

Home Search Collections Journals About Contact us My IOPscience

First-Brillouin-zone integration areas for anisotropic superconducting states

This content has been downloaded from IOPscience. Please scroll down to see the full text. 2014 J. Phys.: Conf. Ser. 490 012221 (http://iopscience.iop.org/1742-6596/490/1/012221) View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 132.248.12.54 This content was downloaded on 13/03/2014 at 23:44

Please note that terms and conditions apply.

First-Brillouin-zone integration areas for anisotropic superconducting states

J S Millan¹, I R Ortiz¹, L A Perez², C Wang³

¹Facultad de Ingeniería, Universidad Autónoma del Carmen, Cd. del Carmen, 24180, Campeche, Mexico

²Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, 01000, México D.F., Mexico

³Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, 04510, México D.F., Mexico

E-mail author: smillan@pampano.unacar.mx

Abstract. In order to study the anisotropic superconductivity in two dimensional lattices, it has been recently proposed a generalized Hubbard model based on first- and second-neighbour correlated-hopping interactions. After considering this Hamiltonian within the BCS formalism, we obtain a system of two coupled integral equations, whose solution gives the superconducting gap and the chemical potential for each temperature and electronic density. This system of equations is usually solved in a numerical way, but the involved integrals over the first Brillouin zone (1BZ) consume a large amount of computing time since the integrand functions are extremely sharp around the Fermi surface (FS) especially for small pairing interactions. In this work, we report a new efficient way to carry out these integrals by dividing the 1BZ in regions delimited by curves close to the FS.

1. Introduction

The observation of *d*-wave symmetry gaps in cuprate superconductors [1] and *p*-wave spin-triplet superconducting states in Sr_2RuO_4 [2] has motivated the study of correlated electron systems that lead to anisotropic superconductivity. The two-dimensional behavior, present in these systems, is essential to understand their peculiar superconducting properties. Single-band second-neighbor Hubbard models on square lattices have been proposed to describe the dynamics of carriers on the CuO₂ [3] and RuO₂ [4] planes in La_{2-x}Sr_xCuO₄ and Sr₂RuO₄, respectively. Lately, we have found that the second-neighbor correlated-hopping interaction (Δt_3) is crucial for the $d_{x^2-y^2}$ wave superconductivity [5] and a further small distortion of the right angles in the square lattice leads to *p*-wave superconductivity [6]. It is worth mentioning that this distortion has been observed on the surface of Sr₂RuO₄ [7].

A generalized single-band Hubbard model [5,6] containing first (*t*) and second (*t'*) neighbor hoppings, correlated-hopping interactions between first (Δt) and second (Δt_3) neighbors, along with onsite (*U*) and nearest-neighbor (*V*) Coulomb interactions, can be written in real and reciprocal spaces, related through a Fourier transform of the creation operators $c_{\mathbf{k},\sigma}^{\dagger} = \frac{1}{N_s} \sum_{j} \exp(i\mathbf{k} \cdot \mathbf{R}_j) c_{j,\sigma}^{\dagger}$, as shown in Table 1.

Table 1. Generalized Hubbard Hamiltonian in the real and reciprocal spaces.

Real space	Reciprocal space
$H = t \sum_{\langle i,j \rangle,\sigma} c^{\dagger}_{i,\sigma} c_{j,\sigma} + t' \sum_{\langle \langle i,j \rangle \rangle,\sigma} c^{\dagger}_{i,\sigma} c_{j,\sigma} + t' \sum_{\langle i,j \rangle,\sigma} c^{\dagger}_{i,\sigma} + t' \sum_{\langle i,j$	H = 1
$U\sum_{i}n_{i,\uparrow}n_{i,\downarrow}+$	$\sum_{\boldsymbol{k},\sigma} [\varepsilon(\boldsymbol{k}) - \mu] c_{\boldsymbol{k},\sigma}^{\dagger} c_{\boldsymbol{k},\sigma} +$
$\frac{V}{2}\sum_{\langle i,j\rangle}n_in_j + \Delta t \sum_{\langle i,j\rangle,\sigma}c^{\dagger}_{i,\sigma}c_{j,\sigma}(n_{i,-\sigma}+n_{j,-\sigma}) + $	$\frac{1}{N_s} \sum_{\boldsymbol{k},\boldsymbol{k}'} V_{\boldsymbol{k}\boldsymbol{k}'} c^{\dagger}_{\boldsymbol{k}\uparrow} c^{\dagger}_{-\boldsymbol{k}',\downarrow} c_{-\boldsymbol{k}',\downarrow} c_{\boldsymbol{k},\uparrow} +$
$\Delta t_3 \sum_{\langle \langle i,j angle angle, \sigma, \langle i,l angle \langle j,l angle} c^{\dagger}_{i,\sigma} c_{j,\sigma} n_l$	$\frac{1}{N_s} \sum_{\boldsymbol{k},\boldsymbol{k}',\sigma'} W_{\boldsymbol{k}\boldsymbol{k}'} c^{\dagger}_{\boldsymbol{k},\sigma} c^{\dagger}_{-\boldsymbol{k}',\sigma} c_{-\boldsymbol{k}',\sigma} c_{\boldsymbol{k},\sigma}$

In Table 1, $c_{i,\sigma}^{\dagger}(c_{i,\sigma})$ is the creation (annihilation) operator with spin $\sigma = \downarrow$ or \uparrow at site *i*, $n_{i,\sigma} = c_{i,\sigma}^{\dagger}c_{i,\sigma}$, $n_i = n_{i,\downarrow} + n_{i,\downarrow}$, $\langle i,j \rangle$ and $\langle \langle i,j \rangle \rangle$ respectively denote nearest- and next-nearest-neighbor sites. $V_{kk'}$ and $W_{kk'}$ are functions of the real-space Hamiltonian parameters as given in Reference [8]. Applying the BCS formalism [9] to the reciprocal-space Hamiltonian of Table 1, we obtain the following two coupled integral equations [8], which determine the superconducting gap (Δ_{α}) of symmetry $\alpha = p$ or d and the chemical potential (μ_{α}) for a given temperature (T) and electron density (n).

$$\int 1 = -\frac{(V - 4\Lambda_{\alpha})a^2}{4\pi^2} \iint_{1BZ} \frac{[g_{\alpha}(k_x, k_y)]^2}{2E_{\alpha}(\mathbf{k})} \tanh\left(\frac{E_{\alpha}(\mathbf{k})}{2k_BT}\right) dk_x dk_y$$
(2)

$$n-1 = -\frac{a^2}{4\pi^2} \iint_{1BZ} \frac{\varepsilon(\mathbf{k}) - \mu_{\alpha}}{E_{\alpha}(\mathbf{k})} \tanh\left(\frac{E_{\alpha}(\mathbf{k})}{2k_BT}\right) dk_x dk_y$$
(3)

where $\varepsilon(\mathbf{k}) = E_{MF} + 2t_{MF}[\cos(k_x a) + \cos(k_y a)] + 2t'_{MF+}\cos(k_x a + k_y a) + 2t'_{MF-}\cos(k_x a - k_y a)$ is the mean-field dispersion relation, 1BZ stands for the square-lattice first Brillouin zone defined as $\left[-\frac{\pi}{a}, \frac{\pi}{a}\right] \otimes \left[-\frac{\pi}{a}, \frac{\pi}{a}\right]$ with the lattice parameter a, $E_{\alpha}(\mathbf{k}) = \sqrt{[\varepsilon(\mathbf{k}) - \mu_a]^2 + \Delta_{\alpha}^2(\mathbf{k})}$ is the quasiparticle energy with $E_{MF} = \left(\frac{U}{2} + 4V\right)n$, $t_{MF} = t + n\Delta t$ and $t'_{MF\pm} = t'_{\pm} + 2n\Delta t_3^{\pm}$, being $t'_{\pm} = t' \pm \delta'$ and $\Delta t_3^{\pm} = \Delta t_3 \pm \delta_3$. The pairing interaction parameters and symmetry functions for d- and p-wave superconducting states are shown in Table 2.

Table 2. I drameters for <i>a</i> - and <i>p</i> -wave symmetry superconducting states		
<i>d</i> -wave	<i>p</i> -wave	Spin state of pairs
$\Lambda_d = \Delta t_3$	$\Lambda_p = \delta_3$	Singlet: $\frac{1}{\sqrt{2}}(\uparrow\downarrow\rangle - \downarrow\uparrow\rangle)$
$g_d(k_x, k_y) = \cos(k_x a) - \cos(k_y a)$	$g_p(k_x, k_y) = \\ \sin(k_x a) \pm \sin(k_y a)$	Triplet: $\begin{cases} \uparrow\uparrow\rangle\\ \downarrow\downarrow\rangle\\ \frac{1}{\sqrt{2}}(\uparrow\downarrow\rangle + \downarrow\uparrow\rangle) \end{cases}$

Table 2. Parameters for d- and p-wave symmetry superconducting states

The Fermi surface (FS) is given by $\varepsilon(\mathbf{k}) = \mu$, which is an ellipse for $k_x, k_y \ll \frac{\pi}{a}$. The main difficult to solve Equations (2) and (3) comes from their integrands, which are governed by the behavior of $1/E(\mathbf{k})$ and $\tanh[E(\mathbf{k})/2k_{\rm B}T]$. For example, the calculation of the superconducting critical temperature (T_c) , defined by $\Delta_{\alpha}(T_c) = 0$, implies that $E(\mathbf{k})=0$ on the FS. In consequence, sharp peaks appear in the integrand function along FS but they do not diverge since $\tanh(x) = x - \frac{x^3}{3} + \frac{2x^5}{15} - \cdots$. On the other hand, for T=0, $\tanh[E(\mathbf{k})/2k_{\rm B}T]=1$ and sharp peaks appear along the FS when $\Delta_{\alpha} \ll t$. In general, it can be proved that the integrand functions are well defined for all \mathbf{k} -states and do never diverge, even for T=0. In this work, we present a method to solve the mentioned coupled integral equations when sharp peaks are present in the integrand functions.

2. Multi-region integration method

Let us consider two particular cases, whose Hamiltonian parameters are summarized in Table 3. For the *d*-wave case, as occurred in La_{2-x}Sr_xCuO₄, the resulting T_c is 41K. But the *p*-wave superconducting state generally has a lower T_c such as in this case 1.5K observed in strontium ruthenate [2].

2nd International Conference on Mathematical Modeling in Physica	ll Sciences 2013	IOP Publishing
Journal of Physics: Conference Series 490 (2014) 012221	doi:10.1088/174	2-6596/490/1/012221

Table 3. Hamiltonian parameters for p- and d-wave superconductors			
Symmetry	Hamiltonian parameters	Related superconductor	
	$U = V = \delta' = \delta_3 = 0$		
<i>d</i> -wave	$t'/t = -0.06, \Delta t = 0.1 t , \Delta t_3 = 0.055 t $	$La_{2-x}Sr_{x}CuO_{4}$	
	$n = 0.85$ and $\mu = -0.62 t $		
	$U = V = \delta' = \Delta t = \Delta t_3 = 0$		
<i>p</i> -wave	$t'/t = 0.4, \ \delta_3 = 0.13 t $	Sr ₂ RuO ₄	
	$n = 1.1$ and $\mu = 1.07 t $		

In Figures 1 and 2 the integrand functions in a half of 1BZ are respectively shown in color scale for d- and p-wave cases. The numerical integrations of Equations (2) and (3) were performed using a variable-step Simpson's subroutine. These integrations can be efficiently done through an eighth and fourth part of the 1BZ for d- and p-wave cases, by dividing them into six and seven regions, as shown in Figures 1 and 2, respectively.

Figure 1 (Color online) The integrand function in color scale over half of 1BZ for the *d*-wave case. Orange and yellow lines indicate two contour lines obtained with $\varepsilon(\mathbf{k}) = 1.1\mu$ and $\varepsilon(\mathbf{k}) = 0.9\mu$ around the Fermi surface, respectively. Six integration regions in an eighth part of the 1BZ are illustrated in the Figure.

Figure 2 (Color online) The integrand function in color scale over half of 1BZ for the *p*-wave case. Orange and yellow lines indicate two contour lines obtained with $\varepsilon(\mathbf{k}) = 1.25\mu$ and $\varepsilon(\mathbf{k}) = 0.85\mu$ around the Fermi surface, respectively. Seven integration regions in a fourth part of the 1BZ are illustrated in the Figure.

In Figure 3(a), the computing time to calculate the T_c of *p*-wave superconducting states is shown as a function of the interaction strength (δ_3) by integrating over the divided (open circles) and non-divided (open squares) 1BZ. The corresponding calculated T_c in Kelvins is illustrated in Figure 3(b), considering that t = 1 eV. The numerical calculations were performed with an integrating precision of 10⁻⁶ by using a Xeon E5-2670 with 32GB of RAM. Observe that for $\delta_3 = 0.15|t|$, leading to a $T_c < 8$ K, the computing time via the non-divided 1BZ method is almost infinite.

Figure 3 (Color online) (a) Computing time in seconds consumed to integrate Equation (2) using the divided (red open circles) and non-divided (blue open squares) 1BZ as a function of the pairing interaction strength (δ_3). (b) The resulting T_c versus δ_3 for *p*-wave superconductivity obtained using the multi-region integration method.

3. Conclusions

In solid state physics, the study of superconductivity within the BCS formalism leads to two coupled integral equations whose integrands have a sharp behavior around the Fermi surface. By using the standard variable-step Simpson's method it is almost impossible to address very low critical temperature (T_c) superconductivity with *p*-wave symmetry, such as Sr₂RuO₄ with T_c =1.5K. The multi-region integration method allows to solve these equations even for T_c =0.05K. It is worth mentioning that the particular 1BZ division presented in this work could be improved, which is currently in process.

Acknowledgment

This work has been partially supported by CONACyT-103219, CONACyT-131596, UNAM-IN102511, UNAM-IN107411, and the UNAM-UNACAR exchange project. Computations have been performed at KanBalam and NES of DGCTIC, UNAM.

References

- [1] C C Tsuei and J R Kirtley 2000, *Rev Mod Phys* 72 969.
- [2] K Ishida 1998, Nature **396** 658.
- [3] E Dagotto 1994, *Rev Mod Phys* **66** 763.
- [4] I I Mazin and D J Singh 1997, *Phys Rev Lett* **79** 733.
- [5] L A Pérez and C Wang 2002, Solid State Commun 121 669.
- [6] J S Millán, L A Pérez, C Wang 2005, *Phys Lett A* **335** 505.
- [7] R. Matzdorf 2000, *Science* **289** 746.
- [8] L A Perez, J S Millan, C Wang 2005, *Physica B* **359–361** 569.
- [9] M Tinkham 1996, Introduction to Superconductivity, 2nd Ed., New York: McGraw-Hill.