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Abstract. In the last decade, the Angle Resolved Photoemission Spectroscopy (ARPES) has achieved important 
advances in both energy and angular resolutions, providing a direct measurement of the single-particle dispersion relation 
and superconducting gap. These dispersion relation data allow a full determination of the self-energy, first and second 
neighbor parameters in the Hubbard model. This model and its generalizations offer a simple and general way to describe 
the electronic correlation in solids. In particular, the parameters of correlated hopping interactions, responsible of the d-
wave superconductivity in the generalized Hubbard model, are determined from ARPES data and the critical temperature 
within the mean-field approximation. In this work, we determine the model parameters for Bi2Sr2-xLaxCuO6+δ and study 
its d-wave superconducting gap as a function of temperature by solving numerically two coupled integral equations. 
Finally, the calculated electronic specific heat is compared with experimental results. 
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INTRODUCTION

Experimental evidence such as the spontaneous generation of a half-flux quantum at the meeting point of 
Josephson coupled superconducting crystals [1], as well as the corner superconducting quantum interference device 
(SQUID) made of a conventional superconductor and two orthogonally oriented plane faces of a single ceramic 
superconductor [2], strongly suggest the existence of a d-wave order parameter in many ceramic superconductors. In 
these cuprates, the charge carriers are confined to move mainly on the CuO2 planes. Therefore, three-band Hubbard 
models have been proposed to describe the dynamics of the carriers on these planes [3], and the electronic states 
close to the Fermi energy can be well described by a single-band tight-binding model on a square lattice with a 
second-neighbor hopping [4]. Furthermore, it has been shown that the second-neighbor correlated-hopping 
interactions can lead to d-wave superconducting ground states [5]. Even in this single-band generalized Hubbard 
model there are several parameters that should be determined. In this article, we find out single- and correlated-
electron-hopping parameters for Bi2Sr2-xLaxCuO6+δ (BSLCO), within the mean-field approximation, from the angle-
resolved photoemission spectroscopy (ARPES) experimental data [6]. We have previously applied this method to 
La2 xSrxCuO4 systems finding a good agreement between the theoretical results and experimental data of the critical 
temperature (Tc) as well as the electronic specific heat [7]. Once the model parameters are determined, the d-wave 
superconducting gap as a function of temperature can be obtained by solving two coupled integral equations [7]. 
Finally, the temperature behavior of the theoretical normalized electronic specific heat of Bi1.74Sr1.88Pb0.38CuO6+δ 
was obtained, observing a good agreement with experimental data [8].  

THE MODEL 

Let us consider a single-band square-lattice Hubbard model with on-site Coulombic interaction (U), first- ( t) 
and second-neighbor ( t3) correlated-hopping interactions. Certainly, t and t3 are always present in real materials 
and essential in the determination of the superconducting symmetry in spite of having small strengths. The 
corresponding Hamiltonian can be written as 
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where +
σ,ˆic  ( σ,ˆic ) is the creation (annihilation) operator with spin  =  or  at site i, , , ,ˆ ˆ ˆi i in c cσ σ σ

+= , , ,ˆ ˆ ˆi i in n n↑ ↓= + , 

ji,  and ji,  respectively denote first- and second-neighbor sites. In fact, in the last term of Eq. (1), l is a first-
neighbor site of both i and j, which are second neighbors. The interaction terms of Eq. (1) are schematically 
illustrated in Figures 1(a) for onsite Coulomb interaction (U), 1(b) for first-neighbor correlated hopping (Δt), and 
1(c) for second-neighbor correlated hopping (Δt3) involving three sites. This model can lead to s- and d-wave 
superconducting ground states without negative U [5]. 

 
FIGURE 1. Illustration of (a) onsite Coulomb interaction (U) between electrons with opposite spins (red arrows), (b) 

first-neighbor correlated hopping (Δt), and (c) second-neighbor correlated hopping (Δt3) involving three sites, where the 
ellipses indicate the bond associated to the electron hopping and the wavy line represents the interaction between electron 

and the bond charge. 
 

Performing a Fourier transform, this Hamiltonian in the momentum space becomes 
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where Ns is the total number of sites,  

 0( ) 2 cos( ) cos( ) 4 cos( ) cos( )x y x yt k a k a t k a k aε ε ′= + + +k , (3) 

 [ ] [ ], , 3( ) ( ) ( ) ( ) ( , ) ( , )V U t tβ β β β γ γ′ ′ ′ ′ ′= + Δ + + − + + + − + Δ + + + − −k k q q k q k q k q k q k q k q k q k , (4) 

and 
 , , 3 ( , )W t γ′ ′= Δ + +k k q q k q k , (5) 

being 
 ( ) 2[cos( ) cos( )]x yk a k aβ = +k , (6) 

 ( , ) 4cos( ) cos( ) 4cos( )cos( )x y x yk a k a k a k aγ ′ ′ ′= +k k , (7) 

and 2q is the wave vector of the pair center of mass. After a standard Hartree-Fock decoupling of the interaction 
terms with q≠0 [9] applied to Eq. (2), the reduced Hamiltonian for q=0 is 
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where the mean-field dispersion relation of an effective square lattice with a lattice parameter a is given by 

 ( ) 2 [cos( ) cos( )] 4 cos( ) cos( )MF eff eff x y eff x yt k a k a t k a k aε ε ′= + + +k , (9) 

where ,2/0 nUeff += εε tntteff Δ+= , and 32 tntteff Δ+′=′ .  
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By applying the BCS formalism to Eq. (8), we found the following two coupled integral equations [5,7], which 
determine the d-wave superconducting gap [Δ(k)] and the chemical potential (μ) for a given temperature (T) and 
electron density (n),  
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where the single-particle excitation energy is given by 

 ( ) )()()( 22 kkk Δ+−= με MFE  (12) 

and ( ) cos( ) cos( )d x yk a k aΔ = Δ −k . Eq. (11) can be rewritten as [6]  
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where the double integral is always positive and then t3 > 0 has a key participation in the formation of d-wave 
superconducting state within this model, in spite of its small strength. The critical temperature (Tc) can be obtained 
from the condition 0)( =Δ cd T . 

PARAMETER DETERMINATION FROM ARPES DATA 

Angular resolution photoelectron spectroscopy (ARPES) has been used to find out the electronic dispersion 
relation, as well as to quantify the anisotropy of superconducting gaps in cuprate superconductors [10]. In particular, 
such dispersion relationship around the Fermi energy for Bi2Sr2-xLaxCuO6+δ (BSLCO), with different chemical 
compositions x, has been measured by extrapolating the peaks of momentum distribution curves up to the Fermi 
energy (EF) even when the spectral weight is suppressed in going towards EF due to the presence of an energy gap or 
pseudogap [6]. Notice that in BSLCO, as the La concentration x increases, the hole concentration p decreases, as 
determined by the room-temperature Hall coefficient [11]. 

FIGURE 2. (a–f) ARPES data (open circles) obtained from Bi2Sr2-xLaxCuO6+δ with different chemical compositions (x) 
indicated inside in comparison with the calculated dispersion relation (solid lines) at the Fermi energy. 
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In figures 2(a-f), the calculated Fermi surfaces (blue lines) for x = 0.92, 0.80, 0.63, 0.50, 0.40 and 0.20 are 

respectively shown and compared with ARPES experimental data (red open circles). The theoretical results of Fig. 2 
have been obtained from Eq. (9) and the fitted values of εeff, teff and t'eff  are summarized in Table 1, where the last 
two columns n and Δt3 are explained below. We have taken a constant value of teff = -0.25 eV as in the Ref. [12], 
since only the relative magnitudes of effeff tt /′  and effeff t/ε  can be determined by ARPES data. Once the effective 
hopping and self-energy parameters are obtained, the electronic density of states (DOS) can be calculated from [13]  

 
++

=
+→ k k ηεπ η iE

EDOS
MF )(

1Imlim1)(
0

 (14) 

where )(kMFε  is the mean-field dispersion relation given by Eq. (9). By integrating DOS(E) up to EF we obtain the 
electronic density (n), whose numerical values for samples with different La concentrations x, are listed in Table1, 
where we observe an increase of the hole concentration (1-n) from a half-filling electronic band when x diminishes. 
This approach could be used to calculate the hole doping p for each x, instead of utilizing the temperature-dependent 
Hall coefficient and its comparison with other cuprates, as a guide to estimate p [11]. 
 

TABLE 1. Model parameters determined from ARPES data of Bi2Sr2-xLaxCuO6+δ 
together with the experimental Tc and Hall-effect estimated hole doping p [6]. 

x p Tc [K] t'eff [eV] εeff [eV] n Δt3 [eV] 
0.92 0.07 0 0.087 0.189 0.993 - 
0.80 0.10 0 0.095 0.252 0.916 - 
0.63 0.12 14 0.098 0.276 0.884 0.0267 
0.50 0.14 24 0.097 0.329 0.776 0.0234 
0.40 0.16 34 0.103 0.368 0.656 0.0227 
0.20 0.18 25 0.098 0.377 0.655 0.0173 

 
Finally, for Bi2Sr2-xLaxCuO6+δ, the experimental data of Tc from M. Hashimoto, et al. [6] allow the determination 

of the correlated hopping parameters t3 for each doping concentration, whose values are presented in Table 1.  

SPECIFIC HEAT RESULTS 

The energy spectrum of elementary excitations in solids determines the temperature dependence of their specific 
heat. In particular, for a superconductor it gives information regarding to the symmetry of its superconducting state. 
An s-wave superconductor has an exponentially temperature dependent electronic specific heat (Cel), while an 
anisotropic nodal superconducting gap leads to a power-law Cel, as occur in the cuprate superconductors [1]. The 
electronic specific heat (Cel), can be calculated as [14]  
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where β =1/(kBT) and f (E) is the Fermi-Dirac distribution. The specific heat of the normal state can be obtained by 
taking Δ(k) equal to zero in Eqs. (12) and (15). In Fig. 3, the calculated Cel (open triangles) for the compound 
Bi1.74Sr1.88Pb0.38CuO6+δ, with an estimated p=0.21 is shown and compared with the available experimental Cel data 
[8]. The model parameters for this compound, εeff = 0.398 eV and t'eff =0.094 eV, were obtained by extrapolating 
those obtained from the ARPES data of M. Hashimoto et al. [6]. Moreover, by integrating the corresponding 
DOS(E), a value of n=0.547 was obtained and the experimental Tc =9.4K leads to a value of t3=0.016 eV. Notice 
that the dimensionless electronic specific heat (Cel) is presented in Fig. 3 by subtracting the normal-state one (Cn) 
and dividing by TCel(Tc)/Tc. The theoretical results reveal an almost second-degree power-law behavior, in 
agreement with the experimental data, because the low-temperature behavior of Cel is very sensitive to the existence 
of nodes in the gap. In spite of the simplicity of the model, the linear behavior of Cel in the normal state and the 
discontinuity between the normal and superconducting Cel are well reproduced. 
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FIGURE 3. Theoretical (open triangles) normalized electronic specific heat (Cel) versus temperature (T) for 

Bi1.74Sr1.88Pb0.38CuO6+δ in comparison with the experimental one (solid circles) [6].  

CONCLUSIONS 

We have determined, by using ARPES data, the parameters of a generalized Hubbard model for samples of 
Bi2Sr2-xLaxCuO6+δ with different values of x. From these data, we extrapolated the model parameters for a sample of 
Bi1.74Sr1.88Pb0.38CuO6+δ, whose electronic specific heat has been measured as a function of the temperature. The 
normalized electronic specific heat calculated without adjustable parameters is compared to experimental data and a 
good agreement is observed. Furthermore, this model correctly gives the diminution of the electronic density (n) 
from half-filling (n = 1) when the lanthanum concentration diminishes in Bi2Sr2-xLaxCuO6+δ. The presented approach 
could be used to determine the hole doping (p) instead of using the temperature-dependent Hall coefficient, 
especially in those materials where the relation between p and the doping concentration (x) is not straightforward. It 
is worth mentioning that a single-band Hubbard model can reproduce the experimental dispersion relation and the 
second-neighbor correlated hopping could lead to a d-wave superconducting ground state with a second-degree 
power-law temperature dependence of the electronic specific heat. 

Finally, it would be worth mentioning that for the values of t3 used in this work, the superconducting ground 
state has d-wave symmetry, since the s-wave superconductivity requires a larger value of t3 or a negative U, as 
discussed in Ref. [5]. The interaction term , ,W ′k k 0  has no effect on the singlet d-wave superconducting ground state 
and it could lead to spin-triplet p-wave superconductivity if a small lattice distortion is considered [15]. 
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