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a b s t r a c t

Based on the BCS formalism, we study the critical temperature (Tc) as a function of electron density (n) in a
square lattice by means of a generalized Hubbard model, in which first (Dt) and second neighbors (Dt3) cor-
related-hopping interactions are included in addition to the repulsive Coulomb ones. We compare the the-
oretical Tc vs. n relationship with experimental data of cuprate superconductors BiSr2�xLaxCuO6+d (BSCO)
and La2�xSrxCuO4, (LSCO). The theory agrees very well with BSCO data even though the complicated asso-
ciation between Sr concentration (x) and hole doping (p). For the LSCO system, it is observed that in the
underdoped regime, the Tc vs. n behavior can be associated to different systems with small variations of
t0. For the overdoped regime, a more complicated dependence n = 1 � p/2 fits better than n = 1 � p. On
the other hand, it is proposed that the second neighbor hopping ratio (t0/t) should be replaced by the effec-
tive mean field hopping ratio t0MF=tMF , which can be very sensitive to small changes of t0 due to the doping.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The study of correlated electron models that could lead to
anisotropic superconductivity has been highly motivated by the
observation of d-symmetry gaps in hole-doped cuprate supercon-
ductors [1]. There is a general consensus that in these materials
the Cooper pairs are hole singlets, which are mainly restricted to
move on the CuO2 planes [2,3]. Three-band Hubbard models have
been proposed to describe the hole dynamics on these planes [4].
These models can be reduced into single-band ones [5] and the
electronic states close to the Fermi energy could be reasonably well
described by a square-lattice single-band tight binding model with
a next-nearest-neighbor hopping [6,7]. Lately, we have found that
the second-neighbor correlated-hopping interaction (Dt3) is essen-
tial in the dx2�y2 wave superconductivity, despite its relative small
magnitude in comparison with other interaction terms [8].

2. The model

In this work, we analyze the critical temperature of d-wave
superconducting ground states within a square lattice containing
nearest (t) and next-nearest neighbor (t0) hoppings, correlated-
hopping interactions between first (Dt) and second (Dt3) neigh-
bors, along with on-site (U) and nearest-neighbor (V) Coulomb
interactions. This Hamiltonian can be written as

bH ¼ t
X
hi;jir

cþircjr þ t0
X
�i;j�;r

cþircjr þ U
X

i

ni"ni# þ
V
2

X
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ninj
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X
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X
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hi;li;hj;li

cþircjrnl; ð1Þ

where cþirÞðcir) is the creation (annihilation) operator with spin r = ;
or " at site i, ni;r ¼ cþircir, ni ¼ ni;" þ ni;#, hi, ji and �i, j� denote
respectively nearest-neighbor and next-nearest-neighbor sites. This
model can lead to s- and d-wave superconducting ground states
without negative U and V [8]. Let us consider a square lattice with
lattice parameter a, performing a Fourier transform, this Hamilto-
nian in the momentum space becomes

bH ¼X
k;r
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1
Ns

X
k;k0

Vk;k0 ;qcþkþq;"c
þ
�k0þq;#c�k0þq;#ckþq;"

þ 1
Ns

X
k;k0 ;r

Wk;k0 ;qcþkþq;rcþ�k0þq;rc�k0þq;rckþq;r; ð2Þ

where Ns is the total number of sites,

e0ðkÞ ¼ 2t½cosðkxaÞ þ cosðkyaÞ� þ 4t0 cosðkxaÞ cosðkyaÞ; ð3Þ

Vk;k0 ;q ¼ U þ Vbðk� k0Þ þ 2Dt3cðkþ q;k0 þ qÞ þ Dt½bðkþ qÞ
þ bð�kþ qÞ þ bðk0 þ qÞ þ bð�k0 þ qÞ�; ð4Þ

and

Wk;k0 ;q ¼
V
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being

bðkÞ ¼ 2½cosðkxaÞ þ cosðkyaÞ�; ð6Þ

cðk;k0Þ ¼ 4 cosðkxaÞ cosðk0yaÞ þ 4 cosðk0xaÞ cosðkyaÞ; ð7Þ

and 2q is the wave vector of the pair center of mass. After a stan-
dard Hartree–Fock decoupling of the interaction terms in Eq. (2),
the reduced Hamiltonian for singlet pairing with q = 0 can be writ-
ten as:

bH ¼X
k;r

eðkÞcþk;rck;r þ
1
Ns

X
k;k0

Vk;k0 ;0cþk;"c
þ
�k0 ;#c�k0 ;#ck;"; ð8Þ

where the mean-field dispersion relation is given by

eðkÞ ¼ eMF þ 2tMF ½cosðkxaÞ þ cosðkyaÞ� þ 4t0MF cosðkxaÞ
� cosðkyaÞ; ð9Þ

where eMF ¼ U
2 þ 4V
� �

n is the mean-field self-energy, tMF ¼ t þ nDt,
and t0MF ¼ t0 þ 2nDt3 are the first and second neighbor mean field
hoppings, respectively.

Applying the BCS formalism [9] to Eq. (2), we obtain the follow-
ing two coupled integral equations [8], which determine the d-
wave superconducting gap (Dd) and the chemical potential (l)
for a given temperature (T) and electron density (n),
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where the single excitation energy is given by

EðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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being

DðkÞ ¼ Dd½cosðkxaÞ � cosðkyaÞ�: ð13Þ

In particular, the critical temperature (Tc) is determined by
DdðTcÞ ¼ 0.

3. Results

In Fig. 1, the critical temperature is shown for systems with
t = �1, any U, V = 0, Dt = 0.1|t|, Dt3 = 0.05|t|, t0 = 0.10|t| (gray line),
t0 = 0.09|t| (black line) t0 = 0.08|t| (light gray line), in comparison
with experimental data for BSCO (solid squares) extracted from
Ref. [10], and assuming a mean contribution of p = 0.002758
for each experimental point starting from p = 0.11, i.e., n = 1 �
[0.11 + 0.002758(i � 1)], i = 1, . . . , 25. The mean-field hopping ratio
(t0MF=tMF ) for these systems are shown in Table 1, and is worth to
consider the corresponding hopping ratio of 0.3 for BSCO [11].

For the LSCO system, the comparison was made with a similar
set of parameters of BSCO but with small variation of t0 in order
to shift the optimum values of n more close to half filling (n = 1).
These results are shown in Fig. 2, for a set of parameters with
t = �1, any U, V = 0, Dt = 0.1|t|, Dt3 = 0.05|t|, t0 = 0.08|t| (black line)
and t0 = 0.01|t| (gray line), in comparison with experimental data
for LSCO (solid circles) extracted from Ref. [12], where it has been
assumed a contribution of n = 1 � p, with p = x. Fig. 3 shows the
comparison for a system with t0 = 0.01|t| (gray line) and t0 = �0.04|t|
(light gray line), and LSCO from [12] but assuming the rule
n = 1 � p and the hole doping (p) obeying p = x/2 (open circles).

The corresponding mean-field ratios for these systems are summa-
rized in Table 2.

It is worth to observe that the mean-field hopping ratio of 0.1
estimated for LSCO [11] is closer for the maximum of the experi-
mental curve located at n = 0.90, which corresponds to the system
with t0 = 0.01|t| leading to t0MF ¼ 0:1jtj. For a better adjustment of
the critical temperature with the experiment, it would be neces-
sary some small variations of Dt and Dt3.

Fig. 1. Critical temperature (Tc) as a function of electronic density (n) for systems
with t = �1, any U, V = 0, Dt = 0.1|t|, Dt3 = 0.05|t|, t0 = 0.10|t| (gray line), t0 = 0.09|t|
(black line) t0 = 0.08|t| (light gray line), in comparison with experimental data for
BSCO (solid squares) extracted from reference [10] and assuming a mean
contribution of p = 0.002758 for each experimental value of x starting from p = 0.11.

Table 1
t0MF=tMF ratio for the systems of Fig. 1.

t0/|t| nop Dt3/|t| tMF/|t| t0MF=jtj t0MF=tMF

0.10 0.83 0.05 �0.917 0.183 �0.199
0.09 0.84 0.05 �0.916 0.174 �0.189
0.08 0.85 0.05 �0.915 0.165 �0.180

Fig. 2. Critical temperature (Tc) as a function of electronic density (n) for systems
with t = �1, any U, V = 0, Dt = 0.1|t|, Dt3 = 0.05|t|, t0 = 0.08|t| (black line) and
t0 = 0.01|t| (gray line), in comparison with experimental data for LSCO (solid circles)
extracted from Ref. [12], where it has been assumed a contribution of n = 1 � p, with
p = x.
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4. Conclusions

In summary, we have presented a single-band generalized Hub-
bard model on a square lattice, which leads to two coupled integral
equations within the BCS formalism. The results reveal the key par-
ticipation of Dt3 in the appearance of d-wave superconductivity, in

spite of its small strength in comparison with other terms of the
model. It would be worth mentioning that the thermodynamic
properties of d-wave superconducting ground states are indepen-
dent of U. Hence, the use of BCS mean-field approach is justified,
since the other interaction terms in the Hamiltonian (1) are gener-
ally small in comparison with the single-particle bandwidth. The
critical temperature always shows an optimal value of n where Tc

is maximum, and an appropriate set of parameters can be found
in order to make a good comparison with the experimental results
for BSCO and LSCO compounds. Moreover, the results suggest a
nontrivial hole-doping dependence with x concentration. It is
worth to mention that different sets of parameters can give the
same critical temperature, therefore it is necessary to determine
with more precision which t0 and correlated hopping parameters
Dt and Dt3 correspond to each compound.
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Table 2
t0MF=tMF ratio for the systems of Figs. 2 and 3.

t0/|t| nop Dt3/|t| tMF/|t| t0MF=jtj t0MF=tMF

0.08 0.85 0.05 �0.915 0.165 �0.18
0.01 0.90 0.05 �0.910 0.100 �0.109
�0.04 0.95 0.05 �0.905 0.055 �0.06
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