interest here from the microrheology results? Moreover, is the stress relaxation 
observed by the rheology and microrheology notably modified when PEO size is increased? Before 
making these measurements, there is a need to determine the morphology of the self-assembled 
structures in the PBPEO57 solution. We used small angle neutron scattering (SANS), and we 
observed them with negative staining using a low energy transmission electron microscope in a 
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scanning microscope (STEM-in-SEM). To complete this report, we included the SANS scattering for 
the PBPEO45 micellar solution. 
 
The work was recently published in Soft Matter [138]: A. Tavera-Vázquez, B. Arenas-Gómez, C. 
Garza, Y. Liu and R. Castillo, "Structure, rheology, and microrheology of wormlike micelles made 
of PB–PEO diblock copolymers," Soft Matter, vol. 14, pp. 7264-7276 , 2018. B. Arenas-Gómez 
performed the SANS experiments and C. Garza prepared the samples for SEM images. 
 
 

1.3. Materials and sample preparation 

 
PBPEO57 and PBPEO45 were purchased from Polymer Source (Canada); they were used as 
received. Data given by the manufacturer for PBPEO57: � = 37, � = 57, Mw = 4500 g Mol−1, 
2000-b-2500, PB block rich in 1,4 microstructure > 85 wt%, Mw Mn⁄ = 1.08, trans/cis ratio ~ 40 60⁄ . 
For PBPEO45: � = 37, � = 45, Mw = 4000 g Mol−1, 2000-b-2000, PB block rich in 1,4 
microstructure > 93 wt%, Mw Mn⁄ = 1.08, trans/cis ratio ~ 27 68⁄ , and 1,2 microstructure 
~ 5 wt%. Water was deionized (Nanopure-UV, USA; resistivity ~ 18.3 MΩ cm). 2 µm tracer 
microspheres for DWS experiments are made of plain polystyrene (Bangs Laboratories, Inc.); they 
are negatively charged in pure water due to the negatively-charged sulfate groups that populate the 
surface of the plain polystyrene beads. 
 
Sample preparation. PBPEO stock water solutions were prepared by weight and stirred for 14 
days at 40 ℃ before use. No phase separation was observed for both systems; up to CPBPEO57 =
9 wt% and up to CPBPEO45 = 2.5 wt%. Above these limits, phase coexistence appeared with one 
birefringent phase at rest, presumably a lamellar phase. For that reason, we studied samples of 
PBPEO57 at CPBPEO57 = 1, 1.7, 2, 3, 4, 5, 6 and 7 wt%, and for PBPEO45 at CPBPEO45 = 1,
1.5, 1.7 and 2 wt%. 
 
Rheology. Measurements were carried out in a MCR 702-TwinDrive rheometer (Anton Paar, 
Austria). Flow curves and oscillatory measurements were performed using a cone-plate geometry 
(2°; diameter = 40 mm). Samples were allowed to relax before measurements. Experiments were 
performed at 20 ℃. 
 
DWS. Solutions with a polymer concentration slightly above the desired concentration to be 
measured were prepared. Then, 2 µm polystyrene microspheres in water suspension (10.17 wt%) 
were added while the samples were stirred; the final particle volume fraction was # = 0.03. Stirring 
was maintained for 20 min to ensure a homogeneous dispersion. Sample sonication must be avoided 
to prevent breaking of the polymer chains. Final studied diblock copolymer concentrations were the 
same as for mechanical rheology, for both copolymers. Samples were allowed to relax and thermalize 
at 20 ℃ in rectangular cuvettes of a light path thickness of 2.5 mm, for 10 min, because the samples 
have low viscosity and they are prone to particle sedimentation. Typical acquiring times are around 
600 s to 900 s, enough sampling time due to the fast relaxation of the systems under study. 
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Electron microscopy (SEM). We used an extreme resolution analytical field-emission scanning 
electron microscope (SEM; JSM-7800F JEOL Ltd. Japan) working at low electron acceleration 
voltages [139] on negatively stained samples of the systems under study. Low energy STEM (Scanned 
Transmission Electron Microscopy)-in-SEM was also employed in addition to the backscattered 
electrons to survey the samples. This is a powerful technique that permits imaging soft material 
samples with lower accelerating voltages (less than 30 kV) and larger fields of view. Standard TEM 
grids covered first with a collodion layer and then covered with a layer of carbon were used to deposit 
the specimens of the systems under study. The grid is placed over a piece of filter paper, and a few 
microliters drop of the diblock copolymer solution is deposited on it (~ 5 µl). After 2 or 3 min, a 
drop of phosphotungstic acid (3 wt%) is subsequently added to the sample. The filter paper absorbs 
the excess of deposits on the grid, and the sample is dried under ambient conditions. Before placing 
it on the microscope, the sample was covered with a thin carbon layer to ensure that the sample on 
the grid is conductive. 
 
 

1.4. Structure of the PBPEO aggregates 

 
Determining the aggregate structure in a system is critical for understanding its rheological behavior. 
Therefore, in this section, we describe our results using SANS and SEM. 
 
 
1.4.1. Small Angle Neutron Scattering 

 
We measured the static SANS pattern for the diblock copolymer micellar solution made of PBPEO57 
at CPBPEO57 = 0.5 wt%, dissolved in deuterated water in the dilute regime. It is presented in Figure 
IV.1 as a function of µ (Ý =  scattering vector); for comparison, we also included the measurements 

for the WLM system made of PBPEO45. The scattering curves cover µ values from 0.0008 to 0.2 Å
−1

 
which correspond to length scales of 2� µ⁄  ~ 20 − 6000 Å corresponding to systems made of small 
structures. In Figure IV.1a, the scattering patterns display a ~ µ−1 dependence at low µ values, 
although a slight deviation between the scattering functions for both diblock copolymers can be 
observed. For PBPEO45 pattern there is observed a slight change of curvature at the very low µ 
values, that permits a specific estimation of the persistence length of the WLMs. However, this 
inflection point is not observable for the case of PBPEO57, so just a lowest possible value of the 
persistence length can be estimated. Meanwhile, at intermediate and high µ there is no significant 
difference. These patterns are typical of extended cylindrical structures, as previously observed with 
SAXS in the case of the PBPEO45 that self assembles in a core–shell cylinder [52] (see Figure II.13i). 
Consequently, the mean radius for both tubular structures is quite similar. The scattering window 
for flexible cylindrical structures usually includes the analysis of three different regions (Figure 
IV.1b): at low µ and at intermediate µ in the Guinier regions, and at high µ in the Porod region [140] 
[141] [38]. Here, the low µ Guinier region is not accessible with the present instrument configuration. 
At high µ (Porod region), the scattering arises from the local cross section of the rod-like aggregates 
and the scattering patterns commonly present oscillations.  
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Cross-sectional size. For cylinders at intermediate µ, the scattering function can be described by 
¶(µ)µ = ��exp(−µ2'�−��

2 2⁄ ), where � is a constant related to the size of the cylindrical aggregates, 

and '�−�� is the cross-sectional radius of gyration. The contrast factor � is given by � =

(aZ − %Z$�)
2, where aZ is the sum of neutron scattering lengths, %Z is the volume per surfactant 

monomer in the micelle, and $� is the scattering length density of the solvent [140] [141]. When the 
cross-section is circular, the cylinder radius is '�� =

√
2'�−�� [140] [141]. Intermediate Guinier fits 

of our diblock copolymer systems are shown in Figure IV.2. The linearity of data indicates the 
extended cylindrical nature of the micelles. The fitting reveals a total cross-sectional diameter of 
12.77 nm and 12.70 nm for PBPEO45 (Figure IV.2a) and PBPEO57 (Figure IV.2b), respectively. 
These values are summarized in Table IV.1 as all the other extracted structural values. There is no 
significant difference between the cross-section of both diblock copolymer WLMs. The diameter of 
the PBPEO45 WLMs is similar to the previous value obtained using SAXS (~12.4 nm) [52] (see 
Figure II.13i). 
 
Core-shell structure. A core-shell cylinder model is used to fit the data for both copolymer systems 
to extract useful information from the intermediate and large µ regions; best fits are obtained when 
polydispersity in the core radius is included [142]. Therefore, the resulting scattering of each particle 
is the scattering intensity with a specific size weighted by the polydispersity of a cylinder core, 
modeled with a normalized log-normal distribution. 
 
 

Figure IV.1 Static SANS patterns for both diblock copolymers PBPEO57 and PBPEO45 dissolved in deuterated water at 0.5 wt%. 

Circles, spheres and squares represent experimental data. Both plots are the same. (a) The green line is a guide to the eye which 

shows a power law behavior of µ−1, representative of a cylindrical structure. Within the plot, appears the 2D scattering pattern at 

the detector. (b) Different regions of the SANS pattern are shown. Each region is used to extract different structure information 

of the WLMs. SANS and SAXS work to extract the same information, the difference is just the achievable length scales due to the 

scattering angle, the contrast of material and the wavelength of the radiation. 

(a) (b) 
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The fittings to the SANS patterns are presented in Figure IV.3a and b, and the calculated model 
parameters are in Table IV.1.  
 
The overall intensity of the core-shell model is given by 
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where the normalized log-normal function is given by 
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Here, ?1(A) is the first order Bessel function, ! is the angle between the cylinder axis and Ý. %È and 
$È refer to volumes and densities, where the subscripts ó = s, ¤ and ��¤< represents parameters for 
core, corona and solvent, respectively. �æ is the full cylinder contour length, 'æ is the full cylinder 
radius, �m is the core contour length, 'm is the core radius, and '¹ is the mean core radius. These 

variables incorporate the dimension of the bare particle, taking into account the radial thickness 
('æ = 'm + radial thickness) and the face thickness, A, given by 2A = �æ − �m. [m is the standard 

Figure IV.2 Intermediate Guinier plots for (a) PBPEO45, and (b) PBPEO57. 
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deviation of the log-normal distribution. Upon setting the scattering length density of D2O ($â2� =
6.4 × 1010cm−2) and a relatively large polydispersity ([m/mean size value =  0.28), the fits show a 

good agreement with the SANS data (Figure IV.3a and b), although the fitting is not so good at low 
µ, because this model does not consider cylinder flexibility. The contour length is outside the 
experimental resolution (�� ≫ 1 µmin⁄ ) and it was set at ~1 µm. The data show a poor contrast at 
high µ compared with SAXS [52]. For both systems, �� seems to be larger than 600 nm; therefore, 
the aggregates are WLMs. The total diameter obtained from this fitting model differs from that 
deduced from the linear decrease in the intermediate Guinier fits (see Table IV.1). 
 

 

Model 

Intermediate Guinier Polydisperse core-shell cylinder 
Polydisperse radius  
flexible cylinder 

Diameter Diameter Mean core radius Shell thickness Persistence length 

PBPEO57 12.70 ± 0.01 11.42± 0.08 2.69 ± 0.01 3.02 ± 0.03 > 225 

PBPEO45 12.77 ±0.02 11.52± 0.1 2.64 ± 0.02 3.12 ± 0.03 141 

Table IV.1 WLM parameters obtained with the different fitting models and errors between experimental data and models. All 

reported values have dimensions of nanometers. 

 
WLM flexibility. At µ ~ 0.001 Å−1, we observe an inflection point for the PBPEO45 WLMs which 
is an indication of their flexibility, as it was mentioned at the beginning of the section. In contrast, 
PBPEO57 does not present any change in its slope (Figure IV.1). The contour length of flexible 
cylinders can be described as a chain of locally stiff segments of persistence length ¤m  =  a/2; a is 

the Kuhn length. This suggests that the lengths of the stiff segments of PBPEO57 are larger than 
those of PBPEO45. In this low µ region, we used a flexible cylinder model to fit the data to get some 
approximate value of ¤m in these systems; see Figure IV.4a and b, and Table IV.1. For the fitting, 
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Figure IV.3 Scattering curves and fittings with the core–shell cylinder model with polydispersity in the core radius. (a) For 

PBPEO45 and (b) PBPEO57. Open symbols represent experimental data. Lines are the fittings to intermediate and large �

regions. 
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the form factor for a flexible cylinder with a circular cross-section and a uniform scattering length 
density is used [143] [144]. This model excludes volume interactions within the walk of a single 
cylinder. Intermicellar interactions are not included. Polydispersity is included using a Schulz 
distribution for the cross-section. To reduce the number of fitting parameters, we used '�� (obtained 
from Guinier fit) and the scattering length density of D2O. Our results indicate that WLMs of 
PBPEO45 are more loosely entangled than those of the PBPEO57 system. Only for the former, it 
was possible to estimate its persistence length (¤m ~ 141 nm). For the later, the flexibility effect 

cannot be seen in the scattering window, but it seems to be larger than 225 nm. Further studies 
achieving lower µs are needed to confirm these findings. A relation between the WLM hydrophobic 
core diameter O� and ¤m has been proposed for a series of PEO-based diblock copolymer amphiphiles 

[145] which scales as ¤m ~ O�
2.8. The smallest hydrophobic block used in this case was P(1,2)B45–

PEO55 which has a core diameter of 14.2 nm and a persistence length ~ 500 nm. In our case, ¤m 

does not seem to follow this relation.  
 
An accurate comment about the ideal form factors of monodisperse systems is made. It has been 
known for years that they do not represent real systems as well as expected [146]. Therefore, we 
expect differences in the parameters obtained with different models. In rod-like systems, we already 
know that the cross-section form factors produce strong oscillations at high µ that have been observed 
in the WLMs of PBPEO45 with SAXS (Figure II.13i) [52]. However, effects of low contrast, 
polydispersity, and instrument resolution can contribute to the smearing of the form factors; 
consequently, the smoothing of the real scattered intensity ¶(µ). In our SANS patterns, the 
oscillations are missing due to the low contrast and small diameter of the core-shell section. 
Introducing polydispersity in the core-shell model, we can improve the fitting to the experimental 
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Figure IV.4 Scattering curves and fittings with the flexible cylinder radius model with polydispersity in the core radius. (a) For 

PBPEO45 and (b) PBPEO57. Open symbols represent experimental data. Lines are the fittings to short � regions. 
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patterns. The core and total radius obtained from the fitting seems to be acceptable when 
polydispersity is added.  
 
Is it possible to explain the significant difference in ¤m observed for the WLMs of both systems with 

almost identical core radius and shell thickness? Curiously, the WLMs with the larger PEO block 
(PBPEO57) present a shell thickness slightly smaller than in the other case. Necessarily, this block 
is more densely packed than in the case of PBPEO45. According to our SANS data, the hydrophilic 
PEO side chains are grafted to the hydrophobic PB polymer backbone as in cylindrical polymer 
brushes. The stiffness in this kind of polymer brushes is usually explained through a balance between 
repulsive forces originating from steric overcrowding of the side chains and the entropic restoring 
force of the main chain preferring coiled configurations [147]. In PBPEO57, any bending will harshly 
increase the steric overcrowding because the PEO block is already more densely packed than 
PBPEO45. Consequently, the bending energy is more significant for the PBPEO57 WLMs than that 
for the PBPEO45. 
 
 
1.4.2. Direct observation with scanning electron microscopy (SEM)  

 
Better surface information of specimens can be obtained when SEM is run at low accelerating 
voltages due to a more significant surface sensitivity and less beam damage, mainly because charging 
effects are reduced or even eliminated. Low energy (less than 30 kV) STEM (Scanning Transmission 
Electron Microscopy)-in-SEM was also employed in addition to the backscattered electrons to survey 
the samples. 
 
Figure IV.5 presents negatively stained micrographs of dilute samples made of PBPEO57 solutions 
obtained by SEM; we included an image for the PBPEO45 WLM solutions. In the low energy STEM-
in-SEM image of dilute samples made with the PBPEO57 solution (Figure IV.5a), a carpet of tubular 
structures is observed; no other kinds of structures are detected. We cannot estimate the total 
contour of the tubular structures, but we observe thread like segments of a length of ~ 100 to 200 nm 
with an average diameter of ~ 11.4 nm. For the same system, Figure IV.5b shows the same type of 
microstructure observed with backscattering electrons. For comparison, Figure IV.5c presents an 
image also obtained with backscattered electrons for the PBPEO45 WLM solution that agrees with 
the tubular micellar structure obtained with SAXS experiments [52]. This image shows the same 
kind of microstructure of the PBPEO57 solution, but more entangled. From these results, negative 
staining in conjunction with SEM and STEM-in-SEM is an easy and fast method to obtain the 
microstructure in this kind of micellar solutions, simpler than cryo-TEM.  
 
At rest, dilute solutions of both diblock copolymers are not birefringent. However, as seen in Figure 
IV.6, birefringence appears with shearing which is a typical behavior of WLM solutions. This is 
another insight that we have WLM aggregates. 
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Figure IV.6 Micellar solutions between cross polarizers under shearing when a spatula is slowly dipped into the fluid; (a) PBPEO57 

at CPBPEO57 = 5 wt%. (b) PBPEO45 at CPBPEO45 = 2.5 wt%. 
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Figure IV.5 Direct observation of WLMs made of PBPEO57 (CPBPEO57 = 1.1 wt%): (a) STEM-in-SEM at 20 kV and (b) 

backscattered electrons at 15 kV, and for comparison (c) backscattered electron images for WLMs made of PBPEO45 at 15 kV
(CPBPEO45 = 0.6 wt%). 
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1.5. Rheology results 

 
Flow curves. Figure IV.7a presents flow curves obtained by increasing the applied shear strain rate 
(logarithmic ramp) to the PBPEO57 micellar solutions, at different concentrations and T = 20 ℃. 
These sweeps were performed approximately along five orders of magnitude in �̇. Shear stress 
increases in a nonlinear way. Although relatively concentrated PBPEO57 solutions present an 
important change of curvature in the [ vs. �̇ curves at �̇ ~ 1 s−1, they do not present a clear plateau 
zone. For comparison, we included a flow curve for a micellar solution of PBPEO45 at CPBPEO45 =
2 wt% which presents a clear plateau-like zone, which is typical of semidilute WLM solutions (" >
"∗). In contrast with conventional surfactants, before reaching the plateau-like region, in both cases, 
they do not present a shear thickening peak on the up-shear curve.  
 

Viscosity. Figure IV.7b presents the apparent viscosities :(�̇) for the PBPEO57 system determined 
with the measurements shown in Figure IV.7a. The viscosity curves move upward as concentration 
increases. Viscosity values decrease several orders of magnitude and viscosity shear-thins as �̇ 
increases. At low concentrations (CPBPEO57 � 3 wt%), viscosity shear-thins in two steps. As 
determined using SANS, the system is made of WLMs; then once the system is sheared, the flow 
also tends to align the rod-shaped micelles along the fluid flow direction dropping the energy 
dissipation as in paranematic phases and as a consequence, viscosity decays dramatically. From the 

analysis of log [lim
�→̇0

:(�)̇]vs. CPBPEO57, a change of behavior is observed at ~ 0.8 wt% (not shown), 

that is CPBPEO57∗  ~ 0.8 wt%. This value is slightly larger than in the case of the micellar solution of 
PBPEO45 where CPBPEO45

∗  ~ 0.6 wt% [148]. Below this concentration, the interaction between 
micelles is apparently negligible, as in the dilute regime, where viscosity is low and relatively close 
to the solvent viscosity. Above this concentration, the micelles apparently start to entangle because 
viscosity increases drastically. 
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Figure IV.7 (a) [ vs. �̇ curves for micellar solutions of PBPEO57 at different concentrations (open symbols). (b) Viscosity curves 

for micellar solutions of PBPEO57 at different concentrations (open symbols). For comparison, we also included in both figures the 

micellar solution of PBPEO45 at 2 wt% (full black symbols). 
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Viscoelastic spectra. In WLM solutions the shear modulus, �(/), exhibits a time or frequency 
dependence. The latter is expressed through the complex modulus �∗(�) = �′(�) + ó�′′(�) 
(equation (III.1.20)) which are related through the Fourier transform (equation (III.1.21)). The real 
part of the complex modulus is the storage or elastic modulus in phase with the applied shear strain, 
�. The imaginary part is the viscous or loss modulus in phase with the shear rate, �̇. Figure IV.8a 
presents the viscoelastic spectra of the micellar solution for different PBPEO57 concentration, at 
low and intermediate frequencies (for comparison, recall the viscoelastic spectra for PBPEO45, shown 
in Figure II.13ii). In general, the solutions are more viscous at low frequencies, and at larger 
frequencies, after the crossing point between �′(�) and �′′(�) curves, the solutions are more elastic. 
�0, defined at the crossing point, (�0, �0), is relatively constant between 0.4 and 0.7 Pa for all 
concentrations. This value is larger than for the micelles made of PBPEO45 (~ 0.18 Pa at 
CPBPEO45 = 2.5 wt% and other similar WLMs made of P(1,2)B PEO (~ 0.25 Pa) [149]. Our �0 
values are also lower than those for conventional surfactants where their �0 is in the range of 1 to 
1000 Pa. The crossover frequency, �0, decreases as the concentration increases. Inversely related, 
the relaxation time t =  �0

−1 increases as concentration increases. Figure IV.8b presents a Cole–
Cole plot of �′′ �0⁄  vs. �′ �0⁄  for the solutions. As shown in this figure, there is no way for obtaining 
a semicircular fitting at low and intermediate frequencies at any concentration; this is a necessary 
condition for Maxwellian behavior usually followed by WLM solutions. Although this system forms 
WLMs as shown above, this unusual behavior could be explained because of the impediment of any 
micellar rearrangement, namely polymer exchange between micelles or breaking and recombination 
mechanisms, due to the extremely high hydrophobicity of the PB; the system is arrested. As 
previously reported, this behavior is also found in the PBPEO45 [52]. I mentioned such phenomenon 
earlier in this work. Maxwellian behavior in WLMs is explained because local stress relaxes through 
a combination of reptation and breaking/recombination mechanisms (see Chapter II. Section devoted 
to living polymers) [20]; the characteristic relaxation time of the latter process is quite short with 
respect to the former, (tM ≲ t�). Therefore, the relaxation modulus is characterized by just one 
relaxation time (equation (II.6.1)), which is the geometric mean of the relaxation times of both 
mechanisms (equation (II.6.3)) [20]. �(/) decaying as a single exponential does not describe the 
system under study. If �∗(�) is calculated for the case where �(/) ~ exp[−(/ t⁄ )1 2⁄ ], it corresponds 
to an intermediate case where the characteristic time t  considers reptation and 
breaking/recombination of the same order of magnitude. Here, the fitting to the experimental data 
in the Cole–Cole plot is not good as can be observed in Figure IV.9b. However, if �∗(�) is calculated 
with the corresponding equation (II.5.6), to the power of 1 4⁄  which is the case where stress just 
relaxes through reptation as in conventional polymers, (limit case when tM → ∞) the fitting to the 
experimental �′(�) and �′′(�) curves is quite good for several orders of magnitude as observed in 
Figure IV.9a and b. This case corresponds to micelles that do not break and reform, in contrast to 
Maxwellian fluids; they are completely frozen as in the case of chemically bonded polymers. 
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Figure IV.8 (a) Elastic and viscous moduli as given by mechanical rheology for the PBPEO57 micellar solution at different 

concentrations. Full symbols are the storage moduli and open symbols are the loss moduli. (b) A Cole-Cole plot for the PBPEO57 

WLMs solution showing that it is not a Maxwellian fluid (black semi circumference). 
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Figure IV.9 Experimental results (dots) are presented for three different concentrations. (a) �∗(�) computed with 

�(/) ~ exp[−(/ t�⁄ )1 4⁄ ] that corresponds to the case where polymer stress relaxes through reptation (lines). (b) Cole-Cole plot 

with to different fits. Lines correspond to the case where reptation dominates. Dashed lines are the case where 

breaking/recombination times are of the same order of reptation times. 
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1.6. Microrheology results 

 
Some diblock copolymer suspensions present an additional complication because DWS assumes that 
the system under study is entirely transparent to the incident light beam. Nevertheless, the 
PBPEO45 and PBPEO57 systems are turbid even at very low concentrations, to overcome this 
inconvenience, experiments were performed using the inverse adding-doubling method (IAD) [115] 
[116], which allows us to calculate the optical parameters of the sample, with and without particle 
tracers (see Table III.4): the transport mean free path ¤∗, the absorption length ¤i, and the anisotropy 
coefficient, ^. The comparison of the calculated parameters with and without tracers allows us to 
estimate the contribution to the scattered light of the pure diblock copolymer system. The estimation 
of ¤i allows us to use a correction to the DWS correlation function, and hence to the MSD of the 
tracers for the first time in a turbid complex fluid, using the method developed by Sarmiento-Gómez 
et al. [111]. Knowing the numerical values of ¤∗ and ¤i, and measuring the intensity autocorrelation 
functions, ^(2)(/); the MSD of the microspheres can be obtained when there is light absorption in 
the fluid of interest that cannot be neglected. The experimental MSD curve is fitted to the model 
curve proposed by M. Bellour and coworkers (equation (III.3.43)) [125], which predicts an expected 
behavior of the particles when they are immersed in a typical WLM solution over several decades in 
time. Finally, each of the components of �∗(�) is obtained using the fitted Bellour model curve in 
equation (III.3.42) [41], although, numerically we used the equation (III.3.47). In a few tests using 
0.8 µm microspheres, we confirmed that the particle size does not affect the results [125]. 
 
Mean square displacements (MSDs). Figure IV.10 presents the electric field autocorrelation 
function ∣^(1)(/)∣2 for all concentrations prepared for PBPEO57 (1 − 7 wt%), obtained from 

experimental results of the scattered light of a DWS experiment due to embedded probe particles 
(diameter 9 = 2 µm) and after applying the Siegert relation, (III.3.3), which relates ∣^(1)(/)∣2 with 

^(2)(/), the intensity autocorrelation function. ∣^(1)(/)∣2 can be related to the MSD of the embedded 

particles, 〈∆x2(/)〉, through the equation (III.3.35) (corrected for light absorption in samples), using 
a numerical algorithm proved and used for several systems in our laboratory [40] [41] [111], for 
experimental total transmission geometry. Figure IV.11a presents typical 〈∆x2(/)〉 vs. / curves 
measured for micellar solutions with different CPBPEO57 spanning in time over three orders of 
magnitude. We observe two different regimes of motion. At short times, there is a regime where 
〈∆x2(/)〉 is essentially a linear function of time consistent with 〈∆x2(/)〉 = 60/, where 0 is the 
diffusion coefficient of the microspheres in the solvent at infinite dilution (as in the case of a free 
Brownian particle, equations (II.2.7) and (II.2.19)). Our average value is 0 = 0.13 × 10−14  m2 s⁄  
which is close to the particle diffusion in pure water, at the same temperature, 
0 ~ 0.21 × 10−14  m2 s⁄  . At intermediate times, the MSD does not reach a constant value as in 
other complex fluids where a plateau is observed. In this case, we observe just an inflection point 
around 0.3 ms, from where motion is subdiffusive. At a time above / ~ 5 ms, we were unable to see 
a plateau, that is, microspheres are never trapped by the micellar network. Here, our MSDs are quite 
noisy because we were not able to conduct DWS experiments for a very long time since the viscosity 
of the suspensions was very low, and the microspheres started to sediment; when ¤∗ started to decline, 
we ended the experiment (10 min for low concentrations, 15 min for higher concentrations). Instead 
of the behavior observed in other WLM solutions, in our case at longer times, we never reached the 
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regime where the MSD is again a linear function of time when particles are released from the trap 
when the stress relaxed. It is interesting to note that there is a clear difference between the 〈∆x2(/)〉 
curves for WLMs made of PBPEO57 and those made of standard surfactants or PBPEO45 as 
observed in Figure IV.11a and b. There, we include examples of WLM systems made of: (a) 
PBPEO45 at 1 wt% and 2 wt% (recall that at ~ 2.5 wt% a phase transition appears). Here, the 
curves behave like those of PBPEO57, except that at ~ 1 to 2 ms a plateau starts which can be 
observed where the particles could be trapped in the micellar network; (b) The zwitterionic 
surfactant N-tetradecyl-N,Ndimethyl-3-ammonio-1-propanesulfonate (TDPS), the cosurfactant 
sodium dodecyl sulfate (SDS), and salty water [41]. Here, the network is made of WLMs which 
allows the particles to escape after the stress relaxes through a process of breaking and 
recombination; therefore, this system follows the Maxwell model at low and intermediate frequencies 
[41]. (c) Suspensions made of semi-flexible cylinders of fd virus (length ~ 1 µm) [150]. Here, the 
〈∆x2(/)〉 curves measured by DWS are more similar to those of PBPEO57. 
 
 
 

 

 

 

 

 

 

 

 

 

Figure IV.10 Normalized autocorrelation function. The data comes from transformed experimental results by the Siegert relation. 

Different concentrations for PBPEO57 are analyzed. 
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Figure IV.11 〈∆r2(t)〉 vs. t for microspheres in PBPEO57 micellar solutions. For comparison, we include data for micellar solutions 

of PBPEO45 (1 wt% blue dot-dashed line and 2 wt% black dashed line), suspensions of fd virus (9 = 1 mm, Cfd = 25 mg mL−1 

and [NaCl] = 225 mMol L−1, black line), and WLM solutions of TDPS/SDS/brine (CTDPS = 46 mMol L−1, R = 0.45, 

[NaCl] = 0.5 Mol L−1, red line). (a) Plot in logarithmic scale where different time regimes are observable. (b) Plot in linear scale 

to observe the nonlinear behavior at short times. Here a diffusive regime is fitted for CPBPEO57 = 1 wt% (orange diagonal line). 
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Viscoelastic spectra. The 〈∆x2(/)〉 curves were fitted to the model curve given by M. Bellour et 
al. [125], as described in Chapter III, to obtain �∗(�) at high frequency, using equation (III.3.42). 
The numerical fitting parameters in the model do not give any physical insight in this case due to 
the lack of the mentioned plateau, although the overall fitting was excellent and helped to calculate 
�∗(�) with a small error. In Figure IV.12, we present the viscous (imaginary part, Figure IV.12a) 
and elastic (real part, Figure IV.12c) components, respectively, of the complex modulus �∗(�) for 
the PBPEO57 micellar solutions at T = 20 ℃. In Figure IV.12a, the lines correspond to 
measurements using mechanical rheology, and the lies plus squares correspond to the microrheology. 
For �′′(�), there is a small tie error between both sets of curves, which is in the range of less than 
1 Pa; this is quite reasonable. Figure IV.12b presents the whole spectra for �′′(�) along eight decades 
in time for CPBPEO57 = 4, 5, and 6 wt%. The tie error for �′(�) is much larger than for �′′(�) as 
observed in Figure IV.12c. The microrheological values of �′(�) around � ~ 4 to 6 × 102 s−1 present 
an unexplained change in curvature. Consequently, there is an unexpected faster decay in the 
frequency region which comes from the highest measured values of the MSD. These time values 
correspond to the sector where ^(2)(/) ~ 0 and that is quite noisy; the numerical error here is large, 
because it is not clear how the correlation function has to be truncated, and probably this error 
affects more �′(�) than �′′(�) at these frequencies. Figure IV.13 presents �′(�) and �′′(�) 
obtained with mechanical rheology (low and intermediate frequencies) and microrheology (high 
frequencies) for the PBPEO57 micellar system (Figure IV.13a); for comparison, we included the 
system made of PBPEO45 (Figure IV.13b).  
 
In both cases at high frequency, �′′(�) is more extensive than �′(�). In contrast, as mentioned 
above, after the first crossing at �0, �′(�) > �′′(�) and before this crossing �′(�) < �′′(�). 
Therefore, a second crossing point must be observed at some point in the high-frequency range. For 
PBPEO57, the �′(�) and �′′(�) curves approach each other, but we could not capture the crossing, 
because �′(�) decays faster around � ~ 4 to 6 × 102 s−1, as mentioned before. Therefore, in Figure 
IV.13a, we included a gray window where the crossing is expected to be found, and we estimate that 
�′(�) values are not accurate. For PBPEO45, the second crossing was captured (Figure IV.13b), 
but the MSD data never reached the long times needed to obtain the lower values of the 
microrheological moduli necessary to tie with the mechanical measurements. Hence, we have a gap 
(dashed lines between 10 s−1 ≤ � ≤ 120 s−1), although the mechanical measurements seem to be the 
continuation of the microrheological data.  
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Figure IV.12 Shear moduli vs. �, for different concentrations of PBPEO57. (a) Viscous modulus. Mechanical rheology (lines) and 
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Figure IV.13 �′(�) and �′′(�) obtained by rheology and microrheology for both micellar systems: (a) PBPEO57, here we included 

a gray window where the crossing is expected to be found and where the measured �′(�) values are probably not accurate; (b) 

PBPEO45, microrheology could not reach the mechanical measurements; the gap is represented by dashed lines. For both cases, 

different diblock copolymer concentrations are presented. 
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1.7. An attempt to connect microrheology with mechanical rheology 

 
As we discussed, we can observe in Figure IV.13 that the intermediate frequency region has a lack 
of the spectrum information. This means that we need more information of the probe particles at 
longer times, which could be achievable with bigger particles, but with a risk of losing their Brownian 
behavior and with the possibility of affecting the local structural monitoring within the sample. 
 
 
1.7.1. DLS experiments 

 
A way to overcome this problem is to obtain the MSD of the particles by conventional dynamic light 
scattering (DLS) experiments at low angles according to B. R. Dasgupta and coworkers [151]. The 
application of DLS lies in the local mobility of particles. To get a speckle pattern in DLS, individual 
particles must exert a long enough displacement to generate a sufficient phase shift of the light waves 
(half a wavelength of the scattered light) due to the difference in optical path each one has after the 
individual scattering events, at different times or different positions within the sample, and at very 
diluted particle concentration. This particle displacements are longer than the ones obtained by 
DWS experiments, where each particle does not require to exert a long-distance displacement to get 
an enough phase shift of waves at the detector, due to the several scattering events, each one 
generating a small phase shift. Each change in phase is summed up with all the others, to generate 
the interference speckle pattern at the detector, as is showed in the equation (III.3.19). 
 
We used a home-made DLS setup at the laboratory (see Chapter III). Because we performed 
experiments with particle of sizes 800 nm and 2 µm in DWS, we also used those particles for DLS. 
Hence, it is necessary to consider the formalism of S. R. Aragón and R. Pecora [104] because the 
scattering events are in the Rayleigh-Debye regime (see Chapter III). The autocorrelation function 
we used to analyze the experimental results is the one represented in the equation (III.3.11). Before 
performing the experiments with the diblock copolymer solutions, we performed some experiments 
just with the colloidal particles (800 nm and 2 µm) in water at very diluted concentration. The 
results convinced us to continue with the diblock copolymer experiments. The DLS tests were done 
just for PBPEO45. Nonetheless, both PBPEO diblock copolymers scatter light due to the sizes of 
the aggregates in solution; this is not a problem in DWS but represent a complication for DLS. 
Anyway, we made the proper tests. 
 
Experiments were carried out at the same angles as before for the particles in water to assure a 
maximum intensity of scattered light. Also, the setup of the experiment included a pair of linear 
polarizers (one just outside the light source and the other at the entrance of the detector) in vertical-
vertical configuration to assure just one scattering event (polarized experiments). However, after 
some tests with vertical-horizontal configuration (depolarized experiments), at different 
concentrations of PBPEO45, we were still detecting enough signal to construct an autocorrelation 
function, that means that there exist bigger aggregates than the colloidal particles, and with non-
spherical shape that change the polarizability of light. Further information about polarized and 
depolarized DLS can be found elsewhere [152] [153] [154]. 
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The experiments were performed for solutions at CPBPEO45 = 1 wt% with a few microliters drop of 
diluted particles of diameter = 2 µm and 800 nm; and for a solution of  CPBPEO45 = 1.5 wt% with 
particles of 2 µm. The autocorrelation functions ∣^(1)(/)∣2 are shown in Figure IV.14, for CPBPEO45 =
1 wt% and 2 µm particles, just for three different angles, ! = 33.6°, 64.4° and 85.5°. All plots are 
compared with the autocorrelation functions of just the particles in water, and with just the 
PBPEO45. The plots are also accompanied with the respective distribution of decay times of the 
system PBPEO45 plus particles, obtained with the regularized analysis method [155]. 
 
With these results it is evident that there is an overlapping between the natural relaxation times of 
the aggregate structures of the PBPEO45 and the colloidal particles. For low angles there is a 
difference between the three plots (particles, PBPEO45, PBPEO45 + particles). The shorter times 
decay of the PBPEO45 + particles plot, corresponds to the PBPEO45, and the longer times to the 
particles. For high angles the curves of PBPEO45 + particles plots are more similar to the block 
copolymer curve, which means that the scattered light by the particles is running low and the 
contribution to the autocorrelation function is getting just for the PBPEO45. Similarly, the decay 
times distribution plots show a longer separation between peaks at low angles, than the short 
separation at high angles; in the same way, the peaks due to the particles’ relaxation times are more 
pronounced at short angles than the corresponding at long angles. 
 
In the autocorrelation functions plots, there are also three different fitting lines. The two gray fitting 
lines correspond to single exponential functions, each one for the different relaxation times (diblock 
copolymer and particles respectively). The red fitting lines correspond to a double stretched 
exponential function, 

 

 ( ) ( )1 22
(1)

1 1 2 2( ) exp exp
b b

t A t A tg τ τ= − + − .  (IV.1.4) 

 
The exponents a1 and a2 generate a smoother curve, that permit a better fit at longer times. The 
value of this fitting is inverted using the equation (III.3.6) to obtain the MSD for each angle. Almost 
the same results were obtained for the other experiments, with different particle size and 
concentration of PBPEO45 (not shown). It was even more complicated to discriminate between the 
particles decay and the PBPEO45 in the case of particle size of 800 nm. The same is presented when 
the diblock copolymer concentration is increased, even for the bigger particles used. 
 

 
The MSD obtained for all different angles is not in good agreement with the obtained in DWS 
(previously shown in Figure IV.11). We got displacements for longer times but with a not so good 
behavior at short times (the larger times for DWS) (Figure IV.15b). According to the tendency of 
the behavior of the autocorrelation functions and MSDs, we extrapolated the results of the MSD to 
Ý = 0. The extrapolation was made plotting the MSD vs. Ý at constant time (constant time cut). 
For each time a linear extrapolation was done to Ý = 0, and with the values at the intercept, we 
constructed the new MSD (Figure IV.15a). 
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Figure IV.14 (a) (c) (e) Autocorrelation functions for three different scattering angles: 33.6°, 64.4° and 85.5° respectively. Each 

graph presents the plots for the relaxation of particles of 2 µm in water, for the PBPEO45 at 1 wt% and the relaxation for the 

probe particles embedded within the PBPEO45 solution. (b) (d) (f) These are the relaxation times distribution for each angle. In 

all plots it is evident that when the angle increases, the response due to the relaxation of the PBPEO45 is more representative

than the particles response.  
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Although the extrapolation considers the information for all angles at all measuring times, the 
tendency of the MSD is still a bit far away from the DWS MSD. It is in not so good agreement with 
the tendency followed by DWS experiments (Figure IV.15b). With this shape in the displacement 
plot, it was very complicated to fit Bellour’s equation. Making a direct Fourier transformation of 
the MSD, we got a bad behaved viscoelastic spectrum, with no connection within the gap we wanted 
to complete (plot not shown). 
 
In conclusion, with this procedure we could not complete the gap between the mechanical rheological 
response and the light scattering microrheological response.  

 
 
1.7.2. Samples with light absorption 

 
Another potential possibility to extent the displacement of the particles to longer times, and 
consequently to extent the viscoelastic spectrum to shorter frequencies, is adding a light absorption  
agent to the PBPEO solution with particles, for DWS experiments. When we add this agent 
artificially, without affecting the mechanical properties of the sample, the scattered light response 
at the detector change. In particular, in transmission geometry the longer paths of light are 
attenuated much more than the shorter paths. Therefore, the particles must exert longer 
displacements to get an enough phase shift of light wave to produce the speckle pattern at the 
detector. This procedure represents an intermedium between conventional DWS and DLS. To 
perform these experiments, it is necessary to consider the restrictions imposed by the diffusion 
approximation of light within the sample. These restrictions have been mentioned earlier in this 
document (see Chapter III). Finally, with the IAD method it is possible to obtain the optical 

Figure IV.15 (a) MSD construction to extrapolate the values to null angle (Ý = 0). Each curve with its corresponding figure and 

color represents a different measurement time, with an evolution towards the direction of the arrow. (b) Comparison of MSDs at 

different angles: 33.6°, 64.4° and 85.5°. Those are also compared with the MSD obtained extrapolating to Ý = 0. All of them 

never have a good agreement with the MSD obtained by DWS experiments. These are experimental results made with PBPEO45 

at 1 wt% with embedded particles of diameter = 2 µm. 
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parameters of the sample, necessary to compute the numerical inversion of the autocorrelation 
function, to obtain the MSD. 
 
Because we are using big particles for our experiments (2 µm) to already extent the most possible 
the response at longer times, these particles have a preferred scattered light direction (Mie scattering 
regime), hence we could no extent enough the MSD, as could be done by E. Sarmiento-Gómez and 
coworkers [111], for smaller particles (in the Rayleigh scattering regime). So that, for our purposes 
the addition of light absorption to the sample was useless. Even though, these experiments permitted 
us to prove the validity of the IAD method when we add absorption artificially to a real system with 
internal mesoscopic structure. A further explanation of the experiments was shown in Chapter III. 
Section 4, where PBPEO45 samples were analyzed after the addition of indian ink. 
 
 

1.8. Microrheology and structure 

 
At high frequencies, micelles can be regarded as semiflexible chains where the stress relaxation 
processes, reptation and breaking/recombination, are mostly still. Stress relaxes via intramicellar 
processes as � increases; first dominated by the Rouse-Zimm modes and then by the internal 
relaxation of individual Kuhn segments (recall the formalism of flexible polymers, Chapter II). Thus, 
at high frequencies, |�∗(�)| exhibits a power law behavior, |�∗| ~ �§, illustrated in Figure IV.16 
with an exponent y ~ 5 9⁄  in the Rouse-Zimm regime [11] that changes at a critical frequency, �∗, 
to y ~ 3 4⁄ , where the internal bending modes of Kuhn segments dominate [34]. This change occurs 
at the shortest relaxation time in the Rouse-Zimm spectrum. At very high frequencies, |�∗| is 
dominated by the solvent, that is water, |�∗| = −ó:�. Using equation (II.7.2), �∗ ≈ CDE 8:¤m⁄  [156] 

[34] [35], the persistence length of the WLMs is estimated. 
 
We found that �∗ depends on concentration. In Figure IV.17a, we present ¤m vs. CPBPEO57. The 

interaction between WLMs sensibly modifies ¤m, since it increases faster as the concentration 

decreases close to "∗. In this figure, we also included the area (in red) where the experimental ¤m 

value obtained using SANS should be found at 0.5 wt% (> 225 nm). If we extrapolate our 
concentration-dependent ¤m to the concentration where the SANS measurement was done, the 

agreement is quite reasonable. This behavior of a marked decrease of ¤m with concentration increase 

has been observed in cylindrical polymer brushes in the dilute and semidilute regime using SANS 
[147] and in polyelectrolyte chains [157] [158]. The explanation for this fact in these systems also 
seems to be applied here. In the dilute solution (< "∗), the macromolecules adopt a worm-like 
configuration due to the steric interaction between the side chains, in the case of polymer brushes, 
or due to the electrostatic repulsion, in polyelectrolyte chains. For both systems, the contribution of 
the intermolecular interactions to the total free energy increases upon increasing the concentration. 
To reduce this contribution, a reduction in ¤m of the thread-like structures occurs because for a 

flexible macromolecule the excluded volume that is not available for the other macromolecules is 
smaller than the corresponding one of a rigid macromolecule. In Figure IV.16d, we included an 
example of the power law behavior of |�∗| for PBPEO45 WLMs at high frequencies. Here with 
microrheology, the estimated value of ¤m is ~ 76 nm at 1.7 wt% which is slightly above "∗. This value 
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is smaller than that obtained by SANS, ¤m ~ 141 nm at 0.5 wt%. Observing how fast is the increase 

of ¤m at low concentrations in the case of the PBPEO57, this value could be reasonable. In this case, 

we do not have enough points to make an accurate estimation because the range of concentrations 
able to be studied is too small (see Figure IV.17b).  
 
 
 

 
 
 
 

Figure IV.16 Power law behavior of  |�∗| ~ �§ for PBPEO WLMs at high frequencies. First, it is dominated by the Rouse–Zimm 

modes, then as frequency increases by the internal relaxation of individual Kuhn segments, and finally by the viscous water. (a) 

CPBPEO57 = 5 wt%, (b) CPBPEO57 = 6 wt%, (c) CPBPEO57 = 7 wt%, and (d) a comparison with CPBPEO45 = 1.7 wt%. 
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1.9. PBPEO worm-like micelles’ conclusions 

 
It was found that in water solutions PBPEO57 self-assembles into WLMs with a diameter of 
~ 12.7 nm, a core radius of ~ 2.7 nm, a shell thickness of ~ 3.0 nm and an estimated persistence 
length of > 225 nm. The degree of polymerization of PB and PEO blocks is 37 and 57, respectively. 
We compared this system with another similar system, the PBPEO45 that also forms WLMs in 
water with the same core as before, but with a PEO block with a degree of polymerization of 45. In 
the latter, the diameter was ~ 12.8 nm, the core radius was very similar to that of the PBPEO57 
~ 2.6 nm and the shell thickness was ~ 3.1 nm, although with a smaller estimated persistence length 
of ~ 141 nm. The bending energy is more significant for the PBPEO57 WLMs than that for the 
PBPEO45. The stiffness difference is because the PEO block is already more densely packed in the 
WLMs of PBPEO57 than of PBPEO45, any bending will increase this steric overcrowding. 
 
The micelles of PBPEO57 do not follow the rheological behavior of the WLM solutions of 
conventional surfactants. At low concentration, the micellar solutions steadily shear thins as the 
shear rate increases reaching low viscosity values at large shear rates; there are no shear thickening 
peaks. The boundary between dilute and semidilute regimes was estimated according to the behavior 
of the zero-shear viscosity to be ~ 0.8 wt%. When sheared, the micellar solutions present 
birefringence. The viscoelastic spectra at low and intermediate frequencies do not follow the Maxwell 
model. The micelles of PBPEO57 do not break and reform. The same behavior was observed in the 
case of PBPEO45, which also produces an atypical WLM solution. The slow dynamics of the self-
assembly explains this uncommon behavior of a WLMs system; any micellar rearrangement is 
impeded due to the extremely high hydrophobicity of the PB block. 
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Figure IV.17 (a) Persistence length as a function of concentration for PBPEO57 WLMs obtained with microrheology. A red dashed 

square was included for the region where the persistence length must be found using SANS. (b) The same plot but for PBPEO45. 

The red dot corresponds to the persistence length value found by SANS. The concentration range, in this case, is limited because 

WLMs are found below CPBPEO45 = 2.5 wt%, therefore the comparison with (a) is limited. 



CHAPTER IV. EXPERIMENTAL RESULTS 

114 | P a g e  

The mean square displacement of colloidal particles was measured in the micellar solution of 
PBPEO57 and compared with other fluids with embedded thread-like structures (conventional 
surfactant WLMs, fd virus, and PBPEO45 WLMs). From the particle mean square displacement, 
we obtained �′(�) and �′′(�) at high frequencies. |�∗| exhibits a power law behavior. Here, it is 
evident where the stress relaxation changes from the Rouse-Zimm modes to the bending modes of 
Kuhn segments at �∗. From here, ¤m was calculated for the PBPEO57 WLMs, which is concentration 

dependent, but extrapolating our data to the concentration where the SANS measurement was done, 
the agreement is reasonable. As concentration increases, a reduction in ¤m of the thread-like structures 

occurs to reduce the contribution of the interaction to the total free energy, because for a flexible 
macromolecule the excluded volume that is not available for the other macromolecules is smaller 
than the corresponding one of a rigid macromolecule. In summary, we obtained information about 
the relaxation mechanisms of the system at low (mainly through reptation) and high frequencies 
(Rouse-Zimm and bending modes), and how they are related to the size of the PEO shell and the 
diblock copolymer concentration. 
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2. Photoresponsive worm-like micelles 
 

2.1. Motivation and purpose 

 
The structure and rheology of cetyltrimethylammonium bromide with sodium salicylate (CTAB-
NaSal) [40], and N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate with the cosurfactant 
sodium dodecyl sulfate (TDPS-SDS) [159] [41] worm-like micelles systems have been largely studied 
in the Complex Fluids Group of the Institute of Physics at UNAM. Important results have been 
found by reproductible mechanical rheology and microrheology experiments. In these cases, worm-
like micelles present Maxwellian behavior at low and intermediate frequencies under shear strain 
within their linear regime. Thus, there was possible to obtain the characteristic lengths of the systems 
at mesoscopic scale extending the viscoelastic spectrum to high frequencies under diffusing wave 
spectroscopy (DWS) examinations. It was found that the lengths of the systems are intimately 
related to the rheological responses, and that it is possible to tune them changing temperature and 
the ionic strength in the media. The adaptiveness of these systems under environmental changes 
results in a change of the building blocks assembly to get thermodynamic equilibrium. We wanted 
to extend the survey of theses WLMs systems under external fields stimuli and construct smart 
materials with different tunable properties. We have decided to add a photo-responsive molecule to 
the mentioned WLMs systems to identify the adaptiveness of the general structure under shear 
deformations. Our hypothesis is that the photo-responsive molecule interferes in the mechanisms of 
breaking and recombination, making possible to break the micelles in smaller segments as implication 
of the trans-cis isomerization process of the molecule.  
 
Here the results that compare the DWS microrheological experiments with the mechanical rheology 
experiments for the case of CTAB-NaSal WLMs are presented. The complete study corresponds to 
the doctoral thesis of Natalia Rincón-Londoño which includes SAXS and nuclear magnetic resonance 
(NMR) experiments. 
 
Previous studies with photo-responsive molecules which induce bond-cleavage or photo-triggered 
molecules have been done [9]. A few examples are a mechanical rheology and SANS study with 
CTAB WLMs and the photo-triggered molecule trans-ortho-methoxycinnamic acid (OMCA) [160], 
a complete study of WLMs made of CTAB with the photo-triggered molecule sodium (4-phenylazo-
phenoxy)-acetate (AzoNa), in which diverse assemblies at different length scales were obtained 
varying the UV light irradiation time and analyzed with different experimental techniques to get 
structural information [161]. A review of spiropyran-based dynamic materials can be found in [162], 
and also a review that highlights the advances of photo-responsive polymeric micelles, including the 
design, synthesis and applications, with special emphasizing in the influence of different photo-
reaction mechanisms on the morphology, structure and properties of the polymeric micelles is found 
in [163]. 
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2.2. Specific goals 

 
The questions emerged regarding this investigation are: can we tune the structural conformation of 
WLMs aggregates with the application of light stimuli? Is it possible to change the behavior of the 
Maxwellian fluids? How optical properties could be modified adding a photoresponsive molecule? 
Are we able to perform DWS experiments even when the optical properties can change? 
 
 

2.3. Materials and sample preparation 

 
Cationic surfactant cetyltrimethylammonium bromide (CTAB; > 99 %) was purchased from Fluka 
Chemie gmbH (Germany) and sodium salicylate (NaSal; 99.5 %) from Sigma-Aldrich (MO, USA). 
4-(phenylazo) benzoic acid (AzoCOOH; > 98 %) was purchased from Tokyo Chemical Industries 
Co., Ltd. (Japan) and NaOH (≥  98 %) is from Sigma-Aldrich (Sweden). All of them were used 
without further purification. 800 nm tracer microspheres for DWS experiments are made of plain 
polystyrene (Bangs Laboratories, Inc.); they are negatively charged in pure water due to the 
negatively-charged sulfate groups that populate the surface of the plain polystyrene beads. Because 
of that, they interact with the CTAB-NaSal-AzoCOO mixture, provoking an evident phase 
separation, for that reason the acquired particles were functionalized with an amine group since 
purchasing. The phase separation of samples was avoided. The necessary used water was deionized 
(Nanopure-UV, USA; resistivity ~ 18.3 MΩ cm). 
 
Sample preparation. Four different WLMs water solutions were prepared by weight. All of them 
contained constant concentration of CTAB (80 mM) and NaSal (40 mM), but with different 
concentration of AzoCOO (without, 5 mM, 10 mM and 15 mM). First, the pH of AzoCOOH 
aqueous solution was adjusted with NaOH to have a basic environment (AzoCOO) in order to get a 
better affinity with CTAB. CTAB was added to the AzoCOO solution, followed by the addition of 
NaSal. The solutions were stirred for 2 days at 40 ℃ before use (mechanical rheology 
mearumrements). They were left for 2 additional days to relax at 30 ℃. Other four solutions with 
the same characteristics were prepared with addition of NaCl (0.1 M) to verify possible structural 
changes in WLMs due to ionic variations in ionic strength. Previous studies determined that better 
Maxwellian fluids are obtained, with larger WLMs, when NaCl is added. 
 
Rheology. Measurements were carried out in a MCR 702-TwinDrive rheometer (Anton Paar, 
Austria). Flow curves and oscillatory measurements were performed using a cone-plate geometry 
(2°; diameter = 40 mm). Samples were allowed to relax before measurements. Experiments were 
performed at 30 ℃. 
 
DWS. Solutions with a concentration slightly above the desired concentration to be measured were 
prepared. Because micellar solution viscosity is high at room temperature and to avoid colloidal 
agglomeration, we followed a two-step procedure. In the first step, as pointed out above, AzoCOO 
aqueous solutions were mixed with CTAB, NaSal, and NaCl for certain cases. Samples were stirred 
for 2 days at 40 ℃. In the second step, the 800 nm functionalized polystyrene microspheres in water 
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suspension (10.17 wt%) were added while the samples were stirred; the particle weight fraction was 
# = 0.035, and subsequently samples were sonicated for 15 minutes to assure a homogeneous 
dispersion. Due to the high viscosity, samples were kept stirring for 14 days at 40 ℃. Finally, samples 
were left for 2 additional days to relax at 30 ℃ in rectangular cuvettes of a light path thickness of 
2.5 mm, used for DWS experiments, sealed well to avoid water evaporation. Typical acquiring times 
were about 2 hours for the less AzoCOO concentrated samples, and 3 hours for the samples with 
15 mM AzoCOO. 
 
 

2.4. Microrheology results 

 
The mechanical rheology experiments (not reported here), where carried out in two different ways: 
in standard conditions without irradiation of sample, and at the same time while the sample is 
irradiated with UV light. The results have shown that there is no appreciable difference between 
both experiments. Thus, presumably there is not a structural change of the WLMs, as it is confirmed 
with NMR experiments (not shown), even when the molecule makes a transition from trans to cis 
isomerization. The answer to this peculiar behavior is that the presence of NaSal prevents a 
significative change in the packing factor of micelles. Therefore, all DWS measurements where 
performed without previous irradiation of samples, and the AzoCOO molecule preserved its native 
trans isomerization. Future analysis includes the verification of the phenomenon adding another Azo 
compound, which could force the WLMs to break when isomerization of the molecule changes. The 
main problem to be faced in the application of DWS is the light absorption nature of AzoCOOH 
(and AzoCOO). UV-Vis experiments (results not shown here) revealed high absorption at UV 
wavelengths and also with an important contribution around 514 nm which is the wavelength used 
in our DWS experiments. 
 
Then, the first step to assure the possibility for doing DWS experiments is to know the power of 
light absorption of the molecule AzoCOO. We have to remind that there are two necessary values 
to cover: ¤i ¤∗⁄ ≥ 30 and ~ 9 ≤ � ¤∗⁄ ≤ 25 (or a little higher for the more concentrated particle 
suspensions). Stay within these values can assure the diffusion approximation of light inside the 
sample. Then, we made an IAD estimation measurement for AzoCOO at 20 mM concentration, with 
no colloidal particles added. The experiments consisted in varying the optical path length of used 
cuvettes. For collimated transmittance we got a plot with exponential decay, as shown Figure IV.18.  
 
The exponential decay agrees with the Beer-Lambert law with a value of the inverse of an exponential 
decay constant of 2.26 ± 0.14 mm. After the application of the IAD method there was no scattering 
events detected and the only optical property obtained was the absorption length, which results for 
each different optical path length are summarized in Table IV.2. As expected, the values do not 
change considerably and are in complete agreement with the decay exponent for collimated 
transmittance. 
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Optical path 
length, � (mm) 

¤i (mm) 

1 2.41 
2 2.60 
2.5 2.30 
4 2.11 
5 2.23 

Average 2.33 
Table IV.2 Absorption lengths computed for all different surveyed optical path length for AzoCOO aqueous solutions at 20 mM. 

 
To get at least the value ¤i ¤∗⁄ ≈ 30 once we added probe particles, the light’s transport mean free 
path value must be shorter than ¤∗ ≈ 77.7 µm. Using Mie scattering theory, we got a plot of the ¤∗ 
values in terms of the fill weight fraction of particles within the sample. Figure IV.19 presents this 
plot. After the survey, we found out that the most possible fill weight fraction of particles to be used 
is # = 0.035 which corresponds to ¤∗ ≈ 72.6 µm. If we use higher particle concentrations we cannot 
assure the avoiding of interparticle interactions, as well as hydrodynamic correlation. For this value, 
then � ¤∗⁄ ≈ 34.44, which assures that diffusion approximation of light can be used, but with 
relatively high concentration of particles. 
 
Table IV.3 summarizes the optical parameters obtained for each of the measured samples, which 
include the contribution of the probe particles added to the samples already. For these samples was 
impossible to perform collimated transmittance measurements due to the large amount of scattered 
light by the particles. Then, to apply IAD method we settled the theoretical value of the anisotropy 
factor for particles of diameter = 800 nm, which is ^ = 0.9166. 
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Figure IV.18 Collimated transmittance measurements at constant concentration of AzoCOO (20 mM). Different cuvettes with 

different optical path lengths were used to perform the experiment.  
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AzoCOO  Without 5 mM    10 mM 15 mM 

Without NaCl 

¤i (mm)  31.07 5.77 2.81 2.52 

� ¤∗⁄    14.78 17.25 13.25 13.18 

¤i ¤∗⁄    404.04 39.78 14.89 13.26 

With NaCl 

¤i (mm)  144.76 6.51 3.39 2.29 

� ¤∗⁄    21.33 15.71 12.85 13.14 

¤i ¤∗⁄    1235.15 40.89 17.69 12.04 

Table IV.3 Optical parameters computed using the IAD method. The values correspond to all different samples studied. 

 
In average, all samples have reached lower values for ¤i than the previous obtained for AzoCOO 
concentration of 20 mM. All the absorption values are almost stable; the significant change is got in 
the ¤∗ value, which seems that varies due to the real concentration of particles suspended within the 
samples. Even though, the relations � ¤∗⁄  are sufficiently good, but with a decrease of around 50 % 
for the case of value ¤i ¤∗⁄ , when concentration of AzoCOO is 10 mM and 15 mM. We decided to 
continue with the DWS experiments because several transport mean free paths are followed within 
all samples, even for the most absorbent cases. 
 
Figure IV.20 shows the normalized autocorrelation function for all concentrations of AzoCOO 
without NaCl added, and the mean square displacements, corrected for the absorption effects, as 
well. In the autocorrelation function, which is not corrected for absorption, the decaying times are 
extended with the increase of AzoCOO concentration, which is a contribution of the absorption 
conditions of the samples, but also because there exist structural changes within the system. These 
structural changes are evident in the corrected MSD plot, due to the different behavior of particles 
at different AzoCOO concentration. 
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Figure IV.19 Values for the transport mean free path which depend on the weight fill fraction of particles added to the sample. 

The particles have a diameter of 800 nm. 
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Figure IV.21 shows the same plots that previously but for the case with NaCl added. We could 
roughly say that there are not important changes compared to the former case. An important point 
to mention is that in the cases without AzoCOO, the autocorrelation functions present two decays, 
but the second appears to be much more disengaged or delayed from the first decay that in all other 
cases. This particularity could be interpreted as a sign of different relaxation time scales due to 
structures with apparently very different length scales within the sample. 
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Figure IV.21 (a) Normalized autocorrelation function for all samples analyzed by DWS, with NaCl. (b) The corresponding MSD 

plots for the same samples. 
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Figure IV.20 (a) Normalized autocorrelation function for all samples analyzed by DWS, before the addition of NaCl. (b) The 

corresponding MSD plots for the same samples. 
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Figure IV.22 presents the viscoelastic spectra for the four different samples with NaCl. In all of them 
at low angular frequencies the mechanical responses are presented and at high angular frequencies, 
the microrheology responses dominate at all. The black lines are adjusted by eye for the ideal cases 
of a Maxwellian fluid with the same relaxation time and �0 values as the experimentally obtained. 
It seems that the addition of AzoCOO enhance the Maxwellian behavior for bit higher frequencies. 
In all cases the agreement is excellent at low frequencies. In all cases the agreement of mechanical 
rheology results and microrheology results is enough good as well, with the longer change in the case 
of AzoCOO at 10 mM, where the �′(�) plateau have a little disagree of around 20 Pa. The disagree 
in relaxation times (crossing points between �′(�) and �′′(�)) is always less than an order of 
magnitude, with the large discrepancy in the case of AzoCOO at 5 mM. The differences are due to 
the different measurement techniques, where mechanical rheology accounts for bulk measurements, 
meanwhile microrheology analyze the sample locally. 
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Figure IV.22 Viscoelastic spectra. Circles represent mechanical rheology results; squares are for microrheology results. Full symbols 

are the storage moduli and open symbols are the loss moduli. Black lines follow the Maxwellian behavior. AzoCOO concentration: 

(a) without AzoCOO, (b) 5 mM, (c) 10 mM and (d) 15 mM. 
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Figure IV.23 shows the same results as formerly but for the case of added NaCl. Here in all cases 
the systems have a Maxwellian behavior at low frequencies. The addition of salt contributes to 
increase the Maxwellian response for the case without AzoCOO. On the other hand, the discrepancies 
between mechanical rheology and microrheology essentially are the same as previously, with some 
differences for different AzoCOO concentrations. Due to the Maxwellian behavior of the samples, it 
was possible to estimate the characteristic lengths of the WLMs, with the help of equations (II.7.1)
-(II.7.4). To have some idea of the relaxation mechanisms depending on AzoCOO concentration, 
Figure IV.24 presents the relaxation times t , of the system, with and without addition of NaCl in 
terms of AzoCOO. A comparison is done between results obtained with mechanical rheology and 
with DWS microrheology. For the first case, a light increment of relaxation time occurs when 
AzoCOO is added, followed by a decreasing behavior once the concentration increase. For the case 
of DWS, the relaxation time decays always with increments of AzoCOO concentration. 
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Figure IV.23 Viscoelastic spectra. Circles represent mechanical rheology results; squares are for microrheology results. Full symbols 

are the storage moduli and open symbols are the loss moduli. Black lines follow the Maxwellian behavior. All samples contain NaCl 

at concentration 0.1 M. AzoCOO concentration: (a) without AzoCOO, (b) 5 mM, (c) 10 mM and (d) 15 mM. 
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Figure IV.25 shows the plot of |�∗(�)| for all cases, without (Figure IV.25a) and with (Figure IV.25b) 
NaCl. These plots help to obtain the stiffness of the WLMs through the calculation of the persistence 
length. As an example, the slope differences at high frequencies are shown for the cases without 
AzoCOO, with the frequency value at the point of change. Also, these plots present a different 
viscoelastic response between species, where the increasing of AzoCOO concentrations leads to an 
increase of |�∗(�)| values. 
 
Table IV.4 summarizes the computed characteristic lengths values for all cases involved in this study, 
without NaCl, and Table IV.5 reports the same characteristic lengths values for the case with NaCl. 
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Figure IV.25 Complex viscoelastic spectra for all studied samples at different concentrations of AzoCOO. (a) The cases without 

addition of NaCl. (b) The cases with NaCl. As an example, the cases without AzoCOO show the slope changes which represent a 

change of relaxation modes, from Rouse-Zimm to the bending of Kuhn segments. 
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Figure IV.24 Relaxation times of the system of worm-like micelles, in terms of AzoCOO concentration. (a) The cases without 

addition of NaCl. (b) The cases with NaCl. In both plots the open symbols are the data for mechanical rheology and the full 

symbols the respective data for DWS microrheology experiments. 
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Without NaCl 

AzoCOO �� (nm) ¤¨ (nm) ¤m (nm) � (nm) 

Without 2663.28 128.36 21.74 63.10 
5 mM 1398.95 81.49 34.66 57.88 
10 mM 837.66 80.64 26.49 51.69 
15 mM 311.51 94.87 12.65 42.38 

Table IV.4 Characteristic lengths obtained due to the Maxwellian behavior of the samples. Here samples do not contain NaCl. 

 

With NaCl 

AzoCOO �� (nm) ¤¨ (nm) ¤m (nm) � (nm) 

Without 2844.84 75.13 23.91 47.52 
5 mM 1225.59 80.40 29.65 45.15 
10 mM 519.32 69.52 24.37 45.71 
15 mM 371.54 77.35 16.38 41.57 

Table IV.5 Characteristic lengths obtained due to the Maxwellian behavior of the samples. Here samples contain NaCl. 

 

2.5. Photoresponsive worm-like micelles’ conclusions 

 
The most important contribution to the experimental procedure was obtaining the optical 
parameters of the solutions even when the solutions themselves presented light absorption in the 
region of 514 nm we used for the experiments. The inverse adding doubling method (IAD) was used 
for the first time in DWS in a structured system at a mesoscopic scale, to correct the experimental 
autocorrelation function due to adsorption effects. 
 
Microrheology results reveal that the addition of NaCl is more relevant only when there is no 
presence of AzoCOO in the solution. The most significant difference appears in the entanglement 
length, ¤¨, which is much more extended in the case without NaCl, in accordance with a shorter 
contour length, ��, when there is not NaCl, and in agreement also with a larger mesh size, �, for the 
same sample. It seems that the addition of AzoCOO contributes similar to the addition of NaCl. A 
notable feature is that the WLMs become smaller with higher concentration of AzoCOO (��). The 
entanglement length ¤¨,  is preserved in average, equal than the mesh size �. The persistence length 
¤m, is also AzoCOO concentration dependent which decreases as concentration increases and contour 

length decreases as well. This means that the stiffness is getting lost when the WLMs are shorter. It 
is worth to notice that this behavior is not monotonic; ¤m increases when just 5 mM of AzoCOO are 

added but decreases subsequently with the addition of more AzoCOO. 
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3. Suspensions of SWCNTs in a polyelectrolyte  
 

3.1. Motivation and purpose 

 
Preparation of nanocomposites made of Carbon Nanotubes (CNTs) embedded in a polymer matrix 
could produce materials with properties that might be used for many applications, especially when 
the nanofiller can provide the polymer matrix with valuable functional properties, as in the case of 
SWCNTs that exhibit high mechanical strength, high stiffness, and good electrical conductivity [164], 

[165]. Nevertheless, the poor solubility of carbon nanotubes and the fact that they are not prone to 
form dispersions lead to their potential applications difficult to be reached. However, some polymers 
have been used effectively as exfoliation agents of nanotube bundles making possible the 
incorporation of the nanotubes as individual entities or as very thin bundles. 
 
There is not too much literature available focusing on the dilute regime rheology of CNTs dispersed 
in a polymer matrix, probably because the viscoelastic response of the polymer would far exceed that 
of the dispersed CNTs. However, at the percolation concentration, a matrix spanning network must 
be formed leading to an increase in elasticity because the CNTs are arrested. Around this percolation 
concentration, the rheological behavior must be dominated by that mesoscale superstructure. The 
results of rheological experiments for diluted suspensions of SWCNTs in a polyelectrolyte matrix 
(poly(acrylic) acid, PAA) are presented, which possess an extra degree of freedom; the polymer is 
sensible to pH. First, it was determined how pH controls the rheological behavior of the PAA 
polyelectrolyte at different polymer concentrations. Although this rheological behavior is not entirely 
unknown, it depends on the degree of polymerization. Therefore, this behavior was obtained for our 
specific case in a way that will be useful for the study when we add SWCNTs to a dilute polymer 
matrix. In this case, we find out that pH strongly impacts the rheological properties of these 
composites. We selected pH as main parameter to tune because the direct impact it has in the 
conformation of PAA, due to charge stabilization in solution, affects the way the PAA interacts with 
the SWCNTs. Due to the differences in surface area of PAA available (between coil-like and 
elongated conformation) to be in touch with the surface of individual SWCNTs, the rheological 
response is different for each case. 
 
 

3.2. Specific goals 

 
The central question we are motivated to answer is why the rheological behavior of PAA/water 
solutions at different pH values is so strongly modified, around the overlap concentration, when 
small quantities of SWCNTs are added to this liquid mixture. As it is reported later, the rheological 
behavior is dominated by the mesoscale superstructure at concentrations close to the percolation 
threshold at high pH, where some of its fingerprints are observable with scanning microscopies. This 
structure behaves as a critical gel described in physical and chemical gelation considered by F. 
Chambon and H. H. Winter, (equation (II.8.2)) [62] which would be in agreement with the 
assumption that the dynamic arrest that leads to gelation in our case is mainly due to attractive 
interactions between SWCNTs. It is shown how we model the rheological behavior of the 
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SWCNTs/PAA water suspensions using the method developed for describing these physical critical 
gels [60]. This study allows us to get some physical insight into what is happening in the suspension 
close to the gel point. 
 
The work has been published in The Journal of Physical Chemistry B [166]: A. Selmani, A. Tavera-
Vázquez, C. Garza and R. Castillo, "Tuning the viscoelastic-gel transition of single-wall carbon 
nanotubes embedded in pH-responsive polyelectrolyte solutions," J. Phys. Chem. B, vol. 122, pp. 
348-359, 2018. A. Selmani performed some rheology experiments and C. Garza prepared the samples 
for SEM images and got AFM images. 
 
 

3.3. Materials and sample preparation 

 
Polyacrylic acid (PAA, Mw = 450000 g Mol–1, Sigma-Aldrich, USA) was used as received.  NaOH 
(≥  98 %) is from Sigma-Aldrich (Sweden), HNO3 (68 %) and HCl (36 %) solutions are from J. T. 
Baker (USA). All solutions were prepared with Nanopure water (Nanopure-UV, USA; resistivity 
~ 18 MΩ cm). Standard buffers (pH = 4, 7, and 10) from J. T. Baker (Mexico) were used for 
electrode calibrations, to stabilize pH in suspensions. Single wall carbon nanotubes were purchased 
from Nano-C Inc. (85 − 90 %, Nano-CPT-100, length ≈ 1 µm, and diameter ≈ 1 nm, USA) 
manufactured via combustion method. They contain iron as well as amorphous carbon impurities, 
so they needed a further purification. We followed this procedure: 300 mg of SWCNTs were 
suspended in 300 mL of 3 M HNO3, stirred with a magnetic stirrer, and sonicated for 10 min using 
a standard bath sonicator (Cole-Parmer, USA) to disperse large agglomerates and to obtain a 
homogenous suspension. This suspension was refluxed for 48 hours at 125 ℃ under magnetic stirring, 
and then it was neutralized with 3M NaOH. The resulting precipitates were filtered and extensively 
washed with water until pH was close to the values of the Nanopure water (pH ≈ 6.5) to eliminate 
remnants of NaNO3 and NaOH coming from the purification process. The SWCNTs were dried at 
80 ℃ for six hours in air and stored in glass bottles.  
 
Sample preparation. PAA solutions with a different weight fraction (CPAA = 1 − 6 wt %) were 
prepared by dissolving dry PAA powder in water under magnetic stirring at 40 ℃.  pH of the PAA 
solutions (pH = 3, 5, 7 and 9) was adjusted with HCl and NaOH both at 1 M. pH was measured 
with a pH-meter (Cole-Parmer, USA) equipped with a combined glass electrode (Cole-Parmer, USA) 
previously calibrated with standard buffers. The polymer solutions were left under magnetic stirring 
for 24 hours to reach equilibrium. A buffer to stabilize suspension pH was not used in these 
experiments to avoid screening of the polyacid charges by co-ions.  
 
The SWCNTs suspensions were prepared by suspending purified dry SWCNTs powder in a PAA 
water solution at a specific weight fraction with the pH previously adjusted (pH = 5, 7, and 9). The 
concentrations for SWCNTs were CSWCNTs = 0.5, 1, and 2 mg/mL, and for PAA, CPAA = 1 −
6 wt %.  The SWCNTs suspensions were ultrasonicated (43 kHz, QSonica, USA) at 50 W for 3 
hours with time cycles, 30 s on and 30 s off, in a water-ice bath to prevent heating of the samples 
leading to SWCNTs breaking. 
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Rheology Rheological measurements were carried out in a Kinexus ultra+ rheometer (Malvern 
Instruments, USA). Flow curves and oscillatory measurements were developed using a cone-plate 
geometry (4°, diameter = 40 mm) at 20 ℃. The PAA solutions and SWCNTs/PAA suspensions 
were allowed to relax at rest for two days before the measurements. The strain was 25 % for the 
PAA solutions and 5 % for the SWCNTs/PAA suspensions to assure a linear deformation. 
 
Atomic force microscopy (AFM). The SWCNTs/PAA suspensions were prepared at two 
different concentrations, CSWCNTs = 0.01 and 0.02 mg/mL at three different pH values (5, 7 and 
9). 10 µL of these samples were deposited via spin coating onto freshly cleaved mica substrates and 
then centrifuged at 6000 rpm. The dried specimens were surveyed with a scanning probe microscope 
(JSTM-4200, JEOL Ltd. Japan) with an 80 × 80 µm scanner. To obtain topographic images of the 
samples, we used the non-contact mode with silicon cantilevers (typical force constant of 46 N m⁄  
and a tip radius of ~ 10 nm, Mickromash, USA). 
 
Electron microscopy (TEM, SEM). We used a Transmission Electron Microscope (TEM; JEM-
1200EX11, JEOL Ltd. Japan) working at 100 kV, and an extreme-resolution analytical field-emission 
Scanning Electron Microscope (SEM; JSM-7800F JEOL Ltd. Japan) working at low electron 
acceleration voltages [139]. 

 
A few microliter drop of SWCNTs/PAA suspension was deposited on a standard copper TEM grid 
with a carbon covered collodion layer. The excess of sample deposited on the grid was absorbed with 
paper and dried at ambient conditions to be observed with TEM. In the case of the SEM samples, 
previous to its introduction in the microscope, the samples were covered with a thin carbon layer to 
assure that the sample on the grid is conductive. The low energy incident electrons on a specimen 
produce secondary electrons due to the emission of valence electrons of the constituent atoms, at the 
top surface of the sample. These emitted electrons form standard topography images using the Lower 
Electron Detector (LED), or high-resolution topography images using the Upper Electron Detector 
(UED).  
 

UV–Vis measurements. UV–Vis measurements were performed with an Evolution 300 UV-Vis 
spectrometer (Thermo Fisher Scientific, USA) in the 200 − 600 nm wavelength range. UV-Vis 
experiments were performed for samples with CSWCNTs = 0.02 mg/mL and pH = 5, 7, and 9. In all 
cases, CPAA = 2 wt%. 
 
First, we will present how pH controls the rheological behavior of the PAA solutions at different 
concentrations for the specific degree of polymerization used here. Next, we will present the results 
when small quantities of SWCNTs are added to the PAA solutions. 
 
 

3.4. Rheology results for PAA 

 
Flow curves. Figure IV.26 shows flow curves obtained by increasing the applied shear strain rate 
(linear ramp). The plot presents an example at CPAA = 3 wt%. There is a variation of the stress 
response, increasing as the pH increase. The behavior becomes very similar at pH 7 and 9. Non-
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linearity is evident, as for viscoelastic systems. A plateau is never found even at a very high shear 
rate, so the behavior is different from the WMLs behavior. 
 
Viscosity. Figure IV.28 presents the apparent viscosity curves, :(�̇), for the polyelectrolyte 
solutions at low concentration and different pH values. These curves are determined by steadily 
increasing the shear rate. In all cases, the solutions shear thin. Thixotropic loops do not present 
hysteresis (not shown). In general, the viscosity is small and increases with pH at a fixed 
concentration, (Figure IV.28a for CPAA = 1 wt%, Figure IV.28b for 3 wt % and Figure IV.28c for 
6 wt%). The curves with the lowest values that we measured correspond to CPAA = 1 wt%; here, 
: ~ 0.2 Pa s at low �̇ and pH =  9. For a fixed pH, viscosity increases with the polymer 
concentration (Figure IV.28d). In dilute solutions, the contribution from different coils is additive, 
and solution viscosity increases nearly linear with polymer concentration above the solvent viscosity, 
and after some concentration, viscosity increases nonlinearly [12]. The behavior of the polyelectrolyte 
of interest here is consistent with previous studies developed for polyelectrolytes [84] [86]. At high 
pH, the polymer has a more extended structure that promotes entangling, which also increases as 
the polyelectrolyte concentration increases. When the system is sheared, the flow forces the polymer 
to align, dropping the energy dissipation, and as a consequence viscosity decays. This is apparently 
the reason of shear thinning as pH and polymer concentration increase.  
 
Figure IV.27a presents :0 = lim+̇→0

:(�̇) as a function of pH for different polymer concentrations. :0 

increases from low values, close to the solvent viscosity, up to more than three units when pH is 
high (7 − 9), and when the polymer concentration is above 4 wt%. Figure IV.27b presents :0 vs. 
CPAA at different pH values, here it is easier to observe that above pH = 5 and at CPAA ~ 4 wt% 
there is a change of behavior. Below this concentration, the interaction between polymer molecules 
is not significant as in the dilute regime, i. e., the viscosity is low and relatively close to the solvent 
viscosity. After this concentration, viscosity increases drastically as in the semidilute regime because 
polymer molecules begin to entangle with each other. Our estimate for the overlap concentration is 
CPAA∗ ~ 4 wt% for pH ≥ 5. 
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Figure IV.28 Apparent viscosity for the polyelectrolyte solutions at different pH and polymer concentration. (a) Constant 

concentration, CPAA = 1 wt%, (b) constant concentration, CPAA = 3 wt%, (c) constant concentration, CPAA = 6 wt%. (d) :(�̇)
for different PAA concentration and constant pH = 9. 
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Figure IV.27 (a) :0 vs. pH for different polymer concentrations. Lines are a guide to the eye. (b) :0 vs. CPAA at various pH values. 

The black dash line at pH = 5 shows where :0 is no longer linearly dependent on CPAA. 
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Viscoelastic spectra. The shear modulus, �(/), exhibits a significant time or frequency dependence 
observed in the complex modulus �∗(�) = �′(�) + ó�′′(�) (equation (III.1.20)). Figure IV.29 
presents some examples of the viscoelastic spectra of PAA solutions for different concentrations and 
pH (1 wt% and 6 wt%). In general, the solutions are more viscous at low frequencies, and after the 
crossing point, (�0, �0) they are more elastic, as in a typical viscoelastic fluid. Both moduli increase 
as pH increases, at a constant CPAA as illustrated in Figure IV.29 for pH = 3, 5, 7, and 9.  The 
increment between pH = 3 and pH = 5 can reach an order of magnitude, but this increment decreases 
between higher pH values. Figure IV.30a presents the variation of �′(�) and �′′(�) as a function 
of CPAA, at fixed pH = 9. As the concentration increases, both curves move upwards to larger 
moduli values. The whole behavior of the viscoelastic spectra can be summarized in Figure IV.30b, 
where �0 vs. �0 is plotted for the PAA solutions measured at different pH and concentrations. All 
the crossing points collapse in a single exponential curve. For solutions with a low CPAA or low pH, 
we find their corresponding crossing points in the lower part of the curve, as CPAA or pH increase 
they move upward along the exponential locus. Surely, this relation between �0 and �0 is far from 
being an accident and deserves more research to understand its physical origin. 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure IV.29 Viscoelastic spectra of PAA solutions for different values of concentrations and pH: (a) CPAA = 1 wt%, (b) CPAA =
6 wt%. Full symbols are for the elastic modulus, open symbols are for the viscous modulus. 
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3.5. Mesoscale structure of SWCNTs/PAA suspensions 

 
Structure and rheology behavior are intimately related. First, we determined how the microstructure 
of the PAA polyelectrolyte is affected by the addition of SWCNTs at different pH values, performing 
UV-Vis, SEM, TEM, and AFM experiments. From these experiments, we have shown that the 
SWCNTs are less exfoliated in suspensions at pH = 9, and apparently, they are forming bundles 
entangled with PAA molecules. Therefore, the rheological behavior of this system will be dominated 
by the mesoscale superstructure at concentrations close to the mechanical percolation threshold at 
high pH. 

 
 
3.5.1. UV-Vis spectra 

 

UV-Vis has been used to determine the degree of exfoliation of the SWCNTs in a polymer matrix 
[167] [168]. An absorbance increment corresponds to exfoliation of the SWCNTs bundles in the 
suspension. Bundles are transformed by the action of a dispersant agent from thick bundles to thin 
bundles or single nanotubes. UV-Vis experiments were carried out to determine the effect of pH on 
the degree of exfoliation of SWCNTs in our suspensions, and they will be a useful piece of information 
to understand the rheological behavior of the suspensions. Figure IV.31a presents our UV-Vis 
measurements for the SWCNTs/PAA suspensions at three different pH values that are similar to 
those obtained for PAA in Ref. [167]. They reveal that the SWCNTs are more exfoliated at pH = 5 
in comparison to pH = 7 and pH = 9. As we increase pH, the degree of exfoliation decays; visual 
inspection also confirmed the formation of tiny clusters. This behavior is similar to the case when 
SWCNTs are exfoliated in water dispersions, using sodium dodecyl sulfate (SDS) as a dispersing 
agent (Figure IV.31b) [169].  
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Figure IV.30 Viscoelastic spectra of PAA. (a) �′(�) and �′′(�) as a function of the polyelectrolyte concentration, at constant pH 

= 9. Full symbols are for the elastic modulus, open symbols are for the viscous modulus. (b) The relation between �0 vs. �0 

defined by the crossing points as a function of pH and concentration. Green line is an exponential fitting for all the crossing points. 
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We used it to verify the validity of our preparation in comparison to the results in the literature, 
which resulted quite similar. Although there is no standard to determine analytically how many 
exfoliated SWCNTs are in a polymer dispersion to generate a calibration curve (absorbance vs. 
concentration of exfoliated SWCNTs at Ù = 280 nm) [170], at high dilution, with most of the CNTs 
exfoliated, we estimated that the number of exfoliated SWCNTs at pH = 5 is around twice those at 
pH = 9. Previous reports indicate as pH increases, the mechanical percolation point is found first, 
and at a higher pH the electrical percolation point is reached [168]. 
 
 
3.5.2. Observation with electron microscopy (TEM and SEM) 

 
Figure IV.32a presents a high voltage 100 kV, TEM image of a suspension sample (CSWCNTs =
0.05 mg/mL, CPAA = 1 wt%, pH = 9) where entangled SWCNTs are observed inside the polymer 
matrix. Here, all planes of the sample are projected on the 2D image since electrons are traversing 
the whole sample thickness. In this image, we observe SWCNTs forming thick bundles although 
their concentration is relatively low. In general, secondary electron SEM image (LED) of specimens 
made of SWCNTs (0.02 mg/mL)/PAA (2 wt%) presents a uniform flat surface covered with 
globules with elongated protrusions without an apparent structure (not shown). However, using 
high-resolution low voltage (3 kV) SEM secondary electrons (UED) in samples at pH = 9, the 
polymer and the SWCNTs seem to interact to form thick rods (length of several micrometers and 
diameter of ~ 0.5 µm) or surfaces that wind themselves up as shown in Figure IV.32b-d; this does 
not occur in specimens at low pH. We note that these structures last enough to be observed, 
notwithstanding the samples were vacuum dried for inspection in the electron microscopes.  
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Figure IV.31 (a) UV−vis spectra of SWCNTs/PAA suspensions at different pH values. CSWCNTs = 0.02 mg/mL and CPAA =
2 wt%. (b) The same shape in the spectra for different dilutions of SWCNTs at CSWCNTs = 0.161 mg/mL, suspended in water 

with 9 mM SDS. 
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3.5.3. Observation with atomic force microscopy (AFM) 

 
At low pH values ≤ 7, topographic images do not reveal any structure (not shown), we observe just 
irregular globular domains over a relatively flat surface. At pH = 9, our observations changed 
dramatically. Figure IV.33 is a set of amplifications of the same area in the inspected specimen. 
Figure IV.33a presents a 50 × 50 µm topographic image where linearly oriented bead chains are 
easily observed. In a further amplification (Figure IV.33b, 15 × 15 µm) we observe that the beads 
forming the chain have a diameter of ~ 0.5 µm and they seem to have some structure that is revealed 
in Figure IV.33c (2 × 2 µm). Here, the beads apparently are formed by stacks of rods, where these 
stacks are not all following the same direction. A further amplification shows the rods in a 
0.8 × 0.8 µm image, in Figure IV.33d. The thickness of these rods is in the range of ~ 50 − 70 nm, 
and the length is difficult of observing because they overlap with other stacks, but they are larger 
than 0.8 µm.  
 
 
 

3 kV 

1 µm x 19000 

100 kV 

500 nm x 6000 

a b 

3 kV 
1 µm x 9000 

3 kV 
1 µm x 10000 

c d 

Figure IV.32 Electron microscopy images of SWCNTs/PAA suspensions. (a) TEM image: CSWCNTs = 0.05 mg/mL, CPAA =
1 wt% at pH = 9. (b−d) High-resolution secondary electron SEM images (UED): CSWCNTs = 0.02 mg/mL, CPAA = 2 wt%, 

at pH = 9. 
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3.6. Rheology results for SWCNTs/PAA 

 
Viscosity. Figure IV.34 presents how the flow curves, : vs. �̇, are modified varying the quantity of 
SWCNTs added to the liquid mixtures, at different pH values. All curves were determined by steadily 
increasing the shear rate. In all the cases, the suspensions shear thin and thixotropic loops do not 
show hysteresis (not shown). At high shear rates (�̇ ≥ 100 s−1), the viscosity of the suspensions is 
even smaller than those for the pure polymer solutions (Figure IV.28), as observed in Figure IV.34a 
for CPAA = 1 wt%, and CSWCNTs = 2 mg mL⁄ , or Figure IV.34b for CPAA = 2 wt%, and 
CSWCNTs = 1 mg mL⁄ . This behavior can be observed in Figure IV.34c even at the lowest 
concentrations of CNTs, for CPAA = 3 wt% and CSWCNTs = 0.5 mg mL⁄ . In some cases, there are 
more than two orders of magnitude difference. When the system is highly sheared, in addition to the 
polymer alignment, the flow also tends to align rod-shaped colloids along the fluid flow direction 
dropping, even more, the energy dissipation as in paranematic phases [171]; as a consequence, 
viscosity decays dramatically. The addition of SWCNTs introduces a significant interaction between 
the polymer and the SWCNTs, in spite that polymer molecules are far enough to prevent their 
interaction as in CPAA = 3 wt%; the pure polymer solution is below its "∗. All cases of combination 
between concentration of PAA and concentration of SWCNTs were obtained, but not all of them 

10 µm 5 µm 

a b 

500 nm 200 nm 

c d 

Figure IV.33 Topographic images at successive different amplifications with AFM of a specimen of CSWCNTs = 0.01 mg/mL
dispersed in CPAA = 2 wt% at pH = 9. 
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are shown. In the published paper of this work, we show other cases [166]. In many cases, the 
apparent viscosity increases as pH increases at fixed CPAA and CSWCNTs; although at large �̇, : is 
slightly larger at pH = 7 than at pH = 9 or they are approximately equal. Figure IV.34d shows how 
the viscosity increases with the addition of CNTs for CPAA = 6 wt%  and pH = 9. At low �̇, the 
suspensions present a dramatic change in the value of the viscosity for pH = 7 and pH = 9. Viscosity 
increases several orders of magnitude (~3 − 4) with respect to its value at large �̇, as shown in Figure 
IV.35 for some typical examples for pH = 7 (it includes a comparison with two cases without 
SWCNTs, CPAA = 3 wt% and 4 wt%); for pH = 5 the viscosity increases, but in the range of one 
order of magnitude (not shown). This seems that the system forms a structure when it is quiescent 
that does not resist deformation. 
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Figure IV.34 Apparent viscosity of the polyelectrolyte solutions at different pH values (5, 7, and 9) where small quantities of 

SWCNTs have been added. (a) : vs. �̇ for a suspension with CPAA = 1 wt% and CSWCNTs = 2 mg mL⁄ . (b) : vs. �̇ for CPAA =
2 wt% and CSWCNTs = 1 mg mL⁄ . (c) : vs. �̇ for  CPAA = 3 wt% and CSWCNTs = 0.5 mg mL⁄ . (d) : vs. �̇ varying CSWCNTs

at constant CPAA = 6 wt% and pH = 9. 
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Viscoelastic spectra. Figure IV.37 presents measured viscoelastic spectra of SWCNTs/PAA 
suspensions for different concentrations in both components and pH. At CPAA = 1 wt% and 
CSWCNTs = 1 mg mL⁄ , the suspensions are still viscoelastic (Figure IV.37a). �0 and �0, both increase 
as the pH increases, but they are smaller, even at these low concentrations than those corresponding 
to the pure polymer solution (Figure IV.29a). In the Figure IV.37b, we observe a significant change 
in the rheological behavior at pH = 7 and pH = 9, when more SWCNTs are added to the suspension 
(CSWCNTs = 2 mg mL⁄ ). The crossing point disappears, �′(�) > �′′(�) for approximately three 
decades of � with a ratio between them of ~ 10, and the elastic modulus remains essentially constant 
at low frequencies. Therefore, the suspension behaves like a solid gel [172]. The same loss of 
viscoelasticity occurs at other low polymer concentrations, as in the case of CPAA = 3 wt%, with 
CSWCNTs = 0.5 mg mL⁄  or CSWCNTs = 2 mg mL⁄  presented in Figure IV.37c and Figure IV.37d, 
respectively.  In this case, a less amount of added nanotubes is needed to lose the crossing point; at 
least CSWCNTs = 0.5 mg mL⁄  is enough. However, in all the cases of Figure IV.37, at pH = 5, the 
suspensions are still viscoelastic. There is a change in the order of the moduli curves as can be noted 
in Figure IV.37c.  In this case, the spectra at pH = 7 present larger values of �′(�) and �′′(�), 
than those corresponding to pH = 9.   
 
At CPAA = 4 wt%,  with a small (Figure IV.36a) or a large (Figure IV.36b) CSWCNTs, the moduli 
for pH = 7 and pH = 9 goes back to the standard order (curves at pH = 9 ≥ pH = 7); in this case, 
there are no cross points neither. Here, at pH = 5, below the crossover, both �′(�) and �′′(�) 
approximately coincide. Figure IV.36c presents an example of how the moduli vary as CSWCNTs 

increases at fixed pH = 7 and CPAA = 3 wt%. In Figure IV.37b and d and Figure IV.36b, we observe 
that �′(�) does not vary too much along two or three orders of magnitude. In a log-log plot, the 
moduli depend linearly on the frequency with a small slope (almost frequency independent).  
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Figure IV.35 Viscosity at low shear rate for some typical examples at pH = 7. A comparison without SWCNTs is shown for the 

cases of CPAA = 3 wt% and 4 wt%. It helps to visualize the differences in viscosity when CNTs are added. Dashed lines are 
linear extrapolations to zero shear viscosity. All lines are a guide to the eye. 
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Figure IV.37 Viscoelastic spectra for SWCNTs/PAA water suspensions at different concentrations and pH. Full symbols, �′(�)
open symbols, �′′(�). (a) CPAA = 1 wt% and CSWCNTs = 1 mg mL⁄ . (b) CPAA = 1 wt% and CSWCNTs = 2 mg mL⁄ . (c) 

CPAA = 3 wt% and CSWCNTs = 0.5 mg mL⁄ . (d) CPAA = 3 wt% and CSWCNTs = 2 mg mL⁄ . pH = 5, 7, and 9. 
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Figure IV.36 Viscoelastic spectra for SWCNTs/PAA water suspensions. Full symbols, �′(�); open symbols, �′′(�). (a) CPAA =
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3.7. Rheological model for the SWCNTs/PAA suspensions 

 
As mentioned before, the inter-tube attraction in SWCNTs dispersed in polymers yields to the 
formation of aggregates or bundles even at a modest concentration. At the percolation concentration, 
a matrix spanning network must be formed that give rise to elasticity, because nanotubes are 
arrested; as the number of nanotubes increases the elasticity of the composite increases. Around this 
percolation concentration, the rheological behavior must be dominated by that mesoscale 
superstructure. SEM and AFM surveys show that the SWCNTs/PAA suspensions presented a 
mesoscopic structure as pH reached high values. On the other hand, UV-Vis spectra also indicate 
that exfoliated nanotubes, i. e., individual entities or very thin bundles are present at low pH; but 
at high pH, they form bundles. Furthermore, viscoelastic spectra also show that the liquid-like 
viscoelastic behavior is lost in place of a solid-like at high pH values. Here, at pH ≤ 5,  
�′(�) < �′′(�) at � < �0 and �′(�) > �′′(�) at � > �0; when pH reaches a value > 5, �′(�) ≫
�′′(�). At high pH, :0 also grows up to huge numbers as �̇ → 0 similar to what occurs when a weak 
structure is formed within the fluid, which is quiescent at rest, but it does not resist deformation.  
 
Crosslinking materials form molecular clusters that can grow in size. When the largest cluster 
diverges in size, at the percolation concentration, a transition from liquid to solid occurs (sol-gel). 
Materials at this transition or gel point are known as critical gels, as has been mentioned in Chapter 
II. In general, for critical gels, the long-range connectivity in the material can be reached by different 
mechanisms. In one named chemical gelation, permanent covalent bonds connect molecular strands 
into a three-dimensional network. In the other named physical gelation (strong and weak), bonds 
are temporary, of reversible nature, and the average lifetime of such bonds are long compared with 
the observation time (see section dedicated to gels in Chapter II). Here, the system under study is 
behaving like a weak physical gel but presenting some features of strong physical gels; the 
crosslinking is due to the attractive interaction that is tuned by pH. The overall interaction potential 
between the suspended CNTs stems from a balance between the van der Waals forces and the pH-
sensitive charged moieties of the adsorbed polymeric layer on the tubes. Also, polymers in the 
polymeric layer can entangle with other polymers free or adsorbed in other polymeric layers. H. H. 
Winter and co-workers have characterized critical gels where dynamic arrest leads to gelation due 
to attractive interactions [60]. Since our suspensions apparently are forming a physical gel, we used 
these arguments to find where they reach the gel point (see equations (II.8.1)-(II.8.4)). 
 
Figure IV.38 shows some examples of how the experimental measured tan K = �′′(�) �′(�)⁄  depends 
on � for different PAA and SWCNTs concentrations, when pH is varied. We included the case of 
pure PAA just for contrasting the results obtained with the suspensions. In Figure IV.38a we see 
the case where CPAA = 1 wt% and CSWCNTs = 1 mg mL⁄ ; here there is a dependence on frequency 
even when CNTs are added. This is consistent with Figure IV.37a, where the system is viscoelastic 
for all pH values. In all plots of Figure IV.38, we observe that tan K for pure PAA is not a constant 
because it is far from forming a gel at these concentrations. However, when we add a small amount 
of SWCNTs (0.5 mg/mL) to the polymer (CPAA = 2 wt% or 3 wt%, Figure IV.38b and c), the 
behavior of the curve tan K vs. � turns out to be completely different. For pH = 7 and pH = 9, tan K 
is small but essentially constant along three orders of magnitude of �. For pH = 5, tan K is small, 
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but it is not a constant. Apparently, the system is close to gel point when pH ≥ 7, at these 
concentrations. The same is observed when we increase the concentration of CNTs as seen in Figure 
IV.38d (CPAA = 2 wt% and CSWCNTs = 1 mg mL⁄ ), or Figure IV.38e for the case of CPAA = 1 wt% 
and CSWCNTs = 2 mg mL⁄ ; here it is possible to see that we are close to the gel point when pH > 5. 
Several combinations of CPAA up to 6 wt% and CNTs present a similar pattern (not shown). 
 
Depending on how good the system behaves with the proposed model, � will be a constant that does 
not depend on the frequency at the gel point. The suspensions that present less variation in the 
experimental tan K vs. � plots were used to calculate the best horizontal line fit along three orders 
of magnitude in � to give the exponent �, using tan K = tan(�� 2⁄ ) (equation (II.8.4)).  
 

 
 
 
 

Figure IV.38 tan K vs. � for pure PAA (full symbols) and SWCNTs/PAA suspensions (open symbols) as a function of pH. (a) 

CPAA = 1 wt% and CSWCNTs = 1 mg mL⁄ . (b) CPAA = 2 wt% and CSWCNTs = 0.5 mg mL⁄ . (c) CPAA = 3 wt% and 

CSWCNTs = 0.5mg mL⁄ . (d) CPAA = 2 wt% and CSWCNTs = 1 mg mL⁄ . (e) CPAA = 1 wt% and CSWCNTs = 2 mg mL⁄ . pH = 

5, 7, and 9. 
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Predictions of the moduli were made using �′(�) = ��
′�R and �′′(�) = ��

′′�R (equations (II.8.1)), 
where the fitting parameters 1, ��

′  and ��
′′ were obtained (equation (II.8.2)). Figure IV.39 presents 

the predicted and experimental moduli for those cases very close to the gel point that turned out to 
be the suspensions with pH = 9, and in less degree pH = 7. A comparison is also made for the cases 
with pH = 5, where the system is viscoelastic in all cases.  In Figure IV.39a there is the case for 
CPAA = 1 wt% and CSWCNTs = 2 mg mL⁄ . Here, for pH = 9 the prediction of �′(�) is excellent and 
for �′′(�) is reasonable for two orders of magnitude in �; for pH = 7, the prediction for �′(�) goes 
through two decades, and for �′′(�) is reasonable for one and a half. The parameters are given in 
the figure. The same occurs for the case of CPAA = 2 wt%, but here the gel point seems to be closer 
when CSWCNTs = 2 mg mL⁄  rather than when CSWCNTs = 1 mg mL⁄ , both at pH = 9 and 7 (Figure 
IV.39b and c). As expected, the 1 value is higher for CSWCNTs = 2 mg mL⁄  (Figure IV.39c) indicating 
that the number of contacts between nanotubes is larger, and as a consequence more elastic. On the 
other hand for CSWCNTs = 1 mg mL⁄ , although 1 is still large, elasticity is lower than before (Figure 
IV.39b). For all cases in Figure IV.39, the experimental � values we found are small (� = 0.07 −
0.08), but relatively close to those found in other physical gels for instance, thermoplastic elastomeric 
polypropylene (� = 0.13 − 0.18) [173], and fd virus-PNIPAM (� = 0.08 − 0.130) [61]. For physical 
gels, � values are usually much smaller than those for chemical gels that usually are larger than 0.5, 
revealing that the size distribution of the mesoscale superstructure is not as open as in the chemical 
gels. Therefore, we consider that our results for the system of interest here are in agreement with 
those of physical gels close to the gel point. 
 
The gel of SWCNTs/PAA can be visualized by a cartoon given in Figure IV.40 that summarizes all 
our findings. In the suspension at pH = 5, CNTs are exfoliated and dispersed by the almost neutral 
coil-like polymer molecules adsorbed on them, as determined by the UV-Vis spectrum. The contacts 
between CNTs are mainly through polymer entangling, and the suspension is viscoelastic. As pH 
increases, the polymer is charged, and the solution is not so good solvent for the CNTs (pH > 5). 
Here, bundles are formed, and at some point, they mechanically percolate along the fluid and become 
arrested. As a consequence, the rheological behavior must be dominated by the formed mesoscale 
superstructure. In particular, viscoelasticity is lost, and the suspension becomes more elastic. At 
even higher pH, the surroundings for CNTs are worst, and bundles grow to a larger extent as 
determined by UV-Vis, up to the point that they can be observable by SEM and AFM. In particular 
mixtures, the suspension reaches the gel point, where a power law can model the relaxation moduli 
in the frequency domain. In this suspension, pH can tune the gel formation because makes the solvent 
less attractive to the CNTs, so they prefer to form interconnected bundles at low concentration. 
Presumibly, there is a formation of clusters at diferent concentrations in situations before gelation 
and up to the gel point when they interconnect and percolate. And there can be also a formation of 
flocs before and after the gel formation but out of the gel point, provoking sedimentation of 
aggregates in some cases, but still with the gel response beyond the critical gel formation. 
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Figure IV.39 Predicted and experimental shear moduli (�′(�) full 

symbols, �′′(�) open symbols) for three cases closer to the gel point as a 

function of the frequency that turned out to be at pH = 9. There are 

presented also the cases for pH 5 and 7. Dash doted lines correspond to 

model �′(�) = ��
′�R and �′′(�) = ��

′′�R for pH = 9, and dashed lines 

for the case of pH = 7. 
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Figure IV.40 Schematics of the structure of 

SWCNTs/PAA suspensions as pH increases from low 

pH (top) to high pH (bottom). 
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If we calculate in our suspensions the volume fraction (1 × 10−4 − 8 × 10−4) and aspect ratio of 
SWCNTs (103), we can localize our system in the reported holistic picture of geometric packing 
limits given in Figure IV.41, taken from reference [64] for a broad range of rod microestructures for 
which elasticity has been measured. The suspensions are located in a region where CNTs rods are 
not sufficiently crowded to arrest due to excluded volume interactions alone, however attractive 
interactions between them are required to form a connected structure. Then, in this map, the 
resultant heterogeneous structures may be fractals or bundles. We suspect that our nanotube 
mesoscale superstructure dispersed in the polymer is made by heterogeneous rod fractal clusters. 
More research is needed to get more insight of the structure of these dark suspensions, although the 
size of the SWCNTs has a problem for SANS or SAXS in the range of qL ~ 1. 
 
 

 
 

3.8. Suspensions of SWCNTs in a polyelectrolyte conclusions 

 
The shear viscosity and viscoelastic spectra were measured for both water solutions of poly(acrylic 
acid) without and with dispersed single-wall carbon nanotubes, around the overlap concentration of 
the polymer, at different pH values. In the former case, the polyelectrolyte is charged as pH increases, 
and due to the electrostatic repulsion between charged not protonated carboxyl groups, extended 
polymer structures are formed exhibiting a viscoelastic rheological behavior. However, the crossing 
points collapse in a single exponential curve no matter the concentration and pH as mentioned in 
Figure IV.30b; as far as we know, it has not been observed before and it deserves further investigation 
to understand this fact. In the latter case, small quantities of SWCNTs were dispersed in the 
polyelectrolyte, making this study one of the very few focusing on the dilute regime rheology of 

Figure IV.41 Map of the volume fraction vs. aspect ratio for rod suspensions, gels and glasses for which elasticity has been reported. 

There are data from a wide range of disciplines along with the relevant scaling relationships that bound the physical domains of 

rod dispersions. The red triangle (2 mg/mL), blue circle (1 mg/mL) and green square (0.5 mg/mL) represents the situated dots 

for the different SWCNTs concentrations we studied. It is worth to recall that in this map there is considered just one sort of 

entity for each dot. In our cases, there is a mixture of CNTs and PAA, but the accordance is great. Taken from [64]. 
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CNTs dispersed in a polymer matrix. At low pH, the nanotube bundles exfoliate making it possible 
to embed the nanotubes as individual entities or as very thin bundles into the polymer matrix. As 
pH increases, the added nanotubes apparently form bundles surrounded by a polymer forming a 
weak mesoscopic network; this occurs at low poly(acrylic acid) and carbon nanotubes concentrations, 
where the suspensions are highly viscous at very low shear rates and shear thin dramatically at high 
shear rates. At a very low concentration of carbon nanotubes and for pH > 5, at the percolation 
concentration, the matrix spanning network increases elasticity because the CNTs are arrested. The 
suspensions lose their viscoelasticity, up to a point to lose the crossing points between the �′(�) and 
�′′(�) curves. At a very low concentration of carbon nanotubes and polymer (≤ "∗), due to the 
presence of the mesoscale superstructure formed by nanotubes and polymer, we found that the 
system behaves as a critical gel. For the first time, as far as we know, it was noticed that close to 
the gel point these suspensions exhibit a self-similar relaxation modulus (�(/) = 1/−R or as a power 
law �∗(�) ∝ �R in the frequency domain) where pH is the tuning parameter between viscoelasticity 
and solid gel behavior. The exponent values were evaluated for a couple of suspensions close to their 
gel points. The power law relaxation moduli description is excellent, for three and two orders of 
magnitude in �, in the case of pH = 9 for �′(�) and �′′(�), respectively. For pH = 7 the results 
are still acceptable but satisfactory for less extension in �. However, the bonds maintaining the gel 
structure are soft, as in physically interconnected solid gels, because the system can flow when shear 
is applied to the suspension. We suspect that our mesoscale superstructure formed by nanotubes in 
the polymer is made of heterogeneous rod fractal clusters. 
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V. Summary and conclusions 
 
The dissertation has been focused in the study of anisotropic particles embedded in liquid 
suspensions. These kind of thread-like structural macromolecules are presented widespread in nature 
and are widely used in the industry of food, pharmacy, cosmetics, and composite materials.  
 
The results obtained from rheological, microrheological and scattering experiments were shown, 
which allowed us to understand their mesoscopic structural conformations, related directly with their 
mechanical properties.  
 
The study was focused in three adaptive systems: a diblock copolymer assembled into worm-like 
micelles (WLMs) with adaptiveness to polymerization size changes, a system of surfactants 
assembled with WLM morphologies which presents light absorption and with conformational changes 
under light exposure, and single wall carbon nanotubes embedded in a polyelectrolyte matrix which 
presents rheological changes when pH is modified. The cylindrical shapes of these systems lead to 
interconnections between the components of the liquid suspensions, giving an increase in the rigidity 
even when the compounds are soft. 
 
 

1. PBPEO worm-like micelles 
 
The studied diblock copolymer system was (1,4 poly(1,3-butadiene)–polyethylene oxide), with degree 
of polymerization � = 37 for the polybutadiene block and � = 57 for the polyethylene oxide block 
(PBPEO57). The system was studied by different experimental techniques: small angle neutron 
scattering (SANS), scanning electron microscopy with the implementation of the so-called STEM-
in-SEM technique, mechanical rheology and microrheology with diffusing wave spectroscopy (DWS). 
All techniques together allowed us to interpret the structural conformation of the diblock copolymer 
aggregates, connecting it with the mechanical properties locally and in bulk. 
 
By SANS experiments it was found that in water solutions PBPEO57 self-assembles into WLMs 
with a diameter of ~ 12.7 nm (close to the estimated by STEM-in-SEM images), a core radius of 
~ 2.7 nm, a shell thickness of ~ 3.0 nm and an estimated persistence length of > 225 nm. To survey 
the capability of adaptation of these block copolymer WLMs under degree of polymerization changes, 
the system morphology of PBPEO57 was compared with the morphology of PBPEO45 that also 
forms WLMs in water with the same core as before, but with a PEO block with a degree of 
polymerization of 45. In the latter, the found parameters were: a diameter of ~ 12.8 nm, the core 
radius was very similar to that of the PBPEO57 ~ 2.6 nm and the shell thickness was ~ 3.1 nm, 
although with a smaller estimated persistence length of ~ 141 nm. It was found that the bending 
energy is more relevant for the PBPEO57 WLMs than that for the PBPEO45. The PEO block is 
already more densely packed in the WLMs of PBPEO57 than that of PBPEO45, provoking that any 
bending increases this steric overcrowding. 
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In addition, it was found that the PBPEO57 WLMs do not follow the rheological behavior of the 
WLM solutions of conventional surfactants. The viscoelastic spectra at low and intermediate 
frequencies (mechanical rheology) do not follow the Maxwell model, resulting that the micelles of 
PBPEO57 do not break and reform. The same behavior was observed in the case of PBPEO45. The 
slow dynamics of the self-assembly explains this uncommon behavior of a WLM system; any micellar 
rearrangement is impeded due to the extremely high hydrophobicity of the PB block. 
 
By diffusing wave spectroscopy experiments (DWS), the mean square displacement of colloidal 
particles embedded in the micellar solution of PBPEO57 was measured. These displacements were 
compared with other fluids with embedded thread-like structures (conventional surfactant WLMs, 
fd virus, and PBPEO45 WLMs). From the particle mean square displacement, we obtained the 
viscoelastic spectrum at high frequencies. |�∗| exhibits a power law behavior. Here, it is evident 
where the stress relaxation changes from the Rouse-Zimm modes to the bending modes of Kuhn 
segments at �∗. From here, ¤m was calculated for the PBPEO57 WLMs, which is concentration 

dependent, but extrapolating our data to the concentration where the SANS measurement was done, 
the agreement is reasonable. As concentration increases, a reduction in ¤m of the thread-like structures 

occurs to reduce the contribution of the interaction to the total free energy, because for a flexible 
macromolecule the excluded volume that is not available for the other macromolecules is smaller 
than the corresponding one of a rigid macromolecule. In summary, information about the relaxation 
mechanisms of the system at low (mainly through reptation) and high frequencies was obtained 
(Rouse-Zimm and bending modes), as well as how they are related to the size of the PEO shell and 
the diblock copolymer concentration. 
 
 

2. Photoresponsive worm-like micelles 
 
Preliminary results obtained in the study of aqueous solutions of WLM aggregates done with the 
cationic surfactant cetyltrimethylammonium bromide with the counterion sodium salicylate (CTAB-
NaSal) and with the addition of a photo-responsive molecule 4-(phenylazo) benzoic acid (AzoCOOH, 
when deprotonated we call it AzoCOO) were presented. The AzoCOOH molecule (and AzoCOO as 
well) performs conformational structural changes (trans-cis isomerization) when light beams of 
certain wavelength strike the molecule. It was found by mechanical rheology experiments that the 
addition of AzoCOOH reinforce the Maxwellian behavior of the systems with no visible modification 
when trans-cis isomerization occurs after irradiation with UV light. All subsequent experiments were 
performed then in trans configuration. 
 
Microrheology with DWS experiments was very useful to extract the characteristic lengths of the 
system with constant concentration of CTAB-NaSal but with different concentration of AzoCOO. 
Two main cases were revisited: with the addition of NaCl and without it. Different sizes in the 
characteristic lengths were found. The addition of NaCl was more significant when the AzoCOO 
molecule was not present. The most significant difference appeared in the entanglement length, ¤¨, 
which was much more extended in the case without NaCl, in accordance with a shorter contour 
length, ��, when there was not NaCl, and in agreement also with a larger mesh size, �, for the same 
sample. The addition of AzoCOO contributed similar to the addition of NaCl according to results. 
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WLMs contour lengths ��, were smaller with higher concentration of AzoCOO. The entanglement 
length ¤¨, and the mesh size �, were preserved in average. The persistence length ¤m, varied with the 

concentration of AzoCOO. ¤m decreases as concentration of AzoCOO increases and also �� decreases. 

This means that the stiffness is getting lost when the WLMs are shorter. It is worth to notice that 
this behavior is not monotonic; ¤m increases when just 5 mM of AzoCOO are added but decreases 

subsequently with the addition of more AzoCOO. 
 
The most valuable contribution to the experimental procedure was obtaining the optical parameters 
of the solutions even when the solutions themselves presented light absorption in the region of 
514 nm that we used for the experiments. The inverse adding doubling method (IAD) was used for 
the first time in DWS in a structured system at a mesoscopic scale, to correct the experimental 
autocorrelation function due to the adsorption effects. 
 
 

3. Suspensions of SWCNTs in a polyelectrolyte  
 
Nanocomposite suspensions of single wall carbon nanotubes (SWCNTs) were prepared. 
Polyelectrolyte aqueous solutions of poly(acrylic) acid (PAA) were chosen as dispersing media 
candidates for the SWCNTs, with successful results. It was found that the addition of small 
quantities of SWCNTs dispersed in low concentrated PAA matrix leads to a transition from 
viscoelastic response to gelation when the pH change from acidic to basic. The application of UV-
Vis spectrometry, transmission and scanning electron microscopy, atomic force microscopy, and 
mechanical rheology, helped us to understand the implications at a macroscopic level, when a 
transient mesoscopic superstructure is formed. Tuning the pH was a key property in the formation 
of gels, which indirectly modified the arrangement of the skeleton-like SWCNTs network. 
 
At pH < 5, the nanotube bundles exfoliate, making it possible to embed the nanotubes as individual 
entities or as very thin bundles into the polymer matrix. As pH increases, the added nanotubes 
apparently form bundles surrounded by a polymer forming a weak mesoscopic network. It was found 
after mechanical rheology experiments, that the suspensions are highly viscous at very low shear 
rates, as predicted by Flory when a gel is formed. The system shear thins dramatically at high shear 
rates, due to the elongated geometry of the nanotube bundles. At pH > 5, at a certain percolation 
concentration, which was reached at low SWCNTs concentration and low PAA concentration, the 
matrix spanning network is notable elastic because the CNTs are arrested. Electron and atomic force 
microscopy images showed the formation of thick bundles, and mechanical rheology experiments 
presented �′(�) always above �′′(�), at low and intermediate frequencies. Due to the presence of a 
mesoscale superstructure formed by nanotubes and polymer, the system behaves as a critical gel. It 
was noticed that close to the gel point these suspensions exhibit a self-similar relaxation modulus, 
�(/) = 1/−R or �∗(�) ∝ �R in the frequency domain, where pH is the tuning parameter between 
viscoelasticity and solid gel behavior. The power law relaxation moduli description was excellent, for 
three and two orders of magnitude in �, in the case of pH = 9. For pH = 7 the results were acceptable 
but satisfactory for less extension in �. However, the bonds maintaining the gel structure were soft, 
as in physically interconnected weak gels, because the system can flow when shear is applied to the 
suspension. We suspect that our mesoscale superstructure formed by nanotubes in the polymer is 
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made of heterogeneous rod fractal clusters, in accordance with former results found in the literature 
for thread-like systems. 
 
 

4. Concluding remarks and future perspectives 
 
The model thread-like structures we chose to study brought an extra degree of complication to the 
investigation, but at the same time, these morphologies permitted us to visualize the behavior found 
among different systems with anisotropic structures, from biological systems to the ones used in 
industry. 
 
The general goals were reached satisfactorily. Every small achieved step in the investigation process, 
using different experimental techniques and in accordance with the theoretical framework, permitted 
us to interpret the physical phenomena presented in every system. The most valuable teaching was 
that a better understanding of physical phenomena is achieved when the research is done in 
communication with colleagues. Sharing different points of view and performing different kind of 
experiments lead us to conform an adequate investigation. 
 
Dynamic light scattering techniques are a good complement to interpret the local rheological 
behavior. In some cases, the agreement is perfect with the bulk surveys, but even when this is not 
the case, the information provided about the relaxation processes of the systems is valuable and can 
be connected to the structural information obtained with static scattering experiments. For a first 
time, we applied the IAD method to extract the optical properties of mesoscale-structured systems 
necessary for the implementation of DWS. This method permitted us to extend the study for systems 
which present light absorption due to their intrinsic internal optical properties. Future research in 
this direction includes the comparison of backscattering DWS experiments with the results obtained 
in transmission geometry when a light absorption agent is added artificially. With backscattering 
experiments, it is possible to discriminate between light beams that have traveled the long paths 
within the sample and the ones with have traveled the shortest paths. The addition of absorption to 
the system attenuates the longest paths of light, meaning that the light incoming to the detector 
must have presented a phase shift with less scattering events, which imply that every particle 
presented a longer displacement in time. Then, without the necessity of performing backscattering 
experiments, adding absorption to the systems and performing DWS experiments in transmission 
geometry can help us to extent the achievable mean square displacement of the particles to longer 
times, what is the same to extend the survey of relaxation mechanisms of the systems to longer times 
as well, or shorter frequencies in the Fourier domain. The implementation and efficiency of these 
experiments might vary depending on the size of the probe particles used, due to the different regimes 
for scattering phenomena (Rayleigh, Rayleigh-Debye or Mie). 
 
For the point of view of the structural properties of the diblock copolymers studied here, a future 
analysis can be the implementation of USANS experiments to reach the region where contour length 
of WLMs is found. In addition, the implementation of computational simulations could provide a 
better understanding of the interactions between polymeric chains at the shell of the micelles. And 
also, simulations could give us an idea of the dynamics of the polymer located within the core of the 
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WLMs, which plays an important role in the stiffness of the micelles. With these studies, it is possible 
to complete the picture which connects the mechanical properties of the system with its structural 
conformation, directed by the different interactions within all components. 
For the case of photo-responsive WLMs, further similar analyses are performed currently for a system 
of WLMs made of the surfactant N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate with the 
cosurfactant sodium dodecyl sulfate (TDPS-SDS), adding AzoCOO. The research is part of the main 
doctoral project of Natalia Rincón-Londoño, member of the Complex Fluids Group of the Institute 
of Physics at UNAM. She also plans to analyze the systems using another Azo component, which 
might influence more the rheological properties of the micelles tuned by changes in light. 
 
Finally, it is desirable to implement static scattering experiments to go beyond in understanding the 
structural conformation of the system of SWCNTs embedded in the PAA matrix. However, due to 
the very high aspect ratio of the nanotubes (1000), and the presumably smaller structures formed, 
it is complicated to span over all necessary scattering vector values with SANS and SAXS. An 
alternative could be an experiment with visible light, but the system attenuates high quantities of 
light. Computational simulations are also a challenge due to the geometric constrains of the system, 
but an approximation to our system can be done for particles with aspect ratios of ~100. 
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