First-Brillouin-zone integration areas for anisotropic superconducting states

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2014 J. Phys.: Conf. Ser. 490012221
(http://iopscience.iop.org/1742-6596/490/1/012221)
View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 132.248.12.54
This content was downloaded on 13/03/2014 at 23:44

Please note that terms and conditions apply.

First-Brillouin-zone integration areas for anisotropic superconducting states

J S Millan ${ }^{1}$, I R Ortiz ${ }^{1}$, L A Perez ${ }^{2}$, C Wang ${ }^{\mathbf{3}}$
${ }^{1}$ Facultad de Ingeniería, Universidad Autónoma del Carmen, Cd. del Carmen, 24180, Campeche, Mexico
${ }^{2}$ Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, 01000, México D.F., Mexico
${ }^{3}$ Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, 04510, México D.F., Mexico
E-mail author: smillan@pampano.unacar.mx

Abstract

In order to study the anisotropic superconductivity in two dimensional lattices, it has been recently proposed a generalized Hubbard model based on first- and second-neighbour correlated-hopping interactions. After considering this Hamiltonian within the BCS formalism, we obtain a system of two coupled integral equations, whose solution gives the superconducting gap and the chemical potential for each temperature and electronic density. This system of equations is usually solved in a numerical way, but the involved integrals over the first Brillouin zone (1BZ) consume a large amount of computing time since the integrand functions are extremely sharp around the Fermi surface (FS) especially for small pairing interactions. In this work, we report a new efficient way to carry out these integrals by dividing the 1 BZ in regions delimited by curves close to the FS.

1. Introduction

The observation of d-wave symmetry gaps in cuprate superconductors [1] and p-wave spin-triplet superconducting states in $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$ [2] has motivated the study of correlated electron systems that lead to anisotropic superconductivity. The two-dimensional behavior, present in these systems, is essential to understand their peculiar superconducting properties. Single-band second-neighbor Hubbard models on square lattices have been proposed to describe the dynamics of carriers on the CuO_{2} [3] and RuO_{2} [4] planes in $\mathrm{La}_{2-x} \mathrm{Sr}_{x} \mathrm{CuO}_{4}$ and $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$, respectively. Lately, we have found that the second-neighbor correlated-hopping interaction $\left(\Delta t_{3}\right)$ is crucial for the $d_{x}{ }^{2}-y^{2}$ wave superconductivity [5] and a further small distortion of the right angles in the square lattice leads to p-wave superconductivity [6]. It is worth mentioning that this distortion has been observed on the surface of $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$ [7].

A generalized single-band Hubbard model $[5,6]$ containing first (t) and second (t^{\prime}) neighbor hoppings, correlated-hopping interactions between first (Δt) and second (Δt_{3}) neighbors, along with onsite (U) and nearest-neighbor (V) Coulomb interactions, can be written in real and reciprocal spaces, related through a Fourier transform of the creation operators $c_{\mathbf{k}, \sigma}^{\dagger}=\frac{1}{N_{s}} \sum_{j} \exp \left(i \mathbf{k} \cdot \mathbf{R}_{\mathrm{j}}\right) \mathrm{c}_{\mathrm{j}, \sigma}^{\dagger}$, as shown in Table 1.

Table 1. Generalized Hubbard Hamiltonian in the real and reciprocal spaces.

Real space	Reciprocal space
$H=t \sum_{\langle i, j\rangle, \sigma} c_{i, \sigma}^{\dagger} c_{j, \sigma}+t^{\prime} \sum_{\langle\langle i, j\rangle, \sigma} c_{i, \sigma}^{\dagger} c_{j, \sigma}+$	$H=$
$U \sum_{i} n_{i, \uparrow} n_{i, \downarrow}+$	$\sum_{\boldsymbol{k}, \sigma}[\varepsilon(\boldsymbol{k})-\mu] c_{\boldsymbol{k}, \sigma}^{\dagger} c_{\boldsymbol{k}, \sigma}+$
$\frac{V}{2} \sum_{\langle i, j\rangle} n_{i} n_{j}+\Delta t \sum_{\langle i, j\rangle, \sigma} c_{i, \sigma}^{\dagger} c_{j, \sigma}\left(n_{i,-\sigma}+n_{j,-\sigma}\right)+$	$\frac{1}{N_{s}} \sum_{\boldsymbol{k}, \boldsymbol{k}^{\prime}} V_{\boldsymbol{k} \boldsymbol{k}^{\prime}} c_{\boldsymbol{k}, \uparrow}^{\dagger} c_{-\boldsymbol{k}^{\prime}, \downarrow}^{\dagger} c_{-\boldsymbol{k}^{\prime}, \downarrow} c_{\boldsymbol{k}, \uparrow}+$
$\Delta t_{3} \sum_{\langle\langle i, j\rangle\rangle, \sigma,\langle i, l\rangle\langle j, l\rangle} c_{i, \sigma}^{\dagger} c_{j, \sigma} n_{l}$	$\frac{1}{N_{s}} \sum_{\boldsymbol{k}, \boldsymbol{k}^{\prime}, \boldsymbol{\sigma}^{\prime}} W_{\boldsymbol{k} \boldsymbol{k}^{\prime}} c_{\boldsymbol{k}, \sigma}^{\dagger} \sigma_{-\boldsymbol{k}^{\prime}, \sigma}^{\dagger} c_{-\boldsymbol{k}^{\prime}, \sigma} c_{\boldsymbol{k}, \sigma}$

In Table $1, c_{i, \sigma}^{\dagger}\left(c_{i, \sigma}\right)$ is the creation (annihilation) operator with spin $\sigma=\downarrow$ or \uparrow at site $i, n_{i, \sigma}=c_{i, \sigma}^{\dagger} c_{i, \sigma}$, $n_{i}=n_{i, \downarrow}+n_{i, \downarrow},<i, j>$ and $\ll i, j \gg$ respectively denote nearest- and next-nearest-neighbor sites. $V_{\boldsymbol{k} \boldsymbol{k}^{\prime}}$ and $W_{\boldsymbol{k} \boldsymbol{k}^{\prime}}$ are functions of the real-space Hamiltonian parameters as given in Reference [8]. Applying the BCS formalism [9] to the reciprocal-space Hamiltonian of Table 1, we obtain the following two coupled integral equations [8], which determine the superconducting gap $\left(\Delta_{\alpha}\right)$ of symmetry $\alpha=p$ or d and the chemical potential $\left(\mu_{\alpha}\right)$ for a given temperature (T) and electron density (n).

$$
\left\{\begin{array}{c}
1=-\frac{\left(V-4 \Lambda_{\alpha}\right) a^{2}}{4 \pi^{2}} \iint_{1 B Z} \frac{\left[g_{\alpha}\left(k_{x}, k_{y}\right)\right]^{2}}{2 E_{\alpha}(\boldsymbol{k})} \tanh \left(\frac{E_{\alpha}(\boldsymbol{k})}{2 k_{B} T}\right) d k_{x} d k_{y} \tag{2}\\
n-1=-\frac{a^{2}}{4 \pi^{2}} \iint_{1 B Z} \frac{\varepsilon(\boldsymbol{k})-\mu_{\alpha}}{E_{\alpha}(\boldsymbol{k})} \tanh \left(\frac{E_{\alpha}(\boldsymbol{k})}{2 k_{B} T}\right) d k_{x} d k_{y}
\end{array}\right.
$$

where $\varepsilon(\boldsymbol{k})=E_{M F}+2 t_{M F}\left[\cos \left(k_{x} a\right)+\cos \left(k_{y} a\right)\right]+2 t_{M F+}^{\prime} \cos \left(k_{x} a+k_{y} a\right)+2 t^{\prime}{ }_{M F-} \cos \left(k_{x} a-k_{y} a\right)$ is the mean-field dispersion relation, 1BZ stands for the square-lattice first Brillouin zone defined as $\left[-\frac{\pi}{a}, \frac{\pi}{a}\right] \otimes\left[-\frac{\pi}{a}, \frac{\pi}{a}\right]$ with the lattice parameter $a, E_{\alpha}(\mathbf{k})=\sqrt{\left[\varepsilon(\mathbf{k})-\mu_{a}\right]^{2}+\Delta_{\alpha}^{2}(\mathbf{k})}$ is the quasiparticle energy with $E_{M F}=\left(\frac{U}{2}+4 V\right) n, t_{M F}=t+n \Delta t$ and $t^{\prime}{ }_{M F \pm}=t^{\prime}{ }_{ \pm}+2 n \Delta t_{3}{ }^{ \pm}$, being $t^{\prime}{ }_{ \pm}=t^{\prime} \pm \delta^{\prime}$ and $\Delta t_{3} \pm=\Delta t_{3} \pm \delta_{3}$. The pairing interaction parameters and symmetry functions for d - and p-wave superconducting states are shown in Table 2.

Table 2. Parameters for d - and p-wave symmetry superconducting states

\boldsymbol{d}-wave	\boldsymbol{p}-wave	Spin state of pairs
$\Lambda_{d}=\Delta t_{3}$	$\Lambda_{p}=\delta_{3}$	Singlet: $\frac{1}{\sqrt{2}}(\|\uparrow \downarrow\rangle-\|\downarrow \uparrow\rangle)$
$g_{d}\left(k_{x}, k_{y}\right)=$ $\cos \left(k_{x} a\right)-\cos \left(k_{y} a\right)$	$g_{p}\left(k_{x}, k_{y}\right)=$ $\sin \left(k_{x} a\right) \pm \sin \left(k_{y} a\right)$	Triplet: $\left\{\begin{array}{c}\|\uparrow \uparrow\rangle \\ \|\downarrow \downarrow\rangle \\ \frac{1}{\sqrt{2}}(\|\uparrow \downarrow\rangle+\|\downarrow \uparrow\rangle)\end{array}\right.$

The Fermi surface (FS) is given by $\varepsilon(\boldsymbol{k})=\mu$, which is an ellipse for $k_{x}, k_{y} \ll \frac{\pi}{a}$. The main difficult to solve Equations (2) and (3) comes from their integrands, which are governed by the behavior of $1 / E(\mathbf{k})$ and $\tanh \left[E(\mathbf{k}) / 2 k_{\mathrm{B}} T\right]$. For example, the calculation of the superconducting critical temperature $\left(T_{\mathrm{c}}\right)$, defined by $\Delta_{\alpha}\left(T_{c}\right)=0$, implies that $E(\mathbf{k})=0$ on the FS. In consequence, sharp peaks appear in the integrand function along FS but they do not diverge since $\tanh (x)=x-\frac{x^{3}}{3}+\frac{2 x^{5}}{15}-\cdots$. On the other hand, for $T=0, \tanh \left[E(\mathbf{k}) / 2 k_{\mathrm{B}} T\right]=1$ and sharp peaks appear along the FS when $\Delta_{\alpha} \ll t$. In general, it can be proved that the integrand functions are well defined for all \boldsymbol{k}-states and do never diverge, even for $T=0$. In this work, we present a method to solve the mentioned coupled integral equations when sharp peaks are present in the integrand functions.

2. Multi-region integration method

Let us consider two particular cases, whose Hamiltonian parameters are summarized in Table 3. For the d-wave case, as occurred in $\mathrm{La}_{2-x} \mathrm{Sr}_{x} \mathrm{CuO}_{4}$, the resulting T_{c} is 41 K . But the p-wave superconducting state generally has a lower T_{c} such as in this case 1.5 K observed in strontium ruthenate [2].

Table 3. Hamiltonian parameters for p - and d-wave superconductors

Symmetry	Hamiltonian parameters	Related superconductor
d-wave	$U=V=\delta^{\prime}=\delta_{3}=0$	
	$t^{\prime} / t=-0.06, \Delta t=0.1\|t\|, \Delta t_{3}=0.055\|t\|$	$\mathrm{La}_{2-x} \mathrm{Sr}_{x} \mathrm{CuO}_{4}$
-wave	$n=0.85$ and $\mu=-0.62\|t\|$	
	$U=V=\delta^{\prime}=\Delta t=\Delta t_{3}=0$	$\mathrm{Sr}_{2} \mathrm{RuO}_{4}$

In Figures 1 and 2 the integrand functions in a half of 1 BZ are respectively shown in color scale for d - and p-wave cases. The numerical integrations of Equations (2) and (3) were performed using a variable-step Simpson's subroutine. These integrations can be efficiently done through an eighth and fourth part of the 1 BZ for d - and p-wave cases, by dividing them into six and seven regions, as shown in Figures 1 and 2, respectively.

Figure 1 (Color online) The integrand function in color scale over half of 1BZ for the d-wave case. Orange and yellow lines indicate two contour lines obtained with $\varepsilon(\boldsymbol{k})=1.1 \mu$ and $\varepsilon(\boldsymbol{k})=0.9 \mu$ around the Fermi surface, respectively. Six integration regions in an eighth part of the 1 BZ are illustrated in the Figure.

Figure 2 (Color online) The integrand function in color scale over half of 1 BZ for the p-wave case. Orange and yellow lines indicate two contour lines obtained with $\varepsilon(\boldsymbol{k})=1.25 \mu$ and $\varepsilon(\boldsymbol{k})=0.85 \mu$ around the Fermi surface, respectively. Seven integration regions in a fourth part of the 1 BZ are illustrated in the Figure.

In Figure 3(a), the computing time to calculate the T_{c} of p-wave superconducting states is shown as a function of the interaction strength $\left(\delta_{3}\right)$ by integrating over the divided (open circles) and non-divided (open squares) 1BZ. The corresponding calculated T_{c} in Kelvins is illustrated in Figure 3(b), considering that $t=1 \mathrm{eV}$. The numerical calculations were performed with an integrating precision of 10^{-6} by using a Xeon E5-2670 with 32GB of RAM. Observe that for $\delta_{3}=0.15|t|$, leading to a $T_{\mathrm{c}}<8 \mathrm{~K}$, the computing time via the non-divided 1BZ method is almost infinite.

Figure 3 (Color online) (a) Computing time in seconds consumed to integrate Equation (2) using the divided (red open circles) and non-divided (blue open squares) 1 BZ as a function of the pairing interaction strength $\left(\delta_{3}\right)$. (b) The resulting $T_{\text {c }}$ versus δ_{3} for p-wave superconductivity obtained using the multi-region integration method.

3. Conclusions

In solid state physics, the study of superconductivity within the BCS formalism leads to two coupled integral equations whose integrands have a sharp behavior around the Fermi surface. By using the standard variable-step Simpson's method it is almost impossible to address very low critical temperature $\left(T_{\mathrm{c}}\right)$ superconductivity with p-wave symmetry, such as $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$ with $T_{\mathrm{c}}=1.5 \mathrm{~K}$. The multi-region integration method allows to solve these equations even for $T_{\mathrm{c}}=0.05 \mathrm{~K}$. It is worth mentioning that the particular 1BZ division presented in this work could be improved, which is currently in process.

Acknowledgment

This work has been partially supported by CONACyT-103219, CONACyT-131596, UNAM-IN102511, UNAM-IN107411, and the UNAM-UNACAR exchange project. Computations have been performed at KanBalam and NES of DGCTIC, UNAM.

References

[1] C C Tsuei and J R Kirtley 2000, Rev Mod Phys 72969.
[2] K Ishida 1998, Nature 396658.
[3] E Dagotto 1994, Rev Mod Phys 66763.
[4] I I Mazin and D J Singh 1997, Phys Rev Lett 79733.
[5] L A Pérez and C Wang 2002, Solid State Commun 121669.
[6] J S Millán, L A Pérez, C Wang 2005, Phys Lett A 335505.
[7] R. Matzdorf 2000, Science 289746.
[8] L A Perez, J S Millan, C Wang 2005, Physica B 359-361 569.
[9] M Tinkham 1996, Introduction to Superconductivity, 2nd Ed., New York: McGraw-Hill.

