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Based on the BCS formalism, we propose a unified description of the anisotropic p- and d-wave
superconducting states by using a local interacting electron model with a unique second-neighbour
correlated-hopping interaction. In this work, we study the dependence of both p- and d-channel critical
temperatures (Tc) on the electron concentration (n), as well as the angular dependence of single-particle
excitation energy gaps (�0), which can be measured by the angle-resolved photoemission spectroscopy
(ARPES) and the tunnelling spectroscopy. The effects of an external magnetic field on Tc and �0 in

ors a
CS theory anisotropic superconduct

. Introduction

In the last two decades, the observation of d-wave pairing in
uprate superconductors has motivated the research of models
eyond the standard BCS theory [1]. The recent discovery of the
-wave spin-triplet superconductivity in Sr2RuO4 [2] has highly
nhanced this research. The two-dimensional nature present in
oth systems could be essential for understanding their anisotropic
uperconductivity. A considerable number of experiments, includ-
ng angle-resolved photoemission spectroscopy (ARPES) [3] and
hase-sensitive ones [4], have suggested a dx2−y2 symmetry super-
onducting gap in many cuprate superconductors [5]. Likewise,
uantum interference measurements have established the odd-
arity superconductivity in Sr2RuO4 [6].

From theoretical point of view, three-band Hubbard models
ave been proposed to describe the dynamics of carriers on CuO2
7] and RuO2 [8] planes. The electronic states close to the Fermi
nergy can be reasonably well described by a single-band tight-
inding model on a square lattice with second-neighbour hoppings
9,10]. Recently, we have found that a small correlated second-
eighbour interaction can lead to d-wave superconductivity [11]
nd a p-wave superconducting ground state could be induced by a
mall distortion of the square-lattice right angles within a gener-
lized Hubbard model [12]. It would be worth mentioning that a

tructural distortion has been observed at the surface of Sr2RuO4
13], although it is not proved its occurrence in the bulk. In this
ork, we study the effects of an external magnetic field on the crit-

cal temperature (Tc) and on the single-particle excitation energy
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re also investigated within the rigid band-shift approximation.
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gap (�0) by using a single-band electronic Hamiltonian with a
second-neighbour correlated-hopping interaction (�t). This cor-
related hopping describes the interaction between an electronic
charge at site l and a bond charge located between sites i and j,
which are mutually second neighbours and are also first neigh-
bours of site l. In spite of its generally small strength in comparison
with density–density interactions, the correlated hopping is always
present in real solids and can lead to anisotropic superconducting
ground states [11,12], which are not sensitive to the onsite Coulomb
repulsion.

2. The model

We start from the following Hamiltonian,

Ĥ = t
∑
〈i, j〉

�

c†
i,�

cj,� + t′
∑

〈〈i, j〉〉
�

c†
i,�

cj,� + �t

×
∑

〈〈i, j〉〉, �
〈i,l〉,〈j,l〉

c†
i,�

cj,�nl − �BB
∑

i

(ni,↑ − ni,↓) (1)

where c†
i�

(ci�) is the creation (annihilation) operator with spin � = ↓
or ↑ at site i, ni,� = c†

i,�
ci,� , ni = ni,↑ + ni,↓, 〈i,j〉 and 〈〈i,j〉〉 denote,
respectively, nearest-neighbor and next-nearest-neighbor sites. In
Eq. (1), the last term represents the change in energy due to
an external magnetic field (B), where �B � 5.788 × 10−5 eV/Tesla
is the Bohr magneton. We further consider an electron–electron
interaction shell of width (W) around the chemical potential (�),
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Table 1
Parameters used for the calculations.

Symmetry d-Wave p-Wave

t (eV) −1.0 0.4
′

Note that the maximum kBTc = 0.01|t| for d-channel superconduc-
tivity is located at n = 0.52, while for the p-channel the maximum
kBTc = 0.00025|t| is found at n = 0.54. This non-monotonic behavior
of Tc on n agrees with the experimental observations [15]. In fact,
the optimal critical temperatures are very close to those obtained in
J.S. Millán et al. / Journal of Electron Spectro

s in the BCS theory [14], i.e.,

t(ε�(k)) =
{

�t3, if
∣∣ε�(k) − �

∣∣ ≤ W

0, other cases
(2)

here ε�(k) =
〈

k, �
∣∣ Ĥ

∣∣k, �
〉

is the single-electron energy, being
k,�〉 the Bloch states. In addition, for Sr2RuO4 a small distortion of
he right angles in the square lattice is included, in consequence,
he second-neighbour hopping (t′) and interaction (�t) parameters
hange, respectively, to t′± ≡ t′ ± ı and �t± ≡ �t ± ı, where

(ε�(k)) =
{

ı3, if
∣∣ε�(k) − �

∣∣ ≤ W

0, other cases
(3)

nd ± refers to the x̂ ± ŷ directions.
Performing a Fourier transform with

k,� ≡ 1√
NS

∑
j

ei k·Rj cj,�, (4)

here NS is the total number of sites, and after a standard
artree–Fock decoupling of the interaction term in Eq. (1), the
amiltonian can be rewritten in the momentum space as

ˆ =
∑
k,�

ε�(k)c†
k,�

ck,� + 1
NS

∑
k,k′

Vk,k′,qc†
k+q,↑c†−k′+q,↓c−k′+q,↓ck+q,↑

+
∑

k,k′,�

Wk,k′,qc†
k+q,�

c†−k′+q,�
c−k′+q,�ck+q,� (5)

here

�(k) = −��BB + 2(t′
+ + 2n �t+) cos(kxa + kya) + 2(t′

−

+ 2n �t−) cos(kxa − kya) + 2t[cos(kxa) + cos(kya)], (6)

k,k′,q = �t+[�(k + q, k′ + q) + �(−k + q, −k′ + q)]

+ �t−[�(k + q, k′ + q) + �(−k + q, −k′ + q)], (7)

nd

k,k′,q = �t+�(k + q, k′ + q) + �t−�(k + q, k′ + q), (8)

eing

(k, k′) = 2 cos[(kx + k′
y)a] + 2cos[(k′

x + ky)a], (9)

(k, k′) = 2 cos[(kx − k′
y)a] + 2 cos[(k′

x − ky)a], (10)

is the lattice constant and 2q is the wave vector of the pair centre
f mass.

Applying the BCS formalism [14] to Eq. (5) for q = 0, we obtain
he following two coupled integral equations for the d-channel
uperconductivity,

1 = 1
NS

∑
k,�

�t(ε�(k))[cos(kxa) − cos(kya)]2

E�(k)
tanh

(
E�(k)
2kBT

)

n − 1 = − 1
2NS

∑
k,�

ε�(k) − �

E�(k)
tanh

(
E�(k)
2kBT

) , (11)

here

�(k) =
√

[ε�(k) − �]2 + �2(k), (12)

nd
(k) = �d[cos(kxa) − cos(kya)]. (13)

q. (11) determine the d-wave superconducting gap (�d) and �
or a given temperature (T), electron density (n), and external mag-
etic field (B). For the case of p-channel superconductivity, there
t (eV) 0.3 −0.12
�t3 (eV) 0.1 0.1
ı3 (eV) 0 0.08
W (eV) 0.1 0.1

are three possible spin functions for the pairs, i.e., |↑↑〉, |↓↓〉, and
(|↑↓〉 + |↓↑〉)/√2. In this paper, we only analyze the last spin function
corresponding to pairs with null total spin projection. Assum-
ing that �(k) = �p[sin(kxa) ± sin(kya)], the first equation in (11) is
replaced by

1 = ± 1
NS

∑
k,�

ı(ε�(k))[sin(kxa) ± sin(kya)]2

E(k)
tanh

(
E(k)
2kBT

)
, (14)

which together with the second equation in (11) determine the
p-wave superconducting properties. In general, the critical tem-
perature (Tc) is obtained by taking �˛ = 0, for ˛ = p or d. It would
be worth mentioning that this simplified model without attractive
second-neighbor density–density interactions has the advantage of
avoiding the phase separation [11] and giving rise to both p- and
d-wave superconductivities within the standard BCS formalism.

3. Results

The Hamiltonian parameters of single-electron terms (t and t′)
in Eq. (1) have been calculated by means of the density functional
theory (DFT) [9,10], while those corresponding to interaction and
distortion are estimated to give reasonable p- and d-channel crit-
ical temperatures. The specific parameters used in this work are
summarized in Table 1.Numerical calculations of Eqs. (11) and (14)
are carried out, in order to determine the dependence of Tc and
�˛ on the electron density per unit cell (n) and magnetic-field
strength (B). Fig. 1 shows the Tc of (a) d-wave (open squares) and (b)
p-wave (open triangles) superconducting states as functions of n.
Fig. 1. (a) d-Wave and (b) p-wave superconducting critical temperature (Tc) versus
the electron concentration per unit cell (n) in the absence of external magnetic field.
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Fig. 2. Critical temperature (Tc) as a function of the magnetic-field strength for (a) d-
wave and (b) p-wave superconducting states with n = 0.52 and n = 0.54, respectively.

Fig. 3. Angular dependence of the single-excitation energy gap (�0) for (a) d-wave
and (b) p-wave superconducting states with, respectively, n = 0.52 and n = 0.54, when
the external magnetic-field strength B = 0 (blue thick lines), �BB = 0.02|t| (red thin
lines) and �BB = 0.05|t| (magenta dashed lines). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of the article.)
and Related Phenomena 181 (2010) 16–19

BiSrCaCu2Ox [16] and Sr2RuO4 [2]. However, the optimal electronic
densities have not been unambiguously determined by experi-
ments, since such obtained from Hall-effect measurements does
not correspond to those calculated by the doping concentration
[17].

In Fig. 2, the dependence of Tc on B is plotted for (a) d-wave and
(b) p-wave superconducting states with optimal densities n = 0.52
and n = 0.54, respectively. Notice that both Tc decreases as B grows,
as expected from Eq. (1), since the main effect of B is to change
the relative electron populations of spin-up and spin-down states,
which reduces the Cooper pairs number and in consequence Tc.
Therefore, Tc is zero when the external magnetic-field strength is
higher than the critical field value, which is estimated to be around
200 Tesla for cuprate superconductors [18].

Fig. 3 shows the angular dependence of the single-excitation
energy gap [�0(�)], which is defined as the minimum value of E�(k)
in k direction [12], for (a) d-wave and (b) p-wave superconduct-
ing states with optimal densities n = 0.52 and n = 0.54, respectively.
The blue thick lines correspond to B = 0, the red thin lines to
�BB = 0.02|t|, and the magenta dashed lines to �BB = 0.05|t|, where
the polar angle is given by � = tan−1(ky/kx). For the p-wave case,
�0(�) is calculated around k = (�,�), where the minimum of the
single-electron band [ε�(k)] is located. Observe that the effects of
an external magnetic field are essentially to reduce �0 as well as
Tc, preserving the superconducting gap symmetries within the rigid
band-shift approximation.

4. Conclusions

The results of this study make known that, by means of the
standard BCS formalism, a simple second-neighbour correlated-
hopping interaction can induce p- and d-wave anisotropic
superconductivities and their critical temperatures as functions
of the electron concentration show a non-monotonic behaviour,
in qualitative agreement with d-channel experiment results. The
calculated single-excitation energy gap (�0) can be measured by
ARPES and the existence of nodes could depend on the electron
concentration, as discussed in Ref. [19]. By using the rigid band
approximation, the effects of an external magnetic field on the
anisotropic superconductivity have been analyzed and the results
reveal a significant diminution of the critical temperature and
�0. It is important to note that the calculated upper critical field
is of the same order of magnitude for d-wave superconductors,
but for triplet superconductors this model overestimates its value
in comparison with the expected one [2,20]. Finally, there is no
distinction of the magnetic-field orientation within this simple
rigid band-shift analysis. A more sophisticated treatment of the
magnetic-field effects on anisotropic superconductivity would be
carried out through the Peierls substitution and the Bogoliubov–de
Gennes equations [21], where screening currents can be introduced
if the applied magnetic field is perpendicular to the planes. This
approach is currently under study.
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