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The electrical conductivity of Fibonacci lattices at zero temperature is studied by means of
Kubo and Landauer formalisms, in which a tight-binding Hamiltonian of the system is con-
sidered. The localization of the eigenstates is quantified by using the participation ratio and
the Lyapunov exponent. The results show a close behavior between the dc conductivity and
the Lyapunov exponent. In addition, the effects of the boundary conditions on the ac conduc-
tivity are also analyzed in detail.

1. Introduction

Since the discovery of quasicrystalline alloys, the electronic localization in
these aperiodic materials has been controversial. Nowadays, there is a
consensus that the eigenvalue spectrum produced by a quasiperiodic potential is
singular continuous and the associated eigenfunctions are critical'. Furthermore,
the level statistics show an inverse-power-law level-spacing distribution’,
neither Wigner nor Poisson ones. Therefore, the electrical conductivity of these
critically localized states becomes an especially interesting subject. In
particular, Fibonacci quasiperiodic superlattices have been built® and their
properties can be well understood by means of simple models*. The hopping
conductivity in Fibonacci chains has been addressed by using the Miller-
Abrahams equations’ and by the dc Kubo-Greenwood conductivity®. Recently,
transparent states with unity transmission coefficient have been found in
mixing Fibonacci systems’. However, the ac conductivity of these transparent
states is still an unclear issue. In general, the ac electrical conductivity at zero
temperature is a good probe of the nature of the electronic eigenvalue spectrum
and the localization of wave functions, since it depends not only on the states at
the Fermi level but also on the global structure of the spectrum. On the other
hand, the effects of the boundary conditions on the conductivity are not widely
analyzed in the literature. In this work, a very sensitive influence of the
saturator nature on the ac conduction of the system is reported.

2. Wave function localization and dc conductivity

In order to isolate the quasicrystalline effects, a simple s-band tight-binding
Hamiltonian in 2 mixing Fibonacci system (MFS) is considered, where the MEFS
is built by alternating two sorts of atoms A and B following the Fibonacci
sequence (F;=F,.1®Fy) and the hopping integral between atoms depends on the
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nature of them. In this work, the first two generations are chosen as F,=A and
F,=BA, and then, for example, F,=BAABA. On the other hand, the ac electrical
conductivity for a one-dimensional system at zero temperature can be calculated
by means of the Kubo-Greenwood formula®
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where L is the system length, p is the momentum operator, and G'(E) is the
retarded one-particle Green’s function. For a perfect linear chain of N atoms
saturated by two semi-infinite perfect chains, the dc conductivity within the
energy band can be written as’

o(E,,») =

e’a
o, = 2-1).

In figures 1(a) the density of states, 1(b) the normalized dc Kubo
conductivity, 1(c) the transmittance', 1(d) the inverse of the Lyapunov
exponent', and 1(e) the participation ratio® are comparatively shown for a MFS
of 2584 atoms with self-energies &=g;=0, hopping integrals t,,=0.8¢ and
145=1g4=1, and saturated by two semi-infinite perfect chains having hopping
integrals ¢ and null self-energies. The transparent state is indicated by a dashed
line at E=0. Notice that there is an almost identical behavior between the
spectra 1(b) and 1(c), since the dc conductivity is proportional to the
transmittance through the Landauer formula'. Furthermore, a remarkable
coincidence between figures 1(b) and 1(d) is also observed, contrary to the case
of the figure 1(e), where the participation ratio is shown to be an inadequate
quantity to characterize critically localized states.
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Figure 1: (a) Density of states (DOS), (b) Kubo conductivity (of), (¢) transmittance (T),
(d) inverse of the Lyapunov exponent (y;"'), and (e) participation ratio (PR) for a MFS
of 2584 atoms, as explained in the text, with Im(E£)=10""|.
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3. Boundary-condition effects on the ac conductivity

In figure 2, we show the ac Kubo conductivity with Ez=0 for three MFS with
the same self-energies and hopping integrals as in figure 1, but different
boundary conditions, i.e., (a) 10946 atoms without saturators, (b) 2584 atoms
with two 4181-atom perfect saturators, and (c) 2584 atoms saturated by two
semi-infinite perfect linear chains. The corresponding results calculated for
perfect systems are comparatively shown in figures 2(a"), 2(b"), and 2(c"). First,
observe that the resonance peaks in figures 2(a") and 2(b") are located at the
same frequencies, since they have the same eigenvalue spectrum. However,
their strengths are very different, since the Kubo formula is evaluated for
different system lengths. Similar behavior is found for the quasiperiodic case,
except the resonance peaks are not located exactly at the same frequencies and
new peaks appear in figure 2(b), because in these figures the Fibonacci
segments are different and the selection rule is not expected to obey for the
quasiperiodic case. On the other hand, the minima of the figures 2(b) and 2(c)
seem to be located at the same values of frequency, and a continuous behavior
1s observed in figure 2(c) due to the semi-infinite saturators. Finally, notice that
in figures 2(a) and 2(b) the ac conductivity exceeds o, for several frequencies,
since oy, is calculated using semi-infinite saturators.
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Figures 2(a-c): The ac conductivity of three MFS with different boundary conditions, as
explained in the text, is compared with the corresponding perfect cases shown in figures
2(a’-c’). The self-energies and hopping integrals of the MFS are the same as in figure 1
but with Im(Ez)=10"}¢|.

4. Conclusions

In this work, we have analyzed the electrical conductivity and the localization
behavior of the transparent state in a MFS. Very close spectra obtained from the
inverse of the Lyapunov exponent, the Kubo and the Landauer formula are
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observed, except for the participation ratio, since it quantifies only the fraction
of contributing sites to the wave function and does not indicate the coherence of
them. It is important to stress that in spite of having presented only a special
case of transparent states, the behavior reported in this paper has been verified
for other MES’. On the other hand, ac conductivity shows a general diminution
as the frequency of the applied electrical field increases. However, it is highly
sensitive to the boundary conditions: (1) for the case without saturators the ac
conductivity decreases monotonically; (2) with finite saturators an oscillatory
decreasing behavior is found; and (3) when semi-infinite saturators are
introduced the ac conductivity becomes a smooth oscillating function of the
frequency. These results have been confirmed analytically for the perfect case’.
Finally, the diminution of the transparent-state ac conductivity is faster than that
of a perfect linear chain; this fact seems to be related to the isolation of the
transparent states in the spectrum of the MFS and the ac conductivity involves
states within an interval of i@ around the Fermi energy.
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