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Abstract. In order to study the anisotropic superconductivity in two dimensional lattices, it has 

been recently proposed a generalized Hubbard model based on first- and second-neighbour 

correlated-hopping interactions. After considering this Hamiltonian within the BCS formalism, 

we obtain a system of two coupled integral equations, whose solution gives the superconducting 

gap and the chemical potential for each temperature and electronic density. This system of 

equations is usually solved in a numerical way, but the involved integrals over the first Brillouin 

zone (1BZ) consume a large amount of computing time since the integrand functions are 

extremely sharp around the Fermi surface (FS) especially for small pairing interactions. In this 

work, we report a new efficient way to carry out these integrals by dividing the 1BZ in regions 

delimited by curves close to the FS. 

1.  Introduction 

The observation of d-wave symmetry gaps in cuprate superconductors [1] and p-wave spin-triplet 

superconducting states in Sr2RuO4 [2] has motivated the study of correlated electron systems that lead to 

anisotropic superconductivity. The two-dimensional behavior, present in these systems, is essential to 

understand their peculiar superconducting properties. Single-band second-neighbor Hubbard models on 

square lattices have been proposed to describe the dynamics of carriers on the CuO2 [3] and RuO2 [4] 

planes in La2-xSrxCuO4 and Sr2RuO4, respectively. Lately, we have found that the second-neighbor 

correlated-hopping interaction (Δt3) is crucial for the dx
2
-y

2 wave superconductivity [5] and a further 

small distortion of the right angles in the square lattice leads to p-wave superconductivity [6]. It is worth 

mentioning that this distortion has been observed on the surface of Sr2RuO4 [7].  

A generalized single-band Hubbard model [5,6] containing first (t) and second (t’) neighbor 

hoppings, correlated-hopping interactions between first (Δt) and second (Δt3) neighbors, along with on-

site (U) and nearest-neighbor (V) Coulomb interactions, can be written in real and reciprocal spaces, 

related through a Fourier transform of the creation operators     
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 , as shown in 

Table 1. 
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Table 1. Generalized Hubbard Hamiltonian in the real and reciprocal spaces. 

Real space Reciprocal space 
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In Table 1,     
 (    ) is the creation (annihilation) operator with spin  = ↓ or ↑ at site i,          

     , 

            , <i,j> and <<i,j>> respectively denote nearest- and next-nearest-neighbor sites.      and 

     are functions of the real-space Hamiltonian parameters as given in Reference [8]. Applying the 

BCS formalism [9] to the reciprocal-space Hamiltonian of Table 1, we obtain the following two coupled 

integral equations [8], which determine the superconducting gap () of symmetry p or dand the 

chemical potential () for a given temperature (T) and electron density (n). 
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where              [                 ]                                         is the 

mean-field dispersion relation, 1BZ stands for the square-lattice first Brillouin zone defined as 
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] with the lattice parameter a,       √[       ]

    
     is the quasiparticle 

energy with      (
 

 
   ) ,             and                

 , being            and 

   
        . The pairing interaction parameters and symmetry functions for d-and p-wave 

superconducting states are shown in Table 2. 

Table 2. Parameters for d-and p-wave symmetry superconducting states 

d-wave p-wave Spin state of pairs 

             Singlet: 
 

√ 
    ⟩     ⟩  

  (     )   

            (   ) 

  (     )   

            (   ) 
Triplet: {

   ⟩

   ⟩
 

√ 
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The Fermi surface (FS) is given by       , which is an ellipse for       
 

 
. The main difficult to 

solve Equations (2) and (3) comes from their integrands, which are governed by the behavior of 1/E(k) 

and tanh[E(k)/2kBT]. For example, the calculation of the superconducting critical temperature (Tc), 

defined by         , implies that E(k)=0 on the FS. In consequence, sharp peaks appear in the 

integrand function along FS but they do not diverge since           
  

 
 

   

  
  . On the other 

hand, for T=0, tanh[E(k)/2kBT]=1 and sharp peaks appear along the FS when     . In general, it can 

be proved that the integrand functions are well defined for all k-states and do never diverge, even for 

T=0. In this work, we present a method to solve the mentioned coupled integral equations when sharp 

peaks are present in the integrand functions. 

2.  Multi-region integration method 

Let us consider two particular cases, whose Hamiltonian parameters are summarized in Table 3. For the 

d-wave case, as occurred in La2-xSrxCuO4, the resulting Tc is 41K. But the p-wave superconducting state 

generally has a lower Tc such as in this case 1.5K observed in strontium ruthenate [2]. 
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Table 3. Hamiltonian parameters for p- and d-wave superconductors 

Symmetry Hamiltonian parameters Related superconductor 

 

d-wave 
            

                                   
                      

 

              
 

 

p-wave 
                

                      
                    

 

        

In Figures 1 and 2 the integrand functions in a half of 1BZ are respectively shown in color scale for 

d- and p-wave cases. The numerical integrations of Equations (2) and (3) were performed using a 

variable-step Simpson’s subroutine. These integrations can be efficiently done through an eighth and 

fourth part of the 1BZ for d- and p-wave cases, by dividing them into six and seven regions, as shown in 

Figures 1 and 2, respectively. 

 

 

Figure 1 (Color online) The integrand 

function in color scale over half of 1BZ for 

the d-wave case. Orange and yellow lines 

indicate two contour lines obtained with 

         and          around the 

Fermi surface, respectively. Six integration 

regions in an eighth part of the 1BZ are 

illustrated in the Figure. 

 

 

Figure 2 (Color online) The integrand 

function in color scale over half of 1BZ for 

the p-wave case. Orange and yellow lines 

indicate two contour lines obtained with 

          and           around the 

Fermi surface, respectively. Seven 

integration regions in a fourth part of the 

1BZ are illustrated in the Figure. 

In Figure 3(a), the computing time to calculate the Tc of p-wave superconducting states is shown as a 

function of the interaction strength (3) by integrating over the divided (open circles) and non-divided 

(open squares) 1BZ. The corresponding calculated Tc in Kelvins is illustrated in Figure 3(b), considering 

that t = 1eV. The numerical calculations were performed with an integrating precision of 10
-6

 by using a 

Xeon E5-2670 with 32GB of RAM. Observe that for 3 = 0.15|t|, leading to a Tc < 8K, the computing 

time via the non-divided 1BZ method is almost infinite. 

 

 

 

Figure 3 (Color online) (a) Computing time in 

seconds consumed to integrate Equation (2) using 

the divided (red open circles) and non-divided 

(blue open squares) 1BZ as a function of the 

pairing interaction strength (3). (b) The resulting 

Tc versus 3 for p-wave superconductivity 

obtained using the multi-region integration 

method. 
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3.  Conclusions 

In solid state physics, the study of superconductivity within the BCS formalism leads to two coupled 

integral equations whose integrands have a sharp behavior around the Fermi surface. By using the 

standard variable-step Simpson’s method it is almost impossible to address very low critical temperature 

(Tc) superconductivity with p-wave symmetry, such as Sr2RuO4 with Tc=1.5K. The multi-region 

integration method allows to solve these equations even for Tc=0.05K. It is worth mentioning that the 

particular 1BZ division presented in this work could be improved, which is currently in process. 
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