
DOI: 10.1142/S0217979210057353

January 17, 2011 17:13 WSPC/140-IJMPB S0217979210057353

International Journal of Modern Physics B
Vol. 24, Nos. 25 & 26 (2010) 5229–5239
c© World Scientific Publishing Company

SPIN SINGLET AND TRIPLET SUPERCONDUCTIVITY

INDUCED BY CORRELATED HOPPING INTERACTIONS

LUIS A. PEREZ

Instituto de F́ısica, Universidad Nacional Autónoma de México,
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Apartado Postal 70-360, 04510, D.F., México
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In this article, we show that the Bardeen-Cooper-Schrieffer (BCS) formalism applied to
a Hubbard model is capable to predict the s-, p- and d-wave superconductivity within
a single theoretical scheme. This study is performed on a square lattice described by a
generalized Hubbard Hamiltonian, in which correlated-hopping interactions are included
in addition to the repulsive Coulombic one. Within the BCS formalism using a variable
chemical potential, the superconducting ground states are determined by two coupled
integral equations, whose integrand functions have main contributions around the Fermi
surface. We observe the existence of a maximum critical temperature for s-, p- and
d-wave superconducting channels that occur at the medium, low and high electron den-
sities, respectively. Furthermore, the p- and d-wave superconducting specific heats show
a power-law temperature dependence, instead of the exponential one for the s channel.
Finally, the smallness of the anisotropic single-energy-excitation-gap minima is essential
for the specific heat behavior, and this fact allows to understand the experimental data
obtained from Sr2RuO4 and La2−xSrxCuO4 superconductors.
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1. Introduction

The theory developed by J. Bardeen, L. N. Cooper and J. R. Schrieffer (BCS) was

very successful in explaining the main features of metallic superconductors.1 In the

last two decades, the observation of d-symmetry pairing in ceramic superconductors

has motivated the research of models beyond the standard BCS theory to include
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anisotropic superconducting gap symmetries.2 The recent discovery of the p-wave

spin-triplet superconducting state in Sr2RuO4 has highly enhanced this research.3

The two-dimensional nature present in both p and d-wave superconducting systems

could be essential for understanding their peculiarities. In general, the energy spec-

trum of elementary excitations in solids determines the temperature dependence of

their specific heat, and for a superconductor it gives information regarding to the

symmetry of its superconducting state. An s-wave superconductor has an exponen-

tially temperature-dependent electronic specific heat, while an anisotropic nodal

superconducting gap leads to a power-law dependence, as occur in the cuprate su-

perconductors and in Sr2RuO4.
4 For these materials, three-band Hubbard models

have been proposed to describe the dynamics of the carriers on the CuO2 and

RuO2 planes,5,6 and the electronic states close to the Fermi energy can be reason-

ably well described by a single-band tight-binding model on a square lattice with

second neighbour hoppings.5,7 In this article, we study s-, p- and d-wave super-

conducting states within a single-band generalized Hubbard Hamiltonian, in which

nearest (∆t) and next-nearest (∆t3) neighbour correlated-hopping interactions are

considered in addition of the on-site (U) Coulombic interaction.8 Certainly, ∆t and

∆t3 are always present in real materials and in spite of having small strengths, they

are essential in the determination of the superconducting symmetry.

2. The Model

We start from a single-band Hubbard model with on-site Coulombic interaction

(U), first- (∆t) and second-neighbour (∆t3) correlated-hopping interactions. The

corresponding Hamiltonian can be written as

Ĥ = t
∑

〈i,j〉,σ

c†i,σcj,σ + t′
∑

〈〈i,j〉〉,σ

c†i,σcj,σ + U
∑

i

ni,↑ni,↓

+∆t
∑

〈i,j〉,σ

c†i,σcj,σ(ni,−σ + nj,−σ) + ∆t3
∑

〈i,l〉,〈j,l〉,σ,〈〈i,j〉〉

c†i,σcj,σnl , (1)

where c†i,σ (ci,σ) is the creation (annihilation) operator with spin σ =↓ or ↑ at site

i, ni,σ = c†i,σci,σ, ni = ni,↑ +ni,↓, 〈i, j〉 and 〈〈i, j〉〉 denote respectively the nearest-

neighbor and the next-nearest-neighbor sites. This model can lead to s- and d-wave

superconducting ground states without attractive density-density interactions.9 Let

us start from a square lattice with lattice parameter a, where we further consider

a small distortion of its right angles in order to include the possible existence of a

bulk structural distortion in Sr2RuO4.
10 This distortion produces changes in the

second-neighbour interactions, such as t′ and ∆t3 terms in Eq. (1), and their new

values are t′ ± δ and ∆t3 ± δ3, where ± refers to the x̂± ŷ direction. Performing a

Fourier transform, this Hamiltonian in the momentum space becomes

Ĥ =
∑

k,σ

ε0(k)c
†
k,σck,σ
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+
1

Ns

∑

k,k′,q

Vk,k′,qc
†
k+q,↑c

†
−k′+q,↓c−k′+q,↓ck+q,↑

+
1

Ns

∑

k,k′,q,σ

Wk,k′,qc
†
k+q,σc

†
−k′+q,σc−k′+q,σck+q,σ , (2)

where Ns is the total number of sites,

ε0(k) = 2t [cos(kxa) + cos(kya)] + 2t′+ cos(kxa+ kya) + 2t′− cos(kxa− kya) , (3)

Vk,k′q = U + 2∆t [β(k + q)+β(−k+ q)+β(k′+q)+β(−k′+q)]

+∆t+3 [γ(k+ q,k′ + q) + γ(−k+ q,−k′ + q)]

+∆t−3 [ζ(k + q,k′ + q)+ζ(−k+ q,−k′ + q)] , (4)

and

Wk,k′q = ∆t+3 γ(k+ q,k′ + q) + ∆t−3 ζ(k + q,k′ + q) , (5)

being

β(k) = 2 [cos(kxa) + cos(kya)] , (6)

γ(k,k′) = 2 cos(kxa+ k′ya) + 2 cos(k′xa+ kya) , (7)

ζ(k,k′) = 2 cos(kxa− k′ya) + 2 cos(k′xa− kya) . (8)

and 2q is the wave vector of the pair center of mass. After a standard Hartree-Fock

decoupling of the interaction terms with q 6= 0 applied to Eq. (2),11 the reduced

Hamiltonian for q = 0 is

Ĥ =
∑

k,σ

ε(k)c†k,σck,σ +
1

Ns

∑

k,k′

Vk,k′,0c
†
k,↑c

†
−k′,↓c−k′,↓ck,↑

+
1

Ns

∑

k,k′,σ

Wk,k′,0c
†
k,σc

†
−k′,σc−k′,σck,σ , (9)

where the mean-field dispersion relation is given by

ε(k) = n
U

2
+ 2(t+ n∆t) [cos(kxa) + cos(kya)] +

+2(t′+ + 2n∆t+3 ) cos(kxa+ kya) + 2(t′− + 2n∆t−3 ) cos(kxa− kya) . (10)

Notice that the single electron dispersion relation ε(k) is now modified by adding

terms n∆t, 2n∆t±3 and nU/2 to the hoppings t, t′ and the self-energy, respectively.
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3. Coupled Integral Equations

Applying the BCS formalism to Eq. (9), we obtain the following two coupled integral

equations,8,9,12 which determine the anisotropic superconducting gap [∆(k)] and

the chemical potential (µ) for a given temperature (T ) and electron density (n),

∆(k) = −
1

2Ns

∑

k′

Zk,k′∆(k′)

E(k′)
tanh

(

E(k′)

2kBT

)

, (11)

and

n− 1 = −
1

Ns

∑

k

ε(k)− µ

E(k)
tanh

(

E(k)

2kBT

)

, (12)

where the single excitation energy is given by

E(k) =

√

(ε(k) − µ)
2
+∆2(k) , (13)

Zk,k′ and ∆(k) depend on the symmetry of superconducting ground states as given

in Table 1.

Table 1. Interaction potentials (Zk,k′ ) and supercon-
ducting gaps [∆(k)] as functions of pairing symmetry.

Symmetry Zk,k′ ∆(k)

s-wave Vk,k′ ,0 ∆s +∆∗

s [cos(kxa) + cos(kya)]

p-wave Wk,k′,0 ∆p [sin(kxa)± sin(kya)]

d-wave Vk,k′ ,0 ∆d [cos(kxa) − cos(kya)]

For the s-wave case, Eq. (11) becomes per se two coupled equations12

∆s∗ = −4∆t3 (I2∆s∗ + I1∆s)− 4∆t (I1∆s∗ + I0∆s) , (14)

and

∆s = −U (I1∆s∗ + I0∆s)− 4∆t (I2∆s∗ + I1∆s) , (15)

where

Il =
1

Ns

∑

k

[cos(kxa) + cos(kya)]
l

2E(k)
tanh

(

E(k)

2kBT

)

=
a2

8π2

∫ π/a

−π/a

∫ π/a

−π/a

dkxdky
[cos(kxa) + cos(kya)]

l

E(k)
tanh

(

E(k)

2kBT

)

, (16)
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Fig. 1. (Color on line) Contour plots of integrands of (a) Eq. (17) and (b) Eq. (12) for d-wave
superconducting states, while (c) Eq. (18) and (d) Eq. (12) for p-wave ones.

Notice that ∆t±3 has no effects on the s-wave superconductivity except for the

single-electron dispersion relation. For the d-channel, Eq. (11) can be written as9

1 =
4∆t3a

2

8π2

∫ π/a

−π/a

∫ π/a

−π/a

dkxdky
[cos(kxa)− cos(kya)]

2

E(k)
tanh

(

E(k)

2kBT

)

. (17)

Likewise, for the p-channel, Eq. (11) leads to8

1 = ±
4δ3a

2

8π2

∫ π/a

−π/a

∫ π/a

−π/a

dkxdky
[sin(kxa)± sin(kya)]

2

E(k)
tanh

(

E(k)

2kBT

)

, (18)

In general, the critical temperature (Tc) is determined by ∆α(Tc) = 0, being α=s,

p or d.

Figures 1(a) and 1(b) respectively show the contour plots of the integrand func-

tions of Eqs. (17) and (12) for t = −1, t′ = −0.45|t|, ∆t = 0.5|t|, ∆t3 = 0.1|t|,

δ3 = 0, U = 6|t|, n = 1.94, kBTc = 0.06319|t|, and µ = 6.13585|t|. Notice that the

main contribution to the integral of Eq. (17) comes from the sharp walls located at

the Fermi surface defined by ε(k) = µ, and separated by d-wave nodes. In contrast,
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for Eq. (12) the integrand has a step behaviour around the Fermi surface. Likewise,

Figures 1(c) and 1(d) illustrate the contour plots of the integrand functions of Eqs.

(18) and (12), respectively, for t = −1, t′ = −0.45|t|, ∆t = 0.5|t|, ∆t3 = 0.1|t|,

δ3 = 0.1|t|, U = 6|t|, n = 1, kBTc = 0.00093|t|, µ = 3.307|t|, and taking the upper

sign in Eq. (18). Observe that similar to the previous case, the sharp walls and step

behaviour are located at the Fermi surface. However, the Fermi surface is oriented

along the x̂ + ŷ direction, due to the magnitude and sign of δ3. Furthermore, the

step in Fig. 1(d) is sharper than in Fig. 1(b), since the p-channel Tc is smaller than

the d-channel one. It would be worth mentioning that the general behaviour shown

in figures 1 is not sensitive to the particular Hamiltonian parameter values and they

were chosen in order to make comparisons with experimental data, as discussed in

the following sections.

4. Results

Fig. 2(a) shows the critical temperature (Tc) as a function of n for s- (open circles),

p- (open triangles) and d-symmetry (open squares) superconducting states with

t = −1, t′ = −0.45|t|, ∆t = 0.5|t|, and U = 6|t|. For s and d symmetries we

have taken ∆t3 = 0.1|t| and δ3 = 0; whereas for p symmetry, ∆t3 = 0.15|t| and

δ3 = 0.1|t|. Notice that the maximum Tc for the d-channel is located at the optimal

n = 1.73, similar to that observed in cuprate superconductors since the hole doping

concentration x is related to 2−n. This relationship is taken for the lower Hubbard

sub-band, because the Coulomb repulsion induces a charge-transfer gap in a half

filled band.5 In contrast, for p-channel, the maximum Tc is found around half-filling

close to the expected electronic density of n = 1.2 for Sr2RuO4.
13,14 Furthermore,

for s-wave the maximum Tc is found for n = 1.47.

The mean potential energy (〈Z〉) can be written as15,16

〈Z〉 =
1

N2
s

∑

k,k′

Zk,k′ukv
∗
ku

∗
k′vk′ = −

1

Ns

∑

k

∆2
k

2Ek

, (19)

where

∆k =
1

Ns

∑

k′

Zk,k′u∗
k′vk′ , (20)

and

∆k

2Ek

= ukv
∗
k . (21)

In Fig. 2(b), we show 〈Z〉 as a function of n for s- (solid circles), p- (solid trian-

gles) and d-channel (solid squares) with the same parameters of Fig. 2(a). Observe

that 〈Z〉 is negative and its absolute value has almost the same electron-density

dependence as Tc, mainly due to the smooth variation of the mean kinetic energy.
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Fig. 2. (a) Critical temperature (Tc) and (b) mean potential energy (〈Z〉) as functions of the
electron density (n) for s- (solid circles), p- (solid triangles) and d-channel (solid squares).

One of the physical quantities that yields information about the symmetry of

superconducting states is the electronic specific heat (C), which is highly sensitive

to the low-energy excitations. The C of superconducting states is given by15

C =
2kBβ

2

4π2

∫ ∫

1BZ

f (Ek) [1− f (Ek)]

[

E2
k + βEk

dEk

dβ

]

dkxdky , (22)

where β = 1/(kBT ) and f(E) is the Fermi-Dirac distribution. To obtain the specific

heat of the normal state we take ∆k equal to zero.15 In Fig. 3, two electronic

densities (a) n = 1.2 and (b) n = 1.94 are chosen from Fig. 2 to calculate their

d-channel electronic specific heat and compared with experimental data obtained

from La2−xSrxCuO4 for x = 0.22 and x = 0.1, respectively.17 Insets of Fig. 3 show
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the corresponding theoretical angular dependences of the single-excitation energy

gap (∆) defined as the minimum value of Ek in k direction.8 The polar angle is

given by θ = tan−1 (ky/kx) . Notice that for the hole overdoped regime, n < 1.73,

∆ has a dx2−y2 symmetry and in consequence C is proportional to T 2 as obtained

in Ref. 18. However, for the hole underdoped regime (n > 1.73) ∆ has a dxy-like

symmetry without real nodes and then, C has an exponential behaviour as occurs

in an s-wave superconductor. The residual C/T value at T = 0 in experimental

data could be due to the chemical or electronic inhomogeneity of the sample,17,19

and this fact is not considered in the theory.

Finally, Fig. 4 shows the electronic specific heat (C) for the same p-wave system

of Fig. 2 with n = 1.0 in comparison with the experimental data obtained from

the spin-triplet superconductor Sr2RuO4.
20 Inset of Fig. 4 illustrates the angular

dependence of the single-excitation energy gap. Notice the remarkable agreement

in both, the discontinuity at Tc and the temperature dependence below Tc, as a

consequence of the nature of the p-wave superconducting state. In fact, a power-law

temperature dependence C(T ) ∼ Tα with α < 2 is observed, which could be related

to the wider depleted-gap region compared with the d-wave case.

5. Conclusion

We have presented a unified theory of the s-, p- and d-wave superconductivity based

on the BCS formalism and a generalized Hubbard model. This approach has the

advantage of being simple and general for predicting the trends of anisotropic super-

conducting materials properties. Moreover, it does not require attractive density-

density interactions and the superconductivity is originated by the correlated hop-

pings interactions. In spite of their small strength in comparison with other terms

of the Hamiltonian, they determine the symmetry of the superconducting ground

states. The superconducting properties are calculated by solving two coupled in-

tegral equations when the variation of the chemical potential is considered. The

main contribution to the involved integrals comes from a sharp wall located around

the Fermi surface, in consistence with the BCS theory.1,15 There is a maximum Tc

located at low, medium and high electron densities for p, s and d symmetry super-

conductivity, respectively; in qualitative agreement with the experimental data.2,4

In particular, positive Hall coefficients are observed21,22 in d-wave high-Tc super-

conductors indicating its superconductivity could be originated from hole carriers.

On the other hand, the low-temperature behavior of C is very sensitive to the exis-

tence of nodes in the superconducting gap as well as their deepness. In particular,

the results show that the d-channel C in the overdoped regime has a second-order

power-law behavior, whereas in the underdoped regime C has an almost expo-

nential temperature dependence, similar to the s-channel case, due to the absence

of real nodes in the superconducting gap. In fact, the dxy-like gaps without real

nodes have been observed in cuprate superconductors by scanning tunneling exper-

iments.23 In addition, p-channel C shows a sub-second-order power-law behaviour
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Fig. 3. Theoretical (open squares) d-wave electronic specific heat (C) versus temperature (T )
for the same d-wave systems as in Fig. 2 with (a) n = 1.2 and (b) n = 1.94, in comparison
with experimental data (solid squares) obtained from La2−xSrxCuO4 for (a) x = 0.22 and (b)
x = 0.1.17 Insets: Corresponding single-excitation energy gaps (∆/|t|) as a function of the polar
angle (θ).

as obtained in Sr2RuO4. We expect that this analysis could contribute the under-

standing of the different C(T ) behaviors observed in anisotropic superconductors.
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Fig. 4. Theoretical (open triangles) p-wave specific heat (C) calculated by using the same pa-
rameters of Fig. 2 with n = 1.0, versus temperature (T ) in comparison with the experimental
data (solid triangles) obtained from Sr2RuO4.20 Inset: Single-excitation energy gap (∆/|t|) as a
function of the polar angle (θ).

The present study can be extended to include the effects of external perturbations,

such as magnetic fields, on the physical properties of anisotropic superconductors.

This extension is currently being developed.
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5. H. -B. Schüttler and A.J. Fedro, Phys. Rev. B 45, 7588 (1992).
6. J. F. Annett, G. Litak, B. L. Gyorffy and K. I. Wysokinski, Phys. Rev. B 66, 134514

(2002).
7. I. I. Mazin and D. J. Singh, Phys. Rev. Lett. 79, 733 (1997).
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