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In this article, we show that the Bardeen-Cooper-Schrieffer (BCS) formalism applied to
a Hubbard model is capable to predict the s-, p- and d-wave superconductivity within
a single theoretical scheme. This study is performed on a square lattice described by a
generalized Hubbard Hamiltonian, in which correlated-hopping interactions are included
in addition to the repulsive Coulombic one. Within the BCS formalism using a variable
chemical potential, the superconducting ground states are determined by two coupled
integral equations, whose integrand functions have main contributions around the Fermi
surface. We observe the existence of a maximum critical temperature for s-, p- and
d-wave superconducting channels that occur at the medium, low and high electron den-
sities, respectively. Furthermore, the p- and d-wave superconducting specific heats show
a power-law temperature dependence, instead of the exponential one for the s channel.
Finally, the smallness of the anisotropic single-energy-excitation-gap minima is essential
for the specific heat behavior, and this fact allows to understand the experimental data
obtained from SraRuO4 and Laz—»Sr;CuO4 superconductors.
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1. Introduction

The theory developed by J. Bardeen, L. N. Cooper and J. R. Schrieffer (BCS) was
very successful in explaining the main features of metallic superconductors.! In the
last two decades, the observation of d-symmetry pairing in ceramic superconductors
has motivated the research of models beyond the standard BCS theory to include
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anisotropic superconducting gap symmetries.? The recent discovery of the p-wave
spin-triplet superconducting state in Srs RuOy, has highly enhanced this research.?
The two-dimensional nature present in both p and d-wave superconducting systems
could be essential for understanding their peculiarities. In general, the energy spec-
trum of elementary excitations in solids determines the temperature dependence of
their specific heat, and for a superconductor it gives information regarding to the
symmetry of its superconducting state. An s-wave superconductor has an exponen-
tially temperature-dependent electronic specific heat, while an anisotropic nodal
superconducting gap leads to a power-law dependence, as occur in the cuprate su-
perconductors and in SroRuO,.* For these materials, three-band Hubbard models
have been proposed to describe the dynamics of the carriers on the CuOs and
RuO planes,>% and the electronic states close to the Fermi energy can be reason-
ably well described by a single-band tight-binding model on a square lattice with
second neighbour hoppings.>” In this article, we study s-, p- and d-wave super-
conducting states within a single-band generalized Hubbard Hamiltonian, in which
nearest (At) and next-nearest (Ats) neighbour correlated-hopping interactions are
considered in addition of the on-site (U) Coulombic interaction.® Certainly, At and
Ats are always present in real materials and in spite of having small strengths, they
are essential in the determination of the superconducting symmetry.

2. The Model

We start from a single-band Hubbard model with on-site Coulombic interaction
(U), first- (At) and second-neighbour (Ats) correlated-hopping interactions. The
corresponding Hamiltonian can be written as

H=1t Z CI,UCJ‘,U + ¢ Z c;r,UCj,g + UZ”LT”M,

(i.3),0 ((i.4)).0 @

+At Z c;f,gcj,g(ni,_g +nj o)+ At Z c;r,gcj,gnl , (D)
(i,5),0 (2,0),5,0), 0, ((3,5))
;

where c; , (i) is the creation (annihilation) operator with spin o =| or 1 at site
i, N = cj,acw, n; =n;++n,, (1,7) and ((i, j)) denote respectively the nearest-
neighbor and the next-nearest-neighbor sites. This model can lead to s- and d-wave
superconducting ground states without attractive density-density interactions.® Let
us start from a square lattice with lattice parameter a, where we further consider
a small distortion of its right angles in order to include the possible existence of a
bulk structural distortion in Sr;RuO4.'° This distortion produces changes in the
second-neighbour interactions, such as ¢’ and Atz terms in Eq. (1), and their new
values are t' + § and Ats + 3, where + refers to the & + § direction. Performing a

Fourier transform, this Hamiltonian in the momentum space becomes

H= Z 60(k)chck7a
k,o
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where N is the total number of sites,

eo(k) = 2t [cos(kya) + cos(kya)] + 2t cos(kza + kya) + 2t" cos(kya — kya) ,  (3)

Viewq = U+ 2A¢ [B(k + @) +8(—k + @)+ (K +q)+B(-k'+q)

+At] [y(k+a, X +q) +v(-k+q, -k +q)]

+ At [C(k + q. K + q)+((-k+q,-k +q)] , (4)
and
Wigiq = Aty v(k+ a, K +q) + Aty ((k+q, K +q) , (5)
being
Bk) = 2 [eos(kya) + cos(hya)] (6)
v(k, k') = 2cos(kya + kya) + 2 cos(kya + kya) (7)
((k, k') = 2cos(kya — kja) + 2 cos(kya — kya) . (8)

and 2q is the wave vector of the pair center of mass. After a standard Hartree-Fock
decoupling of the interaction terms with q # 0 applied to Eq. (2),!! the reduced
Hamiltonian for q = 0 is

. 1
_ i ot
H =Y e(k)e ,cxo+ A > Viwook g e okt
k,o k,k’

1
+ Y Witk ol o otio 9)
N, k.k',o 7 7

where the mean-field dispersion relation is given by

ek) = n% + 2(t + nAt) [cos(kza) + cos(kya)] +
+2(t, + 2nAt]) cos(kya + kya) + 2(t" + 2nAt; ) cos(kza — kya) . (10)

Notice that the single electron dispersion relation (k) is now modified by adding
terms nAt, 2nAtE and nU/2 to the hoppings ¢, ¢’ and the self-energy, respectively.
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3. Coupled Integral Equations

Applying the BCS formalism to Eq. (9), we obtain the following two coupled integral
equations,®%12 which determine the anisotropic superconducting gap [A(k)] and
the chemical potential (u) for a given temperature (7") and electron density (n),

_ 1 4w AlK) E(K)
and
Bk
n—l——N Z E tan h(2k;%> , (12)

where the single excitation energy is given by

B) = /() — ) + A2(K) | (13)

Zx x and A(k) depend on the symmetry of superconducting ground states as given
in Table 1.

Table 1. Interaction potentials (Zy x/) and supercon-
ducting gaps [A(k)] as functions of pairing symmetry.

Symmetry  Zy s A(k)

s-wave Vi o Qs+ A [cos(kgza) 4 cos(kya)]
p-wave Wiko Aplsin(kza) £sin(kya)]
d-wave Vk,x,0 Ay [cos(kra) — cos(kya)]

For the s-wave case, Eq. (11) becomes per se two coupled equations'?
Ay = —4Ats (I Ay + LAY — AAL (I Age + LA, (14)
and
Ay = —U (LA + IAL) — 40 (L Aw + LA,) (15)
where

(k) 2%pT

a2 w/a pw/a [COS(]CICL) + COS(kUCL)]l E(k)
_ 8?/#/(1 /W/a dkpdk, s tanh <2kBT> . (16)

1 Z [cos(kza +cos(l<: a)] tanh (E(k))
K
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Fig. 1. (Color on line) Contour plots of integrands of (a) Eq. (17) and (b) Eq. (12) for d-wave
superconducting states, while (c) Eq. (18) and (d) Eq. (12) for p-wave ones.

Notice that AtSi has no effects on the s-wave superconductivity except for the

single-electron dispersion relation. For the d-channel, Eq. (11) can be written as?

4Atsa® [T [T/a [cos(kya) — cos(kya)]® E(k)
1= o2 /W/a /W/a dk,dk, B tanh T ) (17)

Likewise, for the p-channel, Eq. (11) leads to®

453& [sin(kya) £ sin(k, )’ E(k)
1=+ /ﬁ/a/ﬂ/adk dk, i tanh (%BT> (8)

In general, the critical temperature (1) is determined by A, (7:) = 0, being a=s,
pord.

Figures 1(a) and 1(b) respectively show the contour plots of the integrand func-
tions of Eqgs. (17) and (12) for ¢t = —1, ¢/ = —0.45]t|, At = 0.5]¢t|, Ats = 0.1]¢],
83 =0,U = 6|t|, n = 1.94, kgT, = 0.06319]t|, and p = 6.13585¢|. Notice that the
main contribution to the integral of Eq. (17) comes from the sharp walls located at
the Fermi surface defined by (k) = u, and separated by d-wave nodes. In contrast,
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for Eq. (12) the integrand has a step behaviour around the Fermi surface. Likewise,
Figures 1(c) and 1(d) illustrate the contour plots of the integrand functions of Egs.
(18) and (12), respectively, for ¢ = —1, ¢ = —0.45|t|, At = 0.5¢], Ats = 0.1]¢],
03 = 0.1)¢], U = 6|t], n = 1, kT, = 0.00093|t|, © = 3.307|¢|, and taking the upper
sign in Eq. (18). Observe that similar to the previous case, the sharp walls and step
behaviour are located at the Fermi surface. However, the Fermi surface is oriented
along the & + ¢ direction, due to the magnitude and sign of d3. Furthermore, the
step in Fig. 1(d) is sharper than in Fig. 1(b), since the p-channel T is smaller than
the d-channel one. It would be worth mentioning that the general behaviour shown
in figures 1 is not sensitive to the particular Hamiltonian parameter values and they
were chosen in order to make comparisons with experimental data, as discussed in
the following sections.

4. Results

Fig. 2(a) shows the critical temperature (7.) as a function of n for s- (open circles),
p- (open triangles) and d-symmetry (open squares) superconducting states with
t = —1, ¢ = —0.45]t|, At = 0.5|t], and U = 6]t|. For s and d symmetries we
have taken Ats = 0.1]t| and 63 = 0; whereas for p symmetry, Ats = 0.15|¢t| and
03 = 0.1]¢]. Notice that the maximum T for the d-channel is located at the optimal
n = 1.73, similar to that observed in cuprate superconductors since the hole doping
concentration z is related to 2 —n. This relationship is taken for the lower Hubbard
sub-band, because the Coulomb repulsion induces a charge-transfer gap in a half
filled band.’ In contrast, for p-channel, the maximum T, is found around half-filling
close to the expected electronic density of n = 1.2 for SroRuO4.'31* Furthermore,
for s-wave the maximum 7, is found for n = 1.47.

The mean potential energy ((Z)) can be written as!5:16

1 . 1 AR
<Z> = N—S2 ZZk7k/Uk’UkUk/'Uk/ = _E Z E 3 (19)
k,k’ k
where
A= =3 Ziewou (20)
k=N 2 k kU Uk
and
Ak *
E = UkVg - (21)

In Fig. 2(b), we show (Z) as a function of n for s- (solid circles), p- (solid trian-
gles) and d-channel (solid squares) with the same parameters of Fig. 2(a). Observe
that (Z) is negative and its absolute value has almost the same electron-density
dependence as T, mainly due to the smooth variation of the mean kinetic energy.
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Fig. 2. (a) Critical temperature (7¢) and (b) mean potential energy ((Z)) as functions of the
electron density (n) for s- (solid circles), p- (solid triangles) and d-channel (solid squares).

One of the physical quantities that yields information about the symmetry of
superconducting states is the electronic specific heat (C'), which is highly sensitive
to the low-energy excitations. The C of superconducting states is given by'®

_ QkBﬁZ dFEy
c=Z2r [ [ rwon- sl g+ sn

where 8 = 1/(kpgT) and f(F) is the Fermi-Dirac distribution. To obtain the specific
heat of the normal state we take Ay equal to zero.'® In Fig. 3, two electronic
densities (a) n = 1.2 and (b) n = 1.94 are chosen from Fig. 2 to calculate their
d-channel electronic specific heat and compared with experimental data obtained
from Lag_,Sr,CuQy for x = 0.22 and x = 0.1, respectively.!” Insets of Fig. 3 show

} dkgdk, ,  (22)
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the corresponding theoretical angular dependences of the single-excitation energy
gap (A) defined as the minimum value of Ej in k direction.® The polar angle is
given by 6 = tan~' (ky/k,) . Notice that for the hole overdoped regime, n < 1.73,
A has a dy2_,2 symmetry and in consequence C' is proportional to T? as obtained
in Ref. 18. However, for the hole underdoped regime (n > 1.73) A has a dg,-like
symmetry without real nodes and then, C' has an exponential behaviour as occurs
in an s-wave superconductor. The residual C/T value at T = 0 in experimental
data could be due to the chemical or electronic inhomogeneity of the sample,!”1?
and this fact is not considered in the theory.

Finally, Fig. 4 shows the electronic specific heat (C') for the same p-wave system
of Fig. 2 with n = 1.0 in comparison with the experimental data obtained from
the spin-triplet superconductor Sro RuO4.2 Inset of Fig. 4 illustrates the angular
dependence of the single-excitation energy gap. Notice the remarkable agreement
in both, the discontinuity at 7. and the temperature dependence below T, as a
consequence of the nature of the p-wave superconducting state. In fact, a power-law
temperature dependence C(T') ~ T* with a < 2 is observed, which could be related
to the wider depleted-gap region compared with the d-wave case.

5. Conclusion

We have presented a unified theory of the s-, p- and d-wave superconductivity based
on the BCS formalism and a generalized Hubbard model. This approach has the
advantage of being simple and general for predicting the trends of anisotropic super-
conducting materials properties. Moreover, it does not require attractive density-
density interactions and the superconductivity is originated by the correlated hop-
pings interactions. In spite of their small strength in comparison with other terms
of the Hamiltonian, they determine the symmetry of the superconducting ground
states. The superconducting properties are calculated by solving two coupled in-
tegral equations when the variation of the chemical potential is considered. The
main contribution to the involved integrals comes from a sharp wall located around
L15 There is a maximum 7.
located at low, medium and high electron densities for p, s and d symmetry super-

the Fermi surface, in consistence with the BCS theory.

conductivity, respectively; in qualitative agreement with the experimental data.?*
In particular, positive Hall coefficients are observed?!:2? in d-wave high-T,. super-
conductors indicating its superconductivity could be originated from hole carriers.
On the other hand, the low-temperature behavior of C' is very sensitive to the exis-
tence of nodes in the superconducting gap as well as their deepness. In particular,
the results show that the d-channel C' in the overdoped regime has a second-order
power-law behavior, whereas in the underdoped regime C' has an almost expo-
nential temperature dependence, similar to the s-channel case, due to the absence
of real nodes in the superconducting gap. In fact, the d,,-like gaps without real
nodes have been observed in cuprate superconductors by scanning tunneling exper-
iments.?? In addition, p-channel C' shows a sub-second-order power-law behaviour



Spin Singlet and Triplet Superconductivity Induced 5237

3-0 L) I L) I L) I L) I

23 12 7

o np=
20 __0.0180 0 (a) m X=0.22_-

04l 225 31

1.5 = 270 -

1.0 | _

to

O 22 _
; — 1
=

OO

0.0

| 03} 435 45 J

Fig. 3. Theoretical (open squares) d-wave electronic specific heat (C) versus temperature (7')
for the same d-wave systems as in Fig. 2 with (a) n = 1.2 and (b) n = 1.94, in comparison
with experimental data (solid squares) obtained from Las_5Sr,CuO4 for (a) z = 0.22 and (b)
x = 0.1.17 Insets: Corresponding single-excitation energy gaps (A/[t|) as a function of the polar
angle ().

as obtained in ST RuO4. We expect that this analysis could contribute the under-
standing of the different C'(T') behaviors observed in anisotropic superconductors.
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Fig. 4. Theoretical (open triangles) p-wave specific heat (C) calculated by using the same pa-
rameters of Fig. 2 with n = 1.0, versus temperature (7') in comparison with the experimental
data (solid triangles) obtained from SroRuO4.2° Inset: Single-excitation energy gap (A/[t]) as a
function of the polar angle (6).

The present study can be extended to include the effects of external perturbations,
such as magnetic fields, on the physical properties of anisotropic superconductors.
This extension is currently being developed.
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