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Resumen
Hay modelos tomados de la física que se han utilizado para explicar la formación de coaliciones o bloques de agentes. Estos 
modelos son útiles para entender cómo las alianzas (en guerras, partidos políticos, etc.) tienden a agrupar amigos en mismos 
bloques y a enemigos en bloques separados minimizando la frustración  total. Todos estos modelos suponen interacciones 
recíprocas entre los agentes, ya que este es el caso más común en la física. Sin embargo, se destaca el importante hecho de 
que las interacciones humanas no son, en general, de reciprocidad, es decir, no existe una “tercera ley de Newton social”. 
Aquí  mostramos que este defecto fundamental de los modelos de la coalición puede ser resuelto mediante la construcción 
de interacciones simétricas efectivas (en las que los modelos físicos bien conocidos funcionan) a partir de interacciones 
no recíprocas. En los casos de varios modelos con afinidades asimétricas se proponen varias estrategias cualitativas para 
lograr interacciones simétricas efectivas. En varias de estas estrategias empleamos el valor medio simétrico en el que las 
afinidades compiten entre sí para mantener cierta información parcial de las tendencias asimétricas.

Palabras clave: Dinámica de sistemas sociales, estructuras y organización de sistemas complejos, vidrios de espín y otros 
magnetos aleatorios
 
Abstract
There are models taken from physics that have been used to explain the formation of coalitions or blocks of agents. Such 
models are useful to understand how alliances (in wars, political parties, etc.) tend to cluster friends in same blocks and 
enemies in separate blocks by minimizing the total frustration. All of these models assume reciprocal interactions between 
agents, since this is the most common case in physics. However, we point out the important fact that human interactions 
are, in general, not reciprocal, i.e., there is no “social Newton´s third law”. Here we show that this fundamental flaw of 
coalition models can be solved by constructing effective symmetric interactions (in which well-known physical models 
work) from non-reciprocal interactions.  For various model cases with asymmetrical propensities we propose several 
qualitative strategies to achieve effective symmetric interactions. In many of these strategies we employ the symmetric 
average value in which  propensities compete in strength to keep some partial information of the asymmetrical propensities.

Keywords: Dynamics of social systems, Structures and organization in complex systems, Spin glasses and other random 
magnets.
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Introducción
Modeling conflicts and cooperation among social agents 
is an important research subject due to its relevance for 
understanding key aspects of human organization3 . In 
the last years there has been a renewed interest in this 
field due to three factors; i) the recognition of human 
societies as complex systems, ii) new models employing 
physical concepts (sociophysics and econophysics), and 
iii) powerful computers to simulate large systems. 

Since there exist complex structures in familiar, cultural, 
monetary, commercial, political, military systems, etc. 
that clearly exhibit the existence of blocks, here we ad-
dress the formation of coalitions or blocks of agents at 
a general level. The main ideas behind these models are 
two-fold; the existence of bilateral affinities or propensi-
ties among agents or actors and some kind of algorithms 
that leaders (chiefs or leaders of states, political parties, 
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or any other set of people) employ in order to take deci-
sions. From the point of view of complexity theory, the 
processes of taking decisions or assuming responsibili-
ties are in fact emerging properties of complex networks. 

Generally, in social sciences, it is desirable to avoid 
conflicts, dissatisfactions and frustrations. For instance, 
frustration can be defined as the prevention of the pro-
gress, success, or fulfillment of something. “Frustration” 
in our systems has a very precise meaning arising in two 
cases; when friends are in different blocks or alliances, 
and when two enemies are clustered together.

So first we will employ bilateral “propensities” or “affi-
nities” that are defined to measure or estimate friendship 
and enmity between agents. Then our goal is to find the 
optimum partition of the set of agents trying to make 
clusters (as much as possible) of friends in same subsets 
or blocks and to set enemies in separate blocks. The key 
point is to minimize the total frustration by optimizing 
the partition of the whole set of agents in blocks. 

We will employ bilateral “propensities” or “affinities” 
that are defined to measure or estimate friendship and 
enmity between agents, and then we look for guidance 
in physical systems to minimize frustration, since in phy-
sics many laws can be written as a minimization of some 
variables. Geometrical frustration is an important feature 
in magnetism. It stems from the topological arrangement 
of magnetic entities or spins with competing magnetic 
coupling parameters. For example, ferromagnetic inte-
ractions between two magnetic entities or spins tend 
to align magnetic moments parallel to each other, and 
antiferromagnetic interactions tend to align magnetic 
moments antiparallel to each other. Thus, it is possible 
that a magnet experiences opposite competing influences 
from neighbouring magnets. If there is ferromagnetic 
interaction between magnets A and B and they are anti-
parallel to each other (due to stronger interactions of A 
and B with other magnets), then one says that there exists 
magnetic frustration. That is, the presence of conflicting 
interactions forbids simultaneous minimization of the 
interaction energies.

In particular, spin glasses (Nishimori, 2001) are disor-
dered materials that exhibit a high magnetic frustration 
due to competing interactions. Coalition forming in so-
cial sciences has been studied using concepts from the 
theory of spin glasses (Florian & Galam, 2000; García et 
al., 2007; Samaniego-Steta et al., 2008). The analog of 

the magnetic coupling parameter in social systems is the 
propensity or affinity between agents. The tendency of 
two social agents either to be in conflict or to be in diffe-
rent blocks (antiferromagnetic) or to cooperate or to be 
in the same block (ferromagnetic) is simulated similarly 
to magnetic systems. These models have been applied to 
the dismembering of Yugoslavia (Florian & Galam, 2000) 
and to the Iraq invasion (García et al., 2007; Samaniego-
Steta et al., 2008) in the year 2003, where it is assumed 
that different political opinions or regimes, religions, 
ethnic groups, etc. tend to split agents in different blocks. 
In García et al. (2007) and Samaniego-Steta et al. (2008) 
it is also shown that in some cases the theory has to go 
beyond bilateral propensities in order to reproduce the 
main features of the required interactions, and thus it 
must include three-body interactions.

In physics almost all models assume a reciprocal inte-
raction, i.e., a kind of Newton´s third law. However, hu-
man relations are not reciprocal. In general, the affinity 
or propensities (empathy, affection, friendship, hatred, 
love, amount of money owed to other person, etc.) are not 
symmetric. For instance, negative relationships may have 
more importance than positive relationships to unders-
tand outcomes in the context of social networks in work 
organizations (Labianca & Brass, 2006). In decision theory 
or in artificial intelligence (Bayesian or belief networks), 
asymmetric networks are employed (Hertz et al., 1991). 

On the other hand, as mentioned in Galam & Vinogra-
dova (2002), there exist instabilities in  alliances when 
three agents are involved (conflicting triangular net-
work), as in the historical examples such as the triangle 
of England, Spain and France, the countries of the who-
le European Union, the Soviet and the Western camps 
(Galam & Vinogradova, 2002). These cases illustrate the 
existence of instability in the formation of coalitions du-
ring a significant period of their history.

Usually, bilateral propensities have been modeled 
as symmetrical (Florian & Galam, 2000; García et al., 
2007; Samaniego-Steta et al., 2008), that is, propensity 
Pab experienced from agent a towards agent b  is equal 
to Pba , but in real social systems, propensities are ge-
nerally asymmetrical (Pab ≠ Pba). Here we propose that 
asymmetrical propensities can be substituted by effective 
symmetrical propensities in order to employ well-known 
physical symmetrical-propensity models.

The layout of this work is the following. In Sect. II we 
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present the theory of optimizing strategic blocks with 
symmetric bilateral propensities. In Sect. III we discuss 
several social scenarios or strategies with asymmetrical 
propensities that can be converted into simpler systems 
with symmetrical propensities, and finally Sect. IV is 
devoted to concluding remarks.

I.Optimizing partitions to minimize social 
frustrations in the symmetric model

We use two variables; one is the “bilateral affinity” or 
“propensity” Pij  between agents i and  j and the other is 
their possible “distance” dij between them. In this section 
bilateral we assume that propensities are symmetrical, 
that is, propensity Pij experienced from agent i towards 
agent j is equal to Pji   (Pij = Pji). The values of the affinity 
are defined for convenience in the interval [-1,1]. If the 
affinity is positive, then the individuals i, j have a friendly 
relationship and if it is negative it is unfriendly. It must 
be noticed that some of these affinities may not be mea-
sured very objectively or accurately, so these variables 
belong to the realm of fuzzy mathematics (Ragin, 2008).

In a given set our goal is to find the optimum partition 
trying to cluster friends in same blocks or subsets and 
enemies in separate blocks or subsets. Ideally, all friends 
will be together, and enemies will always be in separate 
blocks, but in general, some frustration is unavoidable 
(see Fig. 1). 

We now present the formalism to minimize a variable 
called total frustration. The family of subsets Ai of a set 
A is a partition if and only if:

                                        (1)  
                                                                                                                   

The set of agents will be divided in a partition accor-
ding to their relative affinities or propensities. We use 
two variables; bilateral affinity or propensity Pij  between 
agents i and  j, and their possible “relative distance” dij 

between them. The values of the affinity can be scaled 
for convenience in the interval [-1,1]. If the total affinity is 
positive; Pij>0, then the individuals i, j have a friendly re-
lationship and if it is negative; Pij<0, then it is unfriendly. 

The absolute value of a bilateral propensity represents 
the intensity, being neutral if it is zero. In the usual cases 
studied before, the propensities are symmetric, that is, 
Pij = Pji. It must be noticed that these affinities may not be 
very precise, so fuzzy mathematics could be used for the-
se situations (Ragin, 2008). When two agents are in the 
same block, their relative distance will be zero, and will 
be nonzero – the particular value it is not important – if 
they belong to different subsets or blocks. Then relative 
distances dij are defined to take only two values;  dij = 0 
if  i and  j are in the same block, and dij = 1 if  i and  j are 
in different blocks.

Figure 1. Example of agents partitioned into two blocks

 

Let us suppose that propensities are such that agents 
3 and 5 are friendly, and agent 5 is enemy of agent 
1. Agent 5 suffers  two sources of frustration; friend 
in another block and sharing block with unfriendly 
agent 1.

 
Source: own elaboration.

We define the frustration between these elements i 
and  j as

             Eij = Pij dij             (2)
    
Now, let us analyze the values of Eij for two different 

combinations of distances (i. e. belonging or not to the 
same block) and propensities:

Notice that, by construction, when Pij > 0, the minimum 
value of Eij occurs (and it is 0) when friendly elements i, 
j are in the same block, and when  Pij < 0 the minimum 
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 Notice that, by construction, when Pij > 0, the minimum value of Eij occurs (and 
it is 0) when friendly elements i, j are in the same block, and when  Pij < 0 the 
minimum value of Eij occurs (and it is -|Pij|) when the elements i,j are enemies. In 
both cases, A and B, the minimum value of Eij is given by the value of dij that yields 
the correct behavior; namely friends in the same block and, on the contrary, in 
different blocks, if they are enemies. Thus, minimizing the frustration  Eij  maximizes 
the  agent “satisfaction” yielding the desired result. 
 To generalize Eq. 2 for more than two elements, we can define the total 
frustration ET as: 

ET  Eij
i j
  Pijdij

i j
 ,   (3) 

where we recall that in this section the propensities are symmetric, that is, Pij = Pji.
For a given a set of propensities, each partition is uniquely defined by the set {dij}
yielding a particular value of ET.  As in the simplest case of only two agents, the set 
{dij} (the ouput) that minimizes  the total frustration ET in Eq. 3 is the optimal one for 
a given a set of propensities {Pij} (the input). Now we can understand why calling E a 
measure of frustration is really appropriate. The strategy of minimizing total 
frustration always yields the expected optimal results; states with less frustration 
mean more friends sharing blocks and more enemies in different blocks. Of course, it 
is possible to obtain partitions or states with the same energy (degenerate states), 
including those states with minimum energy.  

II.  Modeling asymmetric propensities to make them symmetrical. 

Now we deal with systems involving more realistic asymmetric propensities. We 
already mentioned that in the past the study of the formation of block formation has 
been modeled assuming all propensities are symmetrical, and secondly, in real social 
systems propensities are generally asymmetrical, in contrast to most cases of 
interactions in physical sciences. The action-reaction Newton´s third law states that 
the mutual forces of action and reaction between two bodies are equal in magnitude 
and opposite in direction. However, human interactions are not reciprocal, i.e., there 
is no “social Newton´s third law”. In these cases Eq. 3 cannot be used since there are 
two unequal propensities linking two given agents. However, one can try to minimize 
the local frustration of a given agent by analyzing all his/her propensities with other 
agents, but the total frustration ET cannot be defined in the case of asymmetric 
propensities. Then we have to look for possible solutions for a problem that formally 
does not have a simple solution. These facts are well known in the analog case of 
magnetic interactions, such as in spin glass systems [2].  
In order to  model symmetrically something that in principle is not symmetric, we can 
say that, first, there is no simple solution to this problem,  so we tried to symmetrize 
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value of Eij occurs (and it is -|Pij|) when the elements i,j 
are enemies. In both cases, A and B, the minimum value 
of Eij is given by the value of dij that yields the correct 
behavior; namely friends in the same block and, on the 
contrary, in different blocks, if they are enemies. Thus, 
minimizing the frustration  Eij  maximizes the  agent “sa-
tisfaction” yielding the desired result.

To generalize Eq. 2 for more than two elements, we 
can define the total frustration ET  as:

   

A. If Pij  0, Pij  Pij . Then, Eij 
0  Pij  0,ij friends

1 Pij  Pij ,ij enemies
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B. If Pij  0, then Pij  Pij . Then, 
 
 

0 0,

1 | |,

ij

ij

ij ij

P ij friends
E

P P ij enemies

    
   

 Notice that, by construction, when Pij > 0, the minimum value of Eij occurs (and 
it is 0) when friendly elements i, j are in the same block, and when  Pij < 0 the 
minimum value of Eij occurs (and it is -|Pij|) when the elements i,j are enemies. In 
both cases, A and B, the minimum value of Eij is given by the value of dij that yields 
the correct behavior; namely friends in the same block and, on the contrary, in 
different blocks, if they are enemies. Thus, minimizing the frustration  Eij  maximizes 
the  agent “satisfaction” yielding the desired result. 
 To generalize Eq. 2 for more than two elements, we can define the total 
frustration ET as: 

ET  Eij
i j
  Pijdij

i j
 ,   (3) 

where we recall that in this section the propensities are symmetric, that is, Pij = Pji.
For a given a set of propensities, each partition is uniquely defined by the set {dij}
yielding a particular value of ET.  As in the simplest case of only two agents, the set 
{dij} (the ouput) that minimizes  the total frustration ET in Eq. 3 is the optimal one for 
a given a set of propensities {Pij} (the input). Now we can understand why calling E a 
measure of frustration is really appropriate. The strategy of minimizing total 
frustration always yields the expected optimal results; states with less frustration 
mean more friends sharing blocks and more enemies in different blocks. Of course, it 
is possible to obtain partitions or states with the same energy (degenerate states), 
including those states with minimum energy.  

II.  Modeling asymmetric propensities to make them symmetrical. 

Now we deal with systems involving more realistic asymmetric propensities. We 
already mentioned that in the past the study of the formation of block formation has 
been modeled assuming all propensities are symmetrical, and secondly, in real social 
systems propensities are generally asymmetrical, in contrast to most cases of 
interactions in physical sciences. The action-reaction Newton´s third law states that 
the mutual forces of action and reaction between two bodies are equal in magnitude 
and opposite in direction. However, human interactions are not reciprocal, i.e., there 
is no “social Newton´s third law”. In these cases Eq. 3 cannot be used since there are 
two unequal propensities linking two given agents. However, one can try to minimize 
the local frustration of a given agent by analyzing all his/her propensities with other 
agents, but the total frustration ET cannot be defined in the case of asymmetric 
propensities. Then we have to look for possible solutions for a problem that formally 
does not have a simple solution. These facts are well known in the analog case of 
magnetic interactions, such as in spin glass systems [2].  
In order to  model symmetrically something that in principle is not symmetric, we can 
say that, first, there is no simple solution to this problem,  so we tried to symmetrize 

(3)

where we recall that in this section the propensities are 
symmetric, that is, Pij = Pji. 

For a given set of propensities, each partition is uni-
quely defined by the set {dij} yielding a particular value 
of ET.  As in the simplest case of only two agents, the set 
{dij} (the ouput) that minimizes  the total frustration ET in 
Eq. 3 is the optimal one for a given set of propensities {Pij} 
(the input). Now we can understand why calling E a mea-
sure of frustration is really appropriate. The strategy of 
minimizing total frustration always yields the expected 
optimal results; states with less frustration mean more 
friends sharing blocks and more enemies in different 
blocks. Of course, it is possible to obtain partitions or 
states with the same energy (degenerate states), inclu-
ding those states with minimum energy. 

II. Modeling asymmetric propensities to 
make them symmetrical

Now we deal with systems involving more realistic as-
ymmetric propensities. We already mentioned that in 
the past the study of block formation has been modeled 
assuming all propensities are symmetrical, and secondly, 
in real social systems propensities are generally asymme-
trical, in contrast to most cases of interactions in physical 
sciences. Newton´s action-reaction third law states that 
the mutual forces of action and reaction between two 
bodies are equal in magnitude and opposite in direc-
tion. However, human interactions are not reciprocal, 
i.e., there is no “social Newton´s third law”. In these 
cases Eq. 3 cannot be used since there are two unequal 

propensities linking two given agents. However, one can 
try to minimize the local frustration of a given agent 
by analyzing all his/her propensities with other agents, 
but the total frustration ET cannot be defined in the case 
of asymmetric propensities. Then we have to look for 
possible solutions for a problem that formally does not 
have a simple solution. These facts are well known in 
the analog case of magnetic interactions, such as in spin 
glass systems (Florian & Galam, 2000). 

In order to model something symmetrically that in 
principle is not symmetric, we can say that, first, the-
re is no simple solution to this problem, so we tried to 
symmetrize propensities, in such a way that the new 
symmetric variables do contain information on the ori-
ginal asymmetry problem. Furthermore, depending on 
the particular problem, we propose different ways to 
pass that asymmetry information to the new symmetric 
propensities or affinities. Using lower-case or smaller 
minuscule letters (p) for asymmetric propensities and 
upper-case or majuscule letters (P) for asymmetric pro-
pensities, let us now discuss various cases:

Average propensities. For example, if David loves or 
is attracted to María with a strength of 0.8 (pij = 0.8) but 
María hates him or dislikes him with a strength of 0.2 (pji 
= - 0.2), then David wants to share the same block with 
her, but she does not want to share a block with him. 
Then, how can we satisfy both of them? Setting them in 
either the same or different blocks will not satisfy them 
simultaneously. However, their propensities imply that 
in this case love overcomes hate, so the average (0.8 - 
0.2)/2 = 0.3 represents the total feeling. Therefore, the 
first choice is to take the average

propensities, in such a way that the new symmetric variables  they do contain 
information on the original asymmetry problem. Furthermore, depending on the 
particular problem, we propose different ways to pass that asymmetry information to 
the new symmetric propensities or affinities. Using lower-case or smaller minuscule 
letters (p) for asymmetric propensities and upper-case or majuscule letters (P) for 
asymmetric propensities, let us now discuss various cases: 

Average propensities. For example, if David loves or is attracted to María with a 
strength of 0.8 (pij = 0.8) but María hates him or is repulsed by him with a strength of 
0.2 (pji = - 0.2), then David wants to share the same block with she, but she does not 
want to share a block with him. Then, how can we satisfy both of them? Setting them 
in either the same or different blocks will not satisfy them simultaneously. However, 
their propensities imply that in this case love overcomes hate, so the average (0.8 - 
0.2)/2 = 0.3 represents the total feeling. Therefore, the first choice is to take the 

average Pab 
pab  pba

2
, yielding  finally Pab = Pba. This means that largest 

propensity wins but it loses some strength by subtracting the related propensity 
(opposite sign). In the case that pab and pba share the same sign, then the average 
keeps the same sign. This is the simplest and more logical choice to map asymmetric 
propensities system into symmetrical ones in order to employ Eq. 3.  
This  case is the most natural way to implement  symmetric propensities, because i) 
two  positive propensities reinforce each other (if David loves María and she loves 
him too, then their symmetric love is stronger); ii) two  negative propensities reinforce 
each other (if David hates María and she hates him too, then their symmetric hate is 
stronger), and iii) propensities of different sign compete against  each other (if David 
loves María, but she hates him, then the stronger feeling will prevail in a symmetric 
fashion). Notice how in this way we are able to keep the most important features of 
the asymmetric interaction. 
  Now we discuss other possibilities of possible internal dynamics that yield 
interesting results. In some of them some parameters could be introduced to go 
beyond bilateral propensities in order to model   “global” environments. 
Copying the highest propensity. If we suppose that the system dynamics reinforces the 
stronger affinity, then we could imagine that the weaker affinity copies the stronger 
affinity:  

, if
, if

ab ab ba
ab

ba ba ab

p p p
P

p p p


  
,

where Pab is the symmetric affinity, and Pab = Pba .
Exaggeration. Sometimes agents can be carried away by emotional excesses or tend 
to exaggerate their propensities. For such situations, we can define a constant c, above 
which propensities lead to an effective propensity  Pab larger than the average, with 
the sign of the largest component: 

sgn( ) , if or [ 1, ] [ ,1]
2

, in other case
2

ab ba
ab ba ab ba

ab
ab ba

p p
p p p p c c

P
p p

 
     




,

where Pab is the symmetric affinity, and Pab = Pba.
Preference. Some propensities can be altered depending on an added parameter k:

  , yielding  finally Pab = Pba

 This means that largest propensity wins but it loses some 
strength by subtracting the related propensity (opposite 
sign). In case that pab and pba share the same sign, then 
the average keeps the same sign. This is the simplest 
and more logical choice to map asymmetric propensities 
systems into symmetrical ones in order to employ Eq. 3. 

This  case is the most natural way to implement  sym-
metric propensities, because i) two  positive propensities 
reinforce each other (if David loves María and she loves 
him too, then their symmetric love is stronger); ii) two  
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negative propensities reinforce each other (if David hates 
María and she hates him too, then their symmetric hate is 
stronger), and iii) propensities of different sign compete 
against  each other (if David loves María, but she hates 
him, then the stronger feeling will prevail in a symmetric 
fashion). Notice how in this way we are able to keep the 
most important features of the asymmetric interaction.

Now we discuss other possibilities of possible inter-
nal dynamics that yield interesting results. In some of 
them some parameters could be introduced to go be-
yond bilateral propensities in order to model “global” 
environments.

Copying the highest propensity. If we suppose that the 
system dynamics reinforces the stronger affinity, then 
we could imagine that the weaker affinity copies the 
stronger affinity: 

 where Pab is the symmetric affinity, and Pab = Pba .

Exaggeration. Sometimes agents can be carried away by 
emotional excesses or tend to exaggerate their propen-
sities. For such situations, we can define a constant c, 
above which propensities lead to an effective propensity 
Pab larger than the average, with the sign of the largest 
component:

where Pab is the symmetric affinity, and Pab = Pba.

Preference. Some propensities can be altered depending 
on an added parameter k:

and if Pab exceeds the value 1, then it is set equal to 1. 
Here Pab is the symmetric affinity, and Pab = Pba. Also the 
case of k with opposite sign is a possibility as an added 
parameter. 

Average with bound. It is possible to impose a bound to 
increase or decrease propensities. For example, workers 
could be required to have positive affinities, in order to 
relate among all amicably. Values are averaged and a 
minimum bound c is defined, so if the average cannot 
be less than c:

 
where Pab is the symmetric affinity, and Pab = Pba ..

III.Concluding remarks

We employ the general strategy of minimizing the dissatis-
faction or frustration of agents, who prefer to be in blocks 
or groups with agents who have positive affinity avoiding 
those with whom they have negative propensities.

The most important contribution of this paper is to 
simplify the formation of blocks of complex realistic sys-
tems with asymmetrical propensities. For this purpose, 
we presented several qualitative models that illustrate 
some possible features in social systems. These featu-
res can be mixed or combined to better model specific 
situations. 

However, there exists a rich spectrum of social situa-
tions that cannot be fully described here, and that could 
be very interesting to study more systematically. 

Let us notice, for instance, that the average symmetric 
propensity between two agents vanishes (first case in 
Sect. II above). This result could arise from the following 
two very different situations. First, if element a loves b 
with the same strength that b hates a, then “feelings” 
cancel each other, thus finally producing a lot of internal 
“tension”. Secondly, if there are no feelings between both 

propensities, in such a way that the new symmetric variables  they do contain 
information on the original asymmetry problem. Furthermore, depending on the 
particular problem, we propose different ways to pass that asymmetry information to 
the new symmetric propensities or affinities. Using lower-case or smaller minuscule 
letters (p) for asymmetric propensities and upper-case or majuscule letters (P) for 
asymmetric propensities, let us now discuss various cases: 

Average propensities. For example, if David loves or is attracted to María with a 
strength of 0.8 (pij = 0.8) but María hates him or is repulsed by him with a strength of 
0.2 (pji = - 0.2), then David wants to share the same block with she, but she does not 
want to share a block with him. Then, how can we satisfy both of them? Setting them 
in either the same or different blocks will not satisfy them simultaneously. However, 
their propensities imply that in this case love overcomes hate, so the average (0.8 - 
0.2)/2 = 0.3 represents the total feeling. Therefore, the first choice is to take the 

average Pab 
pab  pba

2
, yielding  finally Pab = Pba. This means that largest 

propensity wins but it loses some strength by subtracting the related propensity 
(opposite sign). In the case that pab and pba share the same sign, then the average 
keeps the same sign. This is the simplest and more logical choice to map asymmetric 
propensities system into symmetrical ones in order to employ Eq. 3.  
This  case is the most natural way to implement  symmetric propensities, because i) 
two  positive propensities reinforce each other (if David loves María and she loves 
him too, then their symmetric love is stronger); ii) two  negative propensities reinforce 
each other (if David hates María and she hates him too, then their symmetric hate is 
stronger), and iii) propensities of different sign compete against  each other (if David 
loves María, but she hates him, then the stronger feeling will prevail in a symmetric 
fashion). Notice how in this way we are able to keep the most important features of 
the asymmetric interaction. 
  Now we discuss other possibilities of possible internal dynamics that yield 
interesting results. In some of them some parameters could be introduced to go 
beyond bilateral propensities in order to model   “global” environments. 
Copying the highest propensity. If we suppose that the system dynamics reinforces the 
stronger affinity, then we could imagine that the weaker affinity copies the stronger 
affinity:  
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where Pab is the symmetric affinity, and Pab = Pba .
Exaggeration. Sometimes agents can be carried away by emotional excesses or tend 
to exaggerate their propensities. For such situations, we can define a constant c, above 
which propensities lead to an effective propensity  Pab larger than the average, with 
the sign of the largest component: 
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where Pab is the symmetric affinity, and Pab = Pba.
Preference. Some propensities can be altered depending on an added parameter k:
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interesting results. In some of them some parameters could be introduced to go 
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where Pab is the symmetric affinity, and Pab = Pba.
Preference. Some propensities can be altered depending on an added parameter k:
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and if Pab exceeds the value 1, then it is set equal to 1. Here Pab is the symmetric 
affinity, and Pab = Pba. Also the case of k with opposite sign is a possibility as an 
added parameter.  

Average with bound. It is possible to impose a bound to increase or decrease 
propensities. For example, workers could be required to have positive affinities, in 
order to relate among all amicably. Values are averaged and a minimum bound c is 
defined, so if the average cannot be less than c:
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where Pab is the symmetric affinity, and Pab = Pba ..

III. Concluding remarks 
We employ the general strategy of minimizing the dissatisfaction or frustration of 
agents, who prefer to be in blocks or groups with agents who have positive affinity 
avoiding those with whom they have negative propensities. 
The most important contribution of this paper is to simplify the formation of blocks of 
complex realistic systems with asymmetrical propensities. For this purpose, we 
presented several qualitative models that illustrate some possible features in social 
systems. These features can be mixed or combined to better model specific situations.  
However, there exists a rich spectrum of social situations that cannot be fully 
described here, and that could be very interesting to study more systematically.  
Let us notice, for instance, that the average symmetric propensity between two agents 
vanishes (first case in Sect. III above). This result could arise from the following two 
very different situations. First, if element a loves b with the same strength that b hates 
a, then “feelings” cancel each other, thus finally producing a lot of internal “tension”. 
Secondly, if there are no feelings between both elements a and b then the relation is of 
total “indifference”. In both cases Pab = Pba = 0, despite of being totally different! 
Obviously, in this case, one could count all the vanishing (or very small) average 
symmetric propensities in the propensities matrix, and then perform further analysis 
to evaluate both the total tension and indifference in the system. 

Given the richness of real social situations, this work is a contribution that gives very 
general guidelines for a realistic description of the formation of strategic alliances or 
blocks. The procedure is simple; in order to find the optimal partition, we map a given 
set of asymmetrical propensities describing several social scenarios or strategies into a 
new set with symmetrical propensities and then minimize the corresponding total 
frustration given by Eq. 3. In this way, the strategy is to minimize the dissatisfaction 
or frustration of agents, who prefer to be in blocks or groups with agents who have 
positive affinity avoiding those with whom they have negative propensities.   
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symmetric propensities in the propensities matrix, and then perform further analysis 
to evaluate both the total tension and indifference in the system. 

Given the richness of real social situations, this work is a contribution that gives very 
general guidelines for a realistic description of the formation of strategic alliances or 
blocks. The procedure is simple; in order to find the optimal partition, we map a given 
set of asymmetrical propensities describing several social scenarios or strategies into a 
new set with symmetrical propensities and then minimize the corresponding total 
frustration given by Eq. 3. In this way, the strategy is to minimize the dissatisfaction 
or frustration of agents, who prefer to be in blocks or groups with agents who have 
positive affinity avoiding those with whom they have negative propensities.   
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elements a and b then the relation is of total “indiffe-
rence”. In both cases Pab = Pba = 0, despite being totally 
different! Obviously, in this case, one could count all 
the vanishing (or very small) average symmetric pro-
pensities in the propensities matrix, and then perform 
further analysis to evaluate both the total tension and 
indifference in the system.

Given the richness of real social situations, this work 
is a contribution that gives very general guidelines for a 
realistic description of the formation of strategic allian-
ces or blocks. The procedure is simple; in order to find 
the optimal partition, we map a given set of asymmetri-
cal propensities describing several social scenarios or 
strategies into a new set with symmetrical propensities 
and then minimize the corresponding total frustration 
given by Eq. 3. In this way, the strategy is to minimize 
the dissatisfaction or frustration of agents, who prefer 
to be in blocks or groups with agents who have positive 
affinity avoiding those with whom they have negative 
propensities.  

Although in the case of asymmetric propensities the 
total frustration ET cannot be calculated, however, one 
can calculate the local frustration of a given agent by 
analyzing all their propensities with other agents. For 
example we can add up all the positive propensities 
experienced by an agent and also all the positive pro-
pensities experienced by that agent. The sums will give 
important information on how much that agent is locally 
“loved or hated” and can lead to novel future investi-
gations. 

We hope that this work can help to understand, mo-
del and resolve many situations that arise in various 
social fields, such as schools, working places, political 
organizations, etc. 
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