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Starting from a generalized Hubbard model with correlated-hopping interactions, we solve numerically
two coupled integral equations within the Bardeen–Cooper–Schrieffer formalism, in order to study the
doping effects on the critical temperature (Tc), d-wave superconducting gap, and the electronic specific
heat. Within the mean-field approximation, we determine the single- and correlated-electron-hopping
parameters for La2−xSrxCuO4 by using angle-resolved photoemission spectroscopy data. The resulting
parametrized Hubbard model is able to explain the experimental Tc variation with the doping level (x).
Moreover, the observed power-law behavior of the superconducting specific heat is reproduced by this
correlated-hopping Hubbard model without adjustable parameters.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The microscopic theory developed in 1957 by J. Bardeen,
L.N. Cooper and J.R. Schrieffer (BCS) [1] was successful in explain-
ing the main features of metallic superconductors. In the last two
decades, the observation of d-symmetry pairing in ceramic su-
perconductors has motivated the research of models beyond the
standard BCS theory to include anisotropic superconducting gaps.
Experimental evidence such as a corner superconducting quan-
tum interference device (SQUID) made of a conventional super-
conductor and two orthogonally oriented plane faces of a single
ceramic superconductor [2], as well as the spontaneous genera-
tion of a half-flux quantum at the meeting point of Josephson
coupled superconducting crystals [3], strongly suggests a d-wave
order parameter in many ceramic superconductors. In these ma-
terials, the charge carriers are confined to move mainly on the
CuO2 planes. This quasi-two-dimensional behavior could be es-
sential to understand their superconducting properties. Hence,
three-band Hubbard models have been proposed to describe the
dynamics of the carriers on the CuO2 planes [4], and the elec-
tronic states close to the Fermi energy can be reasonably well
described by a single-band tight-binding model on a square lat-
tice with a second-neighbor hopping [5]. Furthermore, it has been
shown that the second-neighbor correlated-hopping interactions
could lead to d-wave superconducting ground states [6]. Even in
this single-band generalized Hubbard model there are several pa-
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rameters that should be determined. In this Letter, we propose a
new way to find out single- and correlated-electron-hopping pa-
rameters through the angle-resolved photoemission spectroscopy
(ARPES) within the mean-field approximation. In particular, we
applied this method to La2−xSrxCuO4 systems and found a good
agreement between the theoretical results and experimental data
of the critical temperature (Tc) as well as the electronic specific
heat. It is worth mentioning that the tight-binding parameters are
usually determined by fitting ARPES data as done in Refs. [7–9],
but none of them has further studied Tc neither specific heat.

2. The model

Let us start from a single-band square-lattice Hubbard model
with on-site Coulombic interaction (U ), first- (�t) and second-
neighbor (�t3) correlated-hopping interactions. Certainly, �t and
�t3 are always present in real materials and in spite of having
small strengths, they are essential in the determination of the su-
perconducting symmetry. The corresponding Hamiltonian can be
written as

Ĥ = ε0

∑
i,σ

ĉ+
i,σ ĉi,σ + t

∑
〈i, j〉
σ

ĉ+
i,σ ĉ j,σ + t′ ∑

〈〈i, j〉〉
σ

ĉ+
i,σ ĉ j,σ

+ U
∑

i

n̂i,↑n̂i,↓ + �t
∑
〈i, j〉
σ

ĉ+
i,σ ĉ j,σ (n̂i,−σ + n̂ j,−σ )

+ �t3

∑
〈〈i, j〉〉,σ
〈i,l〉,〈 j,l〉

ĉ+
i,σ ĉ j,σ n̂l, (1)
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where ĉ†
i,σ (ĉi,σ ) is the creation (annihilation) operator with spin

σ =↓ or ↑ at site i, n̂i,σ = ĉ+
i,σ ĉi,σ , n̂i = n̂i,↑ + n̂i,↓ , 〈i, j〉 and 〈〈i, j〉〉

denote respectively first- and second-neighbor sites. This model
can lead to s- and d-wave superconducting ground states without
negative U [6]. Performing a Fourier transform, this Hamiltonian in
the momentum space becomes

Ĥ =
∑
k,σ

ε(k)ĉ+
k,σ ĉk,σ

+ 1

Ns

∑
k,k′,q

V k,k′,qĉ+
k+q,↑ĉ+

−k′+q,↓ĉ−k′+q,↓ĉk+q,↑

+ 1

Ns

∑
k,k′,q,σ

Wk,k′,qĉ+
k+q,σ ĉ+

−k′+q,σ ĉ−k′+q,σ ĉk+q,σ , (2)

where Ns is the total number of sites,

ε(k) = ε0 + 2t
[
cos(kxa) + cos(kya)

] + 4t′ cos(kxa) cos(kya), (3)

V k,k′,q = U + �t
[
β(q + k) + β(q − k)

+ β
(
q + k′) + β

(
q − k′)]

+ �t3
[
γ

(
q + k,q + k′) + γ

(
q − k,q − k′)], (4)

and

Wk,k′,q = �t3γ
(
q + k,q + k′), (5)

being

β(k) = 2
[
cos(kxa) + cos(kya)

]
, (6)

γ
(
k,k′) = 4 cos(kxa) cos

(
k′

ya
) + 4 cos

(
k′

xa
)

cos(kya), (7)

and 2q is the wave vector of the pair center of mass. After a stan-
dard Hartree–Fock decoupling of the interaction terms with q �= 0
[10] applied to Eq. (2), the reduced Hamiltonian for q = 0 is

Ĥ =
∑
k,σ

εMF(k)ĉ+
k,σ ĉk,σ + 1

Ns

∑
k,k′

V k,k′,0ĉ+
k,↑ĉ+

−k′,↓ĉ−k′,↓ĉk,↑

+ 1

Ns

∑
k,k′,σ

Wk,k′,0ĉ+
k,σ ĉ+

−k′,σ ĉ−k′,σ ĉk,σ , (8)

where the mean-field dispersion relation of an effective square lat-
tice with a lattice parameter a is given by

εMF(k) = εeff + 2teff
[
cos(kxa) + cos(kya)

]
+ 4t′

eff cos(kxa) cos(kya) (9)

where εeff = ε0 + nU/2, teff = t + n�t , and t′
eff = t′ + 2n�t3.

3. Parameter determination from ARPES data

Recently, ARPES experiments have been able to determine the
electronic dispersion relationship, as well as the anisotropy of
superconducting gaps in cuprate superconductors [11]. In partic-
ular, such dispersion relationship around the Fermi energy for
La2−xSrxCuO4 with different doping levels (x) has been measured
by extrapolating the peaks of momentum distribution curves up
to the Fermi energy (EF) even when the spectral weight is sup-
pressed in going toward EF due to the presence of an energy
gap or pseudogap [12]. In Figs. 1(a)–(e), the calculated Fermi sur-
faces (blue solid squares) for x = 0.03, 0.07, 0.15, 0.22 and 0.30
are respectively shown and compared with ARPES experimental
data (red open circles). Furthermore, Figs. 1(a′)–(e′) illustrate the
corresponding fitted dispersion relations (blue solid squares) along

Fig. 1. (Color online.) ARPES data (red open circles) obtained from La2−xSrxCuO4

with different doping levels (x) indicated inside in comparison with the calculated
dispersion relation (blue solid squares) at the Fermi energy (a)–(e) as well as along
the (0,0)–(π,0)–(π,π) direction (a′)–(e′).

Table 1
Model parameters determined from ARPES data.

x teff (eV) t′
eff (eV) εeff (eV) n �t3

0.03 −0.25 0.097 0.199 1.002 0.021
0.07 −0.25 0.077 0.209 0.938 0.021
0.15 −0.25 0.064 0.260 0.761 0.021
0.22 −0.25 0.060 0.268 0.716 0.021
0.30 −0.25 0.056 0.290 0.655 0.021

the (0,0)–(π,0)–(π,π) direction in comparison with experimen-
tal ones (red open circles). All the theoretical results of Fig. 1 have
been obtained from Eq. (9) and the fitted value of εeff , teff , and
t′

eff are summarized in Table 1, where the last two columns n and
�t3 will be explained below. In particular, we have taken a con-
stant value of teff = −0.25 eV as in Ref. [12], since only the relative
magnitudes of t′

eff /teff and εeff /teff are determined by ARPES data.
Once the effective hopping and self-energy parameters are ob-

tained, the electronic density of states (DOS) can be calculated
from [13]

DOS(E) = − 1

π
lim

η→0+ Im

[∑
k

1

E − εMF(k) + iη

]
(10)
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Fig. 2. (Color online.) Electronic density of states (DOS) for x = 0.03, 0.07, 0.15, 0.22,
and 0.30 corresponding to the mean-field dispersion relation (9) with the effective
parameters shown in Table 1.

where εMF(k) is the mean-field dispersion relation given by Eq. (9).
The DOS(E) for x = 0.03, 0.07, 0.15, 0.22, and 0.30 are respectively
shown in Figs. 2(a)–(e). Notice that for x = 0.15, the Fermi level
(EF) coincides with the van Hove singularity and then, the criti-
cal temperature is expected to be a maximum, according to the
BCS theory [1]. By integrating DOS(E) up to EF we obtain the
electronic density (n), whose numerical values for samples with
different doping levels are listed in Table 1, where we observe
an increase of the hole concentration from a half-filling electronic
band as x grows.

4. Coupled integral equations

Applying the BCS formalism to Eq. (2), we find the following
two coupled integral equations [6,14], which determine the d-wave
superconducting gap [�(k)] and the chemical potential (μ) for a
given temperature (T ) and electron density (n),

�(k) = − 1

2Ns

∑
k′

V k,k′,0�(k′)
E(k′)

tanh

(
E(k′)
2kB T

)
(11)

and

n − 1 = − 1

Ns

∑
k′

εMF(k′) − μ

E(k′)
tanh

(
E(k′)
2kB T

)
, (12)

where the single-particle excitation energy is given by

E(k) =
√(

εMF(k) − μ
)2 + �2(k), (13)

and �(k) = �d[cos(kxa) − cos(kya)]. Eq. (11) can be rewritten
as [6]

1 = 4�t3a2

8π2

π/a∫
−π/a

π/a∫
−π/a

dkx dky
[cos(kxa) − cos(kya)]2

E(k)

× tanh

(
E(k)

2kB T

)
, (14)

where the double integral is always positive and then �t3 > 0 has
a key participation in the formation of d-wave superconducting
state within this model, in spite of its relative small strength.

The Tc can be obtained from Eq. (14) by taking �d(Tc) = 0 in
Eq. (13). For La2−xSrxCuO4, we chose the maximum Tc = 41 K at
x = 0.15 from T. Yoshida et al. [12] to determine the value of �t3
giving 0.021 eV. In Fig. 3, the calculated Tc (solid triangles) as a
function of the Sr concentration (x) is shown and compared with
experimental data from N. Momono et al. [15] (open circles) and
from T. Yoshida et al. [12] (open squares). Observe that the Fermi
energy at the van Hove singularity (see Fig. 2) seems to be a cru-
cial criterion for the determination of maximum Tc , in accordance
with the BCS theory [1,16]. The Tc as a function of n calculated
by using the Hamiltonian parameters of Table 1 for x = 0.15 (solid
squares) and x = 0.22 (solid circles) is illustrated in the inset of
Fig. 3, where the corresponding values of x are indicated by dashed
lines.

5. Specific heat results

One of the physical quantities that yields information about the
symmetry of superconducting states is the electronic specific heat
(Cel), which is given by [16]

Cel = 2kBβ2a2

4π2

∫
1

∫
B Z

f
[

E(k)
]{

1 − f
[

E(k)
]}

×
[

E2(k) + βE(k)
dE(k)

dβ

]
dkx dky, (15)

where β = 1/(kB T ) and f (E) is the Fermi–Dirac distribution. The
specific heat of the normal state can be obtained by taking �(k)

equal to zero in Eqs. (13) and (15). In Fig. 4, the calculated Cel
(open triangles) for the sample with x = 0.15 using the parameters
of Table 1 is shown and compared with the available experimen-
tal Cel data obtained from a sample of La2−xSrxCuO4 with a close
doping level of x = 0.14 [17]. Notice that the theoretical results
reveal an almost second-degree power-law behavior, in agreement
with the experimental data, because the low-temperature behavior
of Cel is sensitive to the existence of nodes in the gap. However,
there is a difference between the theoretical and experimental data
about the location and magnitude of the maximum Cel . The former
could be due to the sample used for the theoretical calculation
has a Tc of 41 K for x = 0.15, in contrast to the Tc of 37 K
obtained from the sample of x = 0.14 [17]. The latter might be
related to the limitation of our two-dimensional single-band elec-
tronic model, instead of a three-dimensional all electron model. In
spite of its simplicity, the linear behavior of Cel in the normal state
and the discontinuity between the normal and superconducting Cel
are well reproduced.

The inset of Fig. 4 presents the first-Brillouin zone scheme
of the single excitation energy gap (open triangles) defined as
the minimal value of E(φ) along φ ≡ tan−1(ky/kx) direction. The
projection of Emin(φ) (green line) on the first-Brillouin zone cor-
responds to the Fermi surface, shown in Fig. 1(c). Observe that
Emin(φ) has a d-wave form with a maximum value of 7.12 meV,
which is close to 8.5 meV reported by D.L. Feng et al. [18], 8.6 meV
by A. Ino et al. [19], and 13.8 meV by M. Shi et al. [20]. Further-
more, the ratio of the single-excitation energy gap at the antinodal
direction, for example at φ = 0, over kB Tc is 2.015, which is larger
than 1.764 from the BCS theory [16].

6. Conclusions

We have presented a generalized Hubbard model, whose
parameters were determined by ARPES data for samples of
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Fig. 3. (Color online.) Theoretical (solid triangles) critical temperature (Tc) as a function of the Sr concentration (x) in comparison with experimental data of T. Yoshida et al.
(open squares) [12] and N. Momono et al. (open circles) [15]. Inset: Tc versus n for the Hamiltonian parameters obtained from x = 0.15 (solid squares) and x = 0.22 (solid
circles) with the values of x indicated by dashed lines.

Fig. 4. (Color online.) Theoretical (open triangles) d-wave electronic specific heat
(Cel) versus temperature (T ) for La2−xSrxCuO4 with x = 0.15 in comparison with
the experimental one (solid circles) for x = 0.14 [17]. Inset: Single excitation energy
gap (open triangles) in the first-Brillouin zone.

La2−xSrxCuO4 with different values of x. The electronic specific
heat calculated without adjustable parameters is compared to ex-
perimental data and a good agreement is observed. It is worth
mentioning that a single-band Hubbard model seems to be enough
to reproduce the experimental dispersion relation and the second-
neighbor correlated hopping could lead to a d-wave superconduct-
ing ground state with adequate values of Tc . Furthermore, this
model predicts the observed diminution of the electronic density
(n) from half-filling (n = 1) when x increases. Finally, the van Hove
singularity seems to determine n with maximum Tc , as found in
other models previously studied [21,22].

The present approach can be applied to other compounds in-
cluding spin triplet superconductors [23]. Also, this study could
be extended to include the effects of external perturbations, such
as magnetic fields, on the physical properties of anisotropic su-

perconductors, by using the Bogoliubov–de Gennes formalism. This
extension is currently being developed [24].
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