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Anisotropic superconducting states have been studied within a generalized Hubbard model and the BCS

formalism, which leads to two coupled integral equations that determine the chemical potential and the

superconducting gap. In this work, these equations are analyzed. Their integrand functions have sharp

walls at the Fermi surface, which mainly determine the integrals. Furthermore, the chemical potential

obtained from these equations is close to that from the mean-field density of states (DOS) and quite

different to that from non-interacting DOS. Finally, the calculated condensation energy as a function of

doping is compared with experimental data obtained from La2�xSrxCuO4 and Y0.8Ca0.2Ba2Cu3O7�d.

& 2008 Elsevier Ltd. All rights reserved.

The study of correlated electron models that could lead to
anisotropic superconductivity has been highly motivated by the
observation of d-symmetry gaps in hole-doped cuprate super-
conductors [1]. There is a general consensus that in these
materials the Cooper pairs are hole singlets, which are mainly
restricted to move on the CuO2 planes [2,3]. Three-band Hubbard
models have been proposed to describe the hole dynamics on
these planes [4]. These models can be reduced into single-band
ones [5] and the electronic states close to the Fermi energy could
be reasonably well described by a square-lattice single-band tight
binding model with a next-nearest-neighbor hopping [6,7]. Lately,
we have found that the second-neighbor correlated-hopping
interaction (Dt3) is essential in the dx2�y2 wave superconductivity,
despite its relatively small magnitude in comparison with other
interaction terms [8]. In this article, we report the critical
temperature, chemical potential, superconducting gap and con-
densation energy of d-wave superconducting ground states by
means of a generalized single-band Hubbard model [8] containing
nearest (t) and next-nearest neighbor (t0) hoppings, correlated-
hopping interactions between first (Dt) and second (Dt3) neigh-
bors, along with on-site (U) and nearest-neighbor (V) Coulomb
interactions. This Hamiltonian for holes can be written as:
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where cþisðcisÞ is the creation (annihilation) operator with spin
s ¼ k or m at site i, ni;s ¼ cþiscis, ni ¼ ni,m+ni,k, /i,jS and 0i,jT

denote, respectively, nearest-neighbor and next-nearest-neighbor
sites. This Hamiltonian for holes can be written in the momentum
space as:
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where Ns is the total number of sites,

�0ðkÞ ¼ 2t½cosðkxaÞ þ cosðkyaÞ� þ 4t0 cosðkxaÞ cosðkyaÞ,
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being

bðkÞ ¼ 2½cosðkxaÞ þ cosðkyaÞ�,

gðk;k0Þ ¼ 4 cosðkxaÞ cosðk0yaÞ þ 4 cosðk0xaÞ cosðkyaÞ,

and 2q is the wave vector of the pair center of mass. After a
standard Hartree–Fock decoupling of the interaction terms in
Eq. (2), the reduced Hamiltonian for singlet pairing with q ¼ 0 can
be written as:
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and the mean-field dispersion relation is given by
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Applying the BCS formalism [9] to Eq. (3), we obtain the
following two coupled integral equations [8], which determine
the d-wave superconducting gap (Dd) and the chemical potential
(m) for a given temperature (T) and hole density (n):
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where the single excitation energy is given by
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being

DðkÞ ¼ Dd½cosðkxaÞ � cosðkyaÞ�. (8)

In particular, the critical temperature (Tc) is determined by
Dd(Tc) ¼ 0.

The main difficulty to solve Eqs. (5) and (6) comes from the
numerical evaluation of the corresponding integrals. For example,
in the case of Eq. (2), the integrand function is given by
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at T ¼ Tc. The contour plot of F(kx,ky) is shown in Fig. 1 for U ¼ 6|t|,
V ¼ 0, t0 ¼ 0.43|t|, Dt ¼ 0.5|t|, Dt3 ¼ 0.1|t|, n ¼ 0.3, kBTc ¼ 0.024|t|,
and m ¼ �0.711|t|. Notice that the main contribution to the
integral comes from the sharp wall located at the Fermi surface
defined by e(k) ¼ m. Then, the superconducting ground-state
properties are mainly determined by the Fermi surface. This fact
is in accordance to the BCS theory [9]. Furthermore, the integrals
can be efficiently calculated by dividing the Brillouin zone into
three regions. One corresponds to an area of a certain width
around the Fermi surface comprising the high values of the
integrand (illustrated by the clear region in Fig. 1), and the other

two of them correspond to the inside and outside sections. It is
worth mentioning that the integrands in Eqs. (5) and (6) do not
diverge, since tanh(x)/x-1 as x-0.

In Fig. 2(a) the chemical potential (m), Fig. 2(b) the critical
temperature (Tc), and Fig. 2(c) the superconducting gap at T ¼ 0
(Dd) are shown as functions of the hole density (n) for t0 ¼ 0.43|t|,
V ¼ 0, Dt ¼ 0.5|t|, Dt3 ¼ 0.1|t|, and arbitrary U, obtained by using
the mean-field density of states (DOS) (open squares), the single-
particle DOS (open circles), and by solving the coupled Eqs. (5)
and (6) (solid squares). In all the calculations it is considered that
t ¼ �1. Notice that m, Tc, and Dd obtained from the coupled Eqs. (5)
and (6) are very close to those from the mean-field DOS and quite
different to solutions obtained from the non-interacting DOS. This
fact allows reducing significantly the computing time by calculat-
ing the chemical potential from the mean-field DOS and inserting
it in Eq. (2), i.e., it is only necessary to solve one equation instead
of two coupled integral ones. In addition, observe that both the
maxima of Tc(n) and Dd(n) are located at low hole concentrations
close to the experimental results for high-Tc superconductors [10].

In this work, we also calculate the condensation energy per site
(Wc) of the d-wave superconducting ground state, which is
defined as the difference between the energy per site in the
normal state at Tc (Wn), and the superconducting energy per site at
T ¼ 0 (Ws), i.e., Wc ¼Wn�Ws. This quantity can be determined
experimentally from electronic specific heat measurements
[11,12]. In the generalized Hubbard model, the energy per site of
the d-channel superconducting ground state (Ws), at T ¼ 0, is
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Fig. 1. Contour plot of F(kx,ky) on the first Brillouin zone for a system with U ¼ 6|t|,

V ¼ 0, t0 ¼ 0.43|t|, Dt ¼ 0.5|t|, Dt3 ¼ 0.1|t|, n ¼ 0.3, kBTc ¼ 0.024|t|, and

m ¼ �0.711|t|.
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Fig. 2. (a) Chemical potential (m), (b) critical temperature (Tc), and (c) d-wave

superconducting gap (Dd) as functions of the hole density (n) obtained from two

equations (solid squares), mean-field DOS (open squares), and one-particle DOS

(open circles) for t0 ¼ 0.43|t|, V ¼ 0, Dt ¼ 0.5|t|, Dt3 ¼ 0.1|t|, and arbitrary U.
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where Dd and m are obtained from Eqs. (5) and (6). Likewise, Wn is
obtained from Eq. (10) by taking Dd ¼ 0 together with the
appropriate m.

In Fig. 3, the calculated Wc as a function of the doping
for t0 ¼ 0.43|t|, V ¼ 0, Dt ¼ 0.5|t|, Dt3 ¼ 0.1|t|, and arbitrary U

(solid circles), is shown in comparison with the experimental
data obtained from La2�xSrxCuO4 [11] (open circles) and
Y0.8Ca0.2Ba2Cu3O7�d [12] (open squares). Notice that the theore-
tical Wc has the same behavior as the experimental results.
A more detailed comparison between the theory and the
experimental data requires the knowledge of the relationship
between the hole density (n) and the doping (x or d) in the
corresponding material.

In summary, we have presented a single-band generalized
Hubbard model on a square lattice, which leads to two coupled

integral equations within the BCS formalism. These integrals can
be efficiently calculated by isolating the region around the Fermi
surface. Moreover, we have shown that the superconducting
chemical potential can be safely approximated by that obtained
from the mean-field DOS and then the computing time to
calculate Tc and Dd can be significantly reduced, since it is only
necessary to self-consistently solve a single equation. The results
reveal the key participation of Dt3 in the appearance of d-wave
superconductivity, in spite of its small strength in comparison
with other terms of the model. It would be worth mentioning
that the thermodynamic properties of d-wave superconducting
ground states are independent of U. Hence, the use of BCS mean-
field approach is justified, since all the Coulomb interaction
terms in the model are small in comparison with the single-
particle bandwidth. The critical temperature and the d-wave
superconducting gap show non-monotonic behaviors as a func-
tion of the hole concentration and the maximum Tc is obtained
at a hole concentration close to the experimental results.
Finally, the theoretical condensation energy as a function
of the doping presents a good agreement with the experimental
data.
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Fig. 3. Condensation energy per site (Wc) as a function of the hole density (n) for

the same system in Fig. 2 (solid circles), compared with the experimental data

obtained from La2�xSrxCuO4 [11] (open circles) and Y0.8Ca0.2Ba2Cu3O7�d [12] (open

squares), assuming that x ¼ d ¼ n.
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