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We have developed a new computational tra±c model in which security aspects are funda-

mental. In this paper we show that this model reproduces many known empirical aspects of
vehicular tra±c such as the three states of tra±c °ow and the backward speed of the down-

stream front of a tra±c jam (C), without the aid of adjustable parameters. The model is studied

for both open and closed single lane tra±c systems. Also, we were able to analytically compute
the value of C as 15:37 km=h from a relation that only includes the human reaction time, the

mean vehicle length and the e®ective friction coe±cient during the braking process of a vehicle

as its main components.
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1. Introduction

With the increasing needs for transportation, the ¯nancial and environmental impact

made by vehicular tra±c has also been growing. Thus vehicular tra±c has become an

important matter of study where tra±c engineers and physicists are trying to

understand and to improve its management. Achieving this purpose is not just a

matter of building bigger highways, but a careful planning of the road's topology and

novel technologies are also required.1 Testing new tra±c technologies in real tra±c is

not always feasible and could be very expensive. With the aid of computer simu-

lations we may assess new technology or, at least, give some insight to its perform-

ance. This computational approach requires a computer model capable of recreating

real tra±c as good as possible within the needed regime. From a physicist point of

view a good tra±c model should not only be a mere parameter tuning problem, it
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must also be the result of incorporating ground aspects of tra±c (in the same sense of

¯rst principles in atomic simulations). By adopting this point of view we should

achieve two goals: The ¯rst one is to develop a good (realistic) tra±c model, and the

second, to develop novel technology perfectly suited to a particular system. Cellular

automata (CA) models have been recently used in describing tra±c °ow, since they

are able to describe relevant characteristics of the dynamics while keeping compu-

tational e±ciency and allow to ¯ne control microscopic aspects of the tra±c °ow.2 In

these models time and state variables are discrete, and there are rules for braking and

accelerating that control the movement of the vehicles, but the idea of limited

deceleration has seldom been considered in tra±c models,3 and most of the CA ones

have imposed arbitrarily large deceleration rates, which can be far beyond the

practical braking capability and the realistic driving behavior.4 A safe distance (�x)

between cars can be written for the steady state as,3

�xðvÞ ¼ d0 þ
�mv

2

2�g
þ vTreac; ð1Þ

where v is the vehicle velocity, d0 is the distance between vehicles in a tra±c jam, � is

the e®ective friction coe±cient during the braking process of a vehicle, g is the

Earth's gravity constant, Treac is the driver's reaction time and �m is a constant lower

than 1. This constant takes into account any other e®ects which could a®ect the safe

distance such as the possibility to see through the windshields of other vehicles.3 This

relation for the intervehicle distance takes into account both the limited deceleration

of vehicles as well as the driver's reaction time. This safe distance may be considered

over-conservative since it supposes that the vehicle is heading for a complete stop,

however it is consistent with some empirical facts and shows a good agreement

between theory and experimental data without any free parameter (this means

�m ¼ 1).3 With the aid of Eq. (1) it is possible to analytically reproduce to a good

extent some aspects of experimental data like the velocity vs headway plot, and other

fundamental diagrams.3

Taking into account the driver's stochastic behavior,2,5�7 we present a new model

that incorporates safe driving conditions (in a microscopic sense), as well as a sto-

chastic braking parameter p. Since the latter hinders the attainment of any ana-

lytical result, we coded these conditions into a cellular automaton model with

discrete time that maintains computational e±ciency. In the next section we will

describe the basic aspects of our model.

The main contribution of this work is the development of a model that takes into

account physical acceleration and deceleration limits, in such away that it is still capable

of reproducing basic aspects of real tra±c without adjusting any free parameter.

2. The Model

The model is de¯ned over a single highway lane of length L, where the vehicles move

from left to right. Each vehicle has a length li, and its speed vi can take any value
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between 0 and vmaxi . Each car has acceleration ai and deceleration bi rates. The

position of the ith vehicle is given by xi and gi is the ith car's bumper to bumper

distance with its leading car. We also de¯ne a minimum safe distance Di
minðviÞ

(which could also be a function of any other parameter of the car). The safe distance

means that if the ith car is driving with a headway gi less than Di
minðviÞ, and the

leading car suddenly brakes, then the ¯rst car may not be able to brake enough to

avoid a collision.

As we are only interested in the tra±c °ow without collisions, we use the following

update rules:

(i) If gi � DminðviÞ then brake safely vi ¼ vsafeðgiÞ.
(ii) If gi > DminðviÞ then accelerate vi ! minðvi þ ai ��t; vmaxÞ.
(iii) vi ! maxðvi � bi ��t; 0Þ with probability p.

(iv) xi ! xi þ vi ��t.

where �t is the time-step, and vsafeðgiÞ is a function such that DminðvsafeðgiÞÞ ¼ gi.

Without any explicit de¯nition for DminðvÞ these rules are very general. In this

paper we use relation (1) as DminðvÞ, as this makes the minimum distance a function

of the car's own velocity as stated in Eq. (1), and our model inherits the properties of

the tra±c °ow already known from this equation. In this sense, it is important to

note that when using Eq. (1) as the safe distance then the limited deceleration

capabilities of a vehicle are automatically transferred to the function vsafeðgiÞ.
Moreover, in this paper we use parallel update and, unless stated otherwise, we only

consider one type of vehicles, i.e. they all have the same maximum velocity vmax, the

same size l, and the same acceleration (a) and deceleration (b) constants.

In the next sections, the parameters that characterize a vehicle are taken as mean

values for the sake of simplicity and they are summarized in Table 1.

It is interesting to note that the value of d0 can be obtained from the supposition

that a driver always wants to have, at least, the rear bumper of his leading car in

sight, and using mean values for the height of the head of a person sitting in a car, the

mean distance from the steering wheel to the front bumper and the mean height of a

bumper we achieve the same experimental result.

This model naturally limits the deceleration of cars, avoiding unrealistic high

values under normal conditions. On the other hand, since this model also avoids

Table 1. Mean values of vehicle parameters.

Vehicle parameter Symbol Value

car acceleration8 a 3.02m/s2

car deceleration8 b 6m/s2

driver's reaction time3,8 Treac 0.8 s
friction coe±cient3,8 � 0.8

maximum car velocity vmax 33m/s

minimum distance3 d0 (1.39� 0.44)m
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collisions, setting an initial condition that will surely lead to a collision is the only

way to override the limited deceleration.

In this model the values of the distances are continuous within the limit of the

computational numerical precision and only time is discretized. The time step is

taken as 1 s since this is the order of the reaction time. Generally speaking, this model

belongs to the class models which are continuous in space and discrete in time, such

as that studied by Krauss et al.9,10 Moreover, both models take into account the

limited deceleration capabilities of vehicles but a direct comparison is not possible

since Eq. (1) does not explicitly incorporate the velocity of the leading car as in

Refs. 9 and 10, but the anticipated behavior is enclosed in the � parameter leading to

a simpler set of equations for safe driving.

3. Results

In this section we present the simulation results for this model in both open and

closed systems. All simulations are carried out on a road of length L ¼ 10 km. Each

simulation is carried out for T ¼ 106 time steps after letting the system evolve for a

time of T0 ¼ 106 time steps.

3.1. Closed systems

In the case of a closed system, the car number N remains constant during each

simulation, so the mean vehicle density is � ¼ N=L. Initially, the vehicles are inserted

one by one after letting the previously inserted vehicle to drive away, we choose to do

so to avoid unrealistic initial con¯gurations. However, we also carried out simu-

lations starting with all the vehicles randomly distributed around the loop and with

velocities taking any random value between 0 and vmax and no signi¯cant di®erence

was found in comparison with the insertion method described above.

To compare the calculated data from our computer model with the analytical

results obtained from Eq. (1) we show the velocity vs headway diagram in Fig. 1. We

can see that the simulation matches the analytical result until the maximum allowed

speed is reached and the velocity becomes constant.

In Figs. 2 and 3, the fundamental diagram for the proposed model, with di®erent

braking probabilities, and di®erent values of � are respectively shown. It is clear from

Fig. 2 that the higher the braking probability p is, the smaller the maximum °ux (J)

will be, and also, the free tra±c phase will end at a lower density. It is worth

mentioning that very small values of p only soften out the fundamental diagram,

leaving it almost unaltered in comparison with that corresponding to p ¼ 0. Also

notice the appearance of a \shoulder" in the fundamental diagram for p ¼ 0 and

� ¼ 1. This drop in the °ux is not a ¯nite-size e®ect, indeed the jump at this point

sharpens when the system size increases, as expected for a phase transition. By

looking at the spatiotemporal diagrams, it can be observed that this \shoulder"

marks the point where a stable group of cars with zero velocity ¯rst appear in the
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steady state. On the other hand, if we perturb the system by adding a non-zero noise

then a well de¯ned zero velocity group of cars is not formed and instead we observe the

gradual growth of a non-uniform-low-velocity group of cars when density increases.

From Eq. (1) it is clear that � regulates the degree of driver's knowledge and

control of the physical braking limitation of the vehicle, thus for small �'s the driver

is ignoring these limitations and its chosen velocity for a speci¯c headway will not

allow him to come to a complete stop in that headway distance. On the other hand,

for higher values of � (close to 1), the driver chooses its own velocity as if he has to
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Fig. 2. (Color online) Fundamental diagram of the model with � ¼ 1 and di®erent values of p.
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make a complete stop in a distance equal to its headway. Notice in Fig. 3 that a

smaller value of � accounts for a greater °ux as it is expected because this allows the

vehicles to travel with the same speed much closer to one another. Indeed, according

to Montemayor et al.,3 � ¼ 0:7 shows the best correspondence with the experimental

data.

In the fundamental diagram (Fig. 2) we can also observe a jump of the °ux at

about 120 veh/km, this jump is smoothed when � diminishes (Fig. 3), but it almost

completely disappears with a non-zero p.

In Fig. 4 we show the data obtained from a virtual detector for the local °ux and

occupation in the simulations. Observe the bidimensional data dispersion that

accounts for the synchronized tra±c states, it is important to note that this detector

underestimates the density for congested tra±c as it only measures those cars that

pass through it. In general, from the fundamental diagrams one can observe the

existence of free and congested tra±c, and the general behavior that is in corre-

spondence with experimental data.11 However, these diagrams are not su±cient to

accurately identify the di®erent types of tra±c states and then spatiotemporal dia-

grams can also be used.4 As an example, in Fig. 5 we show a spatiotemporal diagram

in the congested tra±c regime for a closed system with � ¼ 170 veh/km, � ¼ 1 and

p ¼ 0.

Furthermore, a statistical observable which allows to identify synchronized tra±c

is the crosscorrelation between the vehicle density � and the °ow J which is given by12

CC�;Jð�Þ ¼
1ffiffiffiffiffiffiffiffiffiffi
�J��

p ðh�ðtÞJðtþ �Þi � h�ðtÞihJðtþ �ÞiÞ; ð2Þ

where �x denotes the variance of x, and h i denotes the time average. In synchronized

tra±c CC�;Jð�Þ almost vanishes which means that these variables are almost
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Fig. 3. (Color online) Fundamental diagram of the model with p ¼ 0 and di®erent values of �.
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independent from each other. In Fig. 6, we show the crosscorrelation as a function of

time for � ¼ 33 veh/km, with p ¼ 0 (solid line with crosses). Note that the oscillations

of the crosscorrelation get smaller with time, but they do not vanish completely. This

can be explained because when p ¼ 0 the system is deterministic, and due to the

Fig. 4. Local °ux versus local density measured with a virtual detector, using one minute averages for a

closed system with p ¼ 0 and � ¼ 1.

Fig. 5. Spatiotemporal diagram in the congested tra±c regime for a closed system with � ¼ 170 veh/km,
� ¼ 1 and p ¼ 0.
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periodic boundary conditions we expect to see the same tra±c pattern repeating

periodically in time when the system has reached its stationary state. However, for the

case of p ¼ 0:001 (dashed line) the crosscorrelation dies out as expected for syn-

chronized tra±c. In general to verify this property of the synchronized tra±c within

this model, it is su±cient to consider a vanishingly small but non-zero noise par-

ameter. On the other hand, in the Krauss model the synchronized tra±c is only

achieved by the introduction of an e®ective maximum acceleration which depends on

a new free parameter.10

For a closed system with p ¼ 0 and � ¼ 1, Fig. 7 shows the general trend of the (a)

°ux (J), (b) velocity standard deviation (�v) and (c) P max
v , which is given by

P max
v � hðmaximum number of cars forming a v-platoonÞ � v=vmaxi: ð3Þ

This quantity is the mean value of the maximum number of cars ever seen forming a

v-platoon in the simulation times the corresponding velocity (v) and normalized by

the maximum velocity (vmax). Here, a v-platoon stands for a group of consecutive

cars traveling with the same speed (v) within a range of � 0:5m/s, regardless of the

distance between them. Those 0-platoons which are not actually moving have a zero

value of P max
v . As can be seen from Fig. 7(c), the behavior of this quantity shows a

high sensitivity to changes in the steady state and then it can be very helpful for

determining the nature of tra±c states. A large �v means that, on average, a vehicle

experiences frequent speed changes. In turn, the high speed variance could also

increase the probability of tra±c accidents. Moreover, a smaller �v indicates that the

system is less disordered (in the velocity sense). In this way, the analysis of �v could

allow to draw conclusions about safety and order in the system.13 Here we can also

de¯ne an e±ciency (�) as � � J=�v, which is a good indicator of an ordered high °ux

under safe conditions. A plot of � as a function of � for a closed system with p ¼ 0 and

� ¼ 1 is shown in Fig. 8, where a maximum at a density of � ¼ 8 veh/km can be

observed, together with an almost linear decay for densities greater than 120 veh/km.
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In the region between these two values, the e±ciency shows an interesting non-

monotonic behavior which may be considered in future work.

Another interesting aspect of vehicular tra±c is the backward speed of the

downstream front of a tra±c jam C, which seems to be roughly comparable with a

natural constant.6 In many countries, it has a typical value of ðC ¼ 15� 5Þ km/h,

depending on the accepted safe time clearance and average vehicle length.6 Therefore

fully developed tra±c jams can move in parallel over long time periods and road
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Fig. 7. (a) Flux (J), (b) velocity standard deviation (�v), and (c) P max
v as a function of the vehicle density

(�) for a closed system with p ¼ 0 and � ¼ 1.
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sections. Their propagation speed is not even in°uenced by ramps, intersections, or

synchronized °ow upstream of bottlenecks.6

From our simulations we found that this constant C is not altered, at least within

the numerical precision, by the car acceleration rate, and that it is very weakly

in°uenced by p. However, we also found a strong dependency with the car sizes (l)

and their minimum safe distances (d0).Wemeasured values forC between 15:3 km/h,

and 20.4 km/h for di®erent combinations of car sizes and safe distances. These values

are comparable to the reported value of 15� 5 km/h.6

This constant can be estimated by ðlþ d0Þ=Treac (which gives � 25 km/h) sup-

posing that the ¯rst car leaves the jam after a time Treac which leads to a backward

motion of the jam front of lþ d0. However, this would not take into account the

necessary headway for a car to accelerate out of the jam, i.e. a car in the jam has to

wait for its leading car to gain enough velocity (and therefore enough distance)

before it can also separate from the jam. Since we are in a continuous space/velocity

scenario, it would be arbitrary to state whether a car moving away from the jam with

in¯nitesimal velocity and in¯nitesimal headway from the jam belongs or not to it.

Another approach for estimating this constant is by considering the case of a system

with periodic boundary conditions where a jam coexists with a uniform car distri-

bution traveling at a speed vc ruled by Eq. (1). If we think of jam as a region where

cars have zero speed and considering that the jam is going to travel backwards with

its shape unchanged, we would require that, due to the boundary conditions, the

velocity of growth of the jam (how fast cars become part of it) and the velocity of

shortening of the jam (how fast they leave the jam) should be the same. Therefore we

can couple the equations that describe the uniform states for this system as follows.

From Eq. (1), the time that a car needs to decelerate from a velocity vc to a

velocity v0 < vc is given by

�vcðv0Þ ¼ Treac þ
vc � v0
�g

; ð4Þ
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and the changes in the size of the 0-platoon are given by its growth velocity in the

upstream direction, vup, given by

vup�vcðv0 ¼ 0Þ ¼ lþ d0; ð5Þ
then, the stability condition states that

vup ¼ vc: ð6Þ
Using (6) we obtain

v2
c

�g
þ vcTreac ¼ lþ d0; ð7Þ

which has only one physical solution given by

v� ¼
�Treac þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2
reac þ 4 lþd0

�g

q

2
�g

: ð8Þ

Substituting the values Treac ¼ 0:8 s, l ¼ 4:35m, d0 ¼ 1:39m and � ¼ 0:8 we obtain

v� 	 4:27
m

s
¼ 15:37

km

h
: ð9Þ

This last result is again in concordance with the reported value.6

3.2. Open systems

Until now we have analyzed the behavior of a system in a closed loop where the

number of cars remains constant over time. But most of the systems in real world are

open, i.e. the number of cars in the system is not constant over time. In order to study

this case, simulations were performed where cars were inserted at the beginning of

the highway with probability �0 and they were removed from the end of the highway

with probability �0. The results obtained from these simulations are shown in Fig. 9.

In Fig. 9(a) we show the density phase diagram for the open system, where one can

observe the existence of a high density region. The corresponding °ux diagram is

plotted in Fig. 9(b). Notice that inside the high density region, the °ux is almost

independent of �0, whereas outside this region the °ux is almost independent of �0.
Furthermore, Fig. 9(c) shows the diagram for P max

v , where one can observe the

existence of a maximum platooning region, and also that almost no platooning (in

the sense de¯ned by Eq. (3)) occurs for the high density and the high °ux regions.

Finally, a diagram of �v is shown in Fig. 9(d). Notice that the high °ux and the high

density regions share almost the same values of �v. Also remarkable is the transition

line between the high density and the low density regions, which has a very high

value of �v. Moreover, in the region of high density the measured parameters depend

mostly on �0 and they are independent of �0 (at least within numerical precision). On

the other hand, in the rest of the diagram the main dependence is on �0.
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In the case of the °ux diagram, Fig. 9(b), if we denote the transition line between

the high density and the low density regions as SIIð�0Þ, then for a point ð� 0
c; �

0
c ¼

SIIð� 0
cÞÞ that lies on this curve, all the points ð� 0

c; �
0 
 � 0

cÞ and ð�0 
 � 0
c; �

0
cÞ share

the same °ux (within the numerical precision).

In Fig. 10, we have separated the open system phase diagram into regions which

we will describe brie°y. Region (I) is a very low density one characterized by low

input rates �0 . 0:13, in this region the cars normally drive at their maximum speed

(free tra±c), it has a small �v, but the headway variance �g has its maximum value.

Region (II) is a high density one, characterized by low output rates �0 . 0:29, very

small °ux and where �g has its minimum and �v is higher than region (I). In this
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Fig. 9. (Color online) (a) Density (�), (b) °ux (J), (c) P max
v , and (d) velocity standard deviation �v phase

diagrams for an open system of length L ¼ 10 km, p ¼ 0 and � ¼ 1.

Fig. 10. Phase diagram for an open system with p ¼ 0 and � ¼ 1. The solid lines separate the di®erent

regimes: (I) low density regime, (II) high density regime, (III) maximum °ux regime, and (IV) high P max
v

regime. The dashed lines enclose local maxima for P max
v or J (see text).
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region there is very little platooning and practically no platooning at all below

�0 ¼ 0:05. Here all measurements are almost independent of �0, i.e. their main beha-

vior is only dictated by �0. The densities over the line that separates region (II) from

the rest, vary from � � 30 veh/km to � � 110 veh/km (values that are not found

elsewhere). For many points over this line we found a vanishing crosscorrelation (see

Eq. (2)), suggesting that synchronized tra±c states lie all over this line.

Region (III) corresponds to the maximum °ux, here the °ux grows when �0

increases. The zone enclosed by the dashed line in this region (�0 & 0:61 and

�0 & 0:29) has the overall lowest platooning values together with region (II).

Region (IV) corresponds to those states with the greatest e±ciency as de¯ned

before. In this region we still have free tra±c near the vicinity of region (I) as the °ux

grows almost linearly with �0 (and so with the density) and independently of �0. Also in

this vicinity we have the minimum value of �v and the overall greatest e±ciency for

0:1.�0 . 0:2. In this region, the headway variance �g vanishes, �v increases with �0,
and the cars tend to travel in platoons [as de¯ned byEq. (3)]. The dashed lines in region

(IV) (see Fig. 10) enclose the area were the largest and fastest v-platoons aremeasured.

Platooning is found to depend mostly on the injection rate, and it has an overall

maximum at �0 	 0:33.

As we approach region (III) from region (IV) the °ux slows down its growth with

increasing �0, and platooning has decreased in comparison with those values found in

region (IV) and starts showing a slight dependence on �0. Also, the e±ciency

abruptly decreases in comparison with the values found in (IV).

We also point out that by increasing the size of the system, the frontier of these

regions is sharpened, suggesting that these regions are indeed di®erent phases of the

system. It is worth mentioning that similar phase diagrams for � and J as a function

of the boundary (upstream and downstream) densities can be obtained by applying

the extremal principle of Popkov and Schütz14 to the fundamental diagram of the

open system. However, the translation of these diagrams to the �0��0 space, as well
as the obtention of the phase diagram for P max

v is not straightforward.

This analysis for an open system as stated here with insertion and extraction

probabilities (�0; �0), could be used to set dynamic velocity limits along a road in

order to maximize the road e±ciency during rush hours. Moreover, in comparison

with the knowledge obtained from the fundamental diagram, this analysis gives

much more information for the path that a system will follow along the region

diagrams (Fig. 10) when their in and out °ows change. Furthermore, we could even

be able to drive the system from an initial state to any other desired state following a

path of less velocity variance, thus minimizing the emission of contaminants and the

chance of accidents while controlling tra±c.

4. Conclusions

We have presented a computational tra±c model that includes physical safe driving

constraints such as limited acceleration and deceleration, together with the driver's

Minimal Tra±c Model with Safe Driving Conditions

1250017-13



desire to travel as fast as possible. This model is able to reproduce some known

aspects of tra±c such as the three states of tra±c °ow as well as the backward speed

of the downstream front of a tra±c jam, without having the need to adjust any free

parameter. One of the main features is the simplicity of its rules, which attain for a

low computational cost, allowing to do calculations faster than real tra±c develop-

ment. Thus, this model is capable of making predictions of the tra±c state in the

future, given a present tra±c state.

This model can be easily extended to include di®erent types of cars, and it could

be bene¯ted from parameter adjustment in order to do quantitative predictions. It

also provides a base to study the integration of di®erent driving strategies in which

safety is a priority, that could lead to a more e±cient road usage.

From the results obtained with this model and the comparison with other CA

models, we can conclude that safety conditions are essential in modeling vehicular

tra±c and furthermore, this implies that drivers seem to take into account their

vehicles braking limitations (at least unconsciously) while driving.

Finally, we thought of a second order model as one in which the safe distance of a

car not only depends on its velocity, but also on the velocity of the leading car. This

model would then take into account the braking limitations of the leading car too.

This second order model leaves our analytical calculation for the backward speed of

the downstream front of a tra±c jam unchanged, however from the simulations

carried out by now with this second order model, we have not found yet any

remarkable di®erent behavior, although this will still be considered for future work.
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