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Abstract

In this work, we study the p-wave superconductivity in a square lattice within a Hubbard model, in which a second-neighbour correlated
hopping A#; is included. An infinitesimal distortion of the right angles in the square lattice is considered, which leads to second correlated
hoppings At;1+3d5 in the £+ directions, respectively. This study is carried out by means of the BCS formalism and we found a triplet
superconducting ground state even though V=0. The optimal electron density for the critical temperature and the superconducting gap is
analyzed as a function of the parameters of the model. Finally, the single-particle excitation gap is also calculated for different electron

densities.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

It has been proposed that the Srp,RuQO, exhibits a spin-
triplet or p-wave superconductivity [1], in contrast to the
d-wave pairing found in many cuprates [2]. In fact, Sr,RuO,
is structurally similar to the first cuprate superconductor,
(La,Sr),Cu0,4, and its electrons in the RuO, planes are
expected to play the most important role for the supercon-
ductivity [1]. It is accepted that the so-called vy band plays the
dominant role in the superconducting transition, and the
pairing on the other two bands, a and B, is induced passively
through the inter-orbit couplings [3]. Furthermore, a structural
distortion has been observed at the surface of the Sr,RuQ, [4],
although it is not clear its occurrence in the bulk. In order to
describe the electron dynamics on the RuO, planes, a single-
band Hubbard model is considered [3,5] and, in the vicinity of
the Fermi level, the LDA band structure can be reasonably
well described by a square-lattice single y-band tight-binding
model with first- and second-neighbour hoppings #,=0.4 and
t{) =—0.12 eV, respectively, [6]. On the other hand, it has been
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reported that the Hubbard model could lead to an anisotropic
superconducting gap if a second-neighbour correlated hopping
(At3) is included, in addition to the on-site U and nearest-
neighbour V repulsions [7]. In this paper, we study the effects
of a structural distortion on the p-wave superconducting state
as well as the electron density dependence of the critical
temperature and superconducting gap. By considering a small
distortion in the right angles of a square lattice, the
degeneracy of the k,tk, oriented p-wave superconducting
states is broken favouring one of the p-wave states in
competition with the s- and d-wave superconducting states.
Moreover, the existence of an optimal doping in the
superconducting state is analyzed in terms of the expectation
value of the potential energy of the system. Finally, we
calculated the single-particle excitation energy gap for
different values of the electron concentration.

2. The model

We start from a Hubbard model in which first- (Af) and
second-neighbour (At;) correlated-hopping interactions are
considered in addition to the on-site (U), and nearest-
neighbour (V) Coulomb interactions. This model has lead to
s- and d-wave hole-superconducting ground states without
negative U and V [7,8], hence this Hubbard Hamiltonian can
be written as [9,10]
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where c »(Cis) s the creation (annihilation) operator with spin
o= or T atsite i, n;, = cT oCio» Ni=n; 1 +n; 1, (ij) and (i)
denote, respectively, the nearest- -neighbour and the next-
nearest-neighbour sites.

Let us consider a square lattice with lattice parameter a. In
order to break the degeneracy of p-wave pairing states, we will
further consider a small distortion of the right angles in the
square lattice, which leads to changes in the second-neighbour
interactions, such as ' and At3 terms in Eq. (1), and their new
values are £y = 1(,+ 6 and Atg = At3 1+ 03, where £ refers to
the x +y direction. Performing a Fourier transform,
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the Hamiltonian [Eq. (1)] in the momentum space becomes
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where N; is the total number of sites,
go(k)

= —21y[cos(k,a) + cos(k,a)] —21, cos(k, + k,)

—21" cos(k, —k,), 5)
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and
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being
B(k) = 2[cos(k,a) + cos(k,a)], (3
y(k,K') = 2 cosla(k, + k})] + 2 cosla(k, + k)], )

C(k,K') = 2 cosla(k, —ky)] + 2 cos[a(k, —k,)], (10)

and 2q is the wave vector corresponding to the centre of mass
of pairs. Notice that Viyq and Wiy, respectively, contribute to
antiparallel and parallel spin pairings, and their main
contributions come from q=0 terms.

Within the standard BCS formalism, a normal Hartree—Fock
decoupling of the interaction terms in Eq. (4) leads to the
following reduced Hamiltonian for pairs with parallel spins
[11,12],

H_,LLN:HI +H2

where
Hy =) [e(k) = pley o Ch oo (11)
k,o
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u is the chemical potential, N is the number of electrons, and

e(k) = <% + 4V)n + 2(ty + nAf)[cos(k,a)

+ cos(k,a)] + 2(t + 2nAty )cos(k, + k)
+ 2(¢- + 2nA3)cos(k, —ky), (13)

being n the density of electrons per site. Notice that the single-
electron dispersion relation e(k) is now modified by adding
terms nAt, 2nAt§’ and (U/2+4V)n to the hoppings fo, #) and the
self-energy, respectively.

At finite temperature 7, the equations that determine the
superconducting gap (4y) and the chemical potential (u) for the
case of parallel spins are [7],

1 Ak/ Ek/
A, = —— Wyrip—— tanh , 14
k N; K0S (ZkBT) (14)
and
1 k') — Ep
n—1l=—— Zm tanh [ —%_) (15)
N, 4= Ey 2T

where the single-particle excitation energy (Ey) is

=/ (e(k) — ) + 4. (16)
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and the p-wave superconducting gap is given by
Ay = 4, [sin(k.a) + sin(kya)]. It is worth mentioning that for
the case of (| 1 1)+ | | 1))/+/2 pairs, the same Eqs. (15) and (16)
are obtained except that Vi replaces Wiy, hence the Eq. (15)
can be written as

_ (VF463)

1 = Ts Zk:(sinzakx 1 sin ak, sin ak,)

1 Ey
X — tanh , 17
B " <2kBT) an

where 6; = (Aff —Af£;)/2. Notice that, for given n and 7, Egs.
(16) and (18) have to be solved simultaneously for u and 4. In
particular, the critical temperature 7, is determined by
4,(T.)=0. For the case of triplets with (|1 )+ | | 1))/+/2 and
q=0, the terms U and At in Eq. (7) are even functions in the k’
space and Ay = A4,[sin(k,a)* sin(k,a)] is odd, and then the
sum over the first Brillouin zone of the product of them is zero.
Furthermore, the terms V and At? reduce to those of Wy,
except for a factor of 2. However, due to the sum over the spin
index ¢ in the third term of Eq. (4), it turns out that triplets with
antiparallel spins obey the same Eqgs. (16) and (18).

In order to analyze the doping dependence of the super-
conducting gap and critical temperature, we studied the
average potential energy (Wr) given by [12]

1
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Bz
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where (...) indicates the ground state expectation value, with
the functions u, and vy given by
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Replacing the expression for the electron-electron inter-
action (Eq. (7)), Wt becomes
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where each integral is performed over the first Brillouin zone
(BZ).

3. The results

For the strong coupling limit, i.e. t, t{) — 0, analytical
solutions of Egs. (15) and (16) have been obtained for the low
density regime (n—0), and they are

A,, _ _9n
e 2@(1 T)’ (22)

6 tanh'(1—n)’

In Fig. 1(a) and (b), numerical results of 4,/65 and T./03
versus n are, respectively, shown for arbitrary 65 and U, and the
rest of parameters equal to zero, where the analytical solutions
are indicated by dashed lines. Notice that in this limit 4,/63 and
T./65 are functions of n only.

Fig. 2(a)-(c) show T, 4, and Wr,, respectively, for V=
A=0=0, t,0=0.4, t)=—0.12¢eV, 6=0.15eV and Axz=
0.3 eV (circles), 0.2 eV (up triangles), and 0 (down triangles)
as a function of n. We can observe the existence of an optimal
electron density (n,p), given by nq,=0.52, 0.55, and 0.61 for
Te(n); nep=0.528, 0.592 and 0.64, for 4,(n); and n,,=0.524,
0.592 and 0.64 for Wr(n), respectively. Notice that for the three
systems shown, the optimal doping for 4, is shifted to higher
carrier concentrations with respect to the optimal doping for 7,
which is due to the slight change of the chemical potential (u)
when T changes from T to 0 K. However, the optimal electron
density for Wr is essentially the same as 4,. Moreover, for
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Fig. 1. Numerical results (solid lines) of p-channel (a) superconducting gap
(4d;,) and (b) critical temperature (4.) versus the electron concentration (n), for
arbitrary d; and U, and the other are taken parameters equal to zero, in
comparison with the analytical solutions (dashed lines) valid for n—0.
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Fig. 2. (a) Critical temperature (7.), (b) superconducting gap (4,) and (c)
potential energy of the system (Wr) versus electron density (n) for V=Ar=38=
0, to=0.4, t{,=—0.12, At3=0.3 eV (circles), 0.2 €V (up triangles), 0 (down
triangles), with 6;=0.15 eV and arbitrary U.

fixed o> 0 and 1) < 0, Nnep shifts to higher densities when Az; or
03 diminish as shown in Fig. 3, where T is plotted as a function
of n, for V=A=At=06=0, t,=0.4¢V, t)=—0.12 ¢V, and
03=0.06eV. In this case, n,,=0.875 and the maximum
critical temperature is about 2 K.

On the other hand, the influence of the kinetic energy on the
location of n,y, is important, since if it is diminished, 7., and 4,
increase and n,, moves to a greater value. In general, it has
been seen that, for #,=0.4 and #, = —0.12 eV, by increasing At,
nop shifts towards 1, and T, and 4, decrease but if At or 05
increase, n,, moves towards 0 and 7. and 4, increase.
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Fig. 3. Critical temperature (7..) versus electron density (n) for V=Ar=At;=
6=0, to=0.4, ty =—0.12, 63=0.06 eV and arbitrary U.
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Fig. 4. Single-particle excitation energy gap (4,) as a function of the polar
angle for V=Ar=3=0, to=0.4, ), = —0.12, At3=0.2, §3=0.15 eV, arbitrary
U and electron densities (a) n=0.5, (b) n=0.6, and (c) n=0.7.

However, for 7,<0 the effect is inverse for At and At;,
respectively, the diminished of 03 act always with a decreasing
for T, and 4, and n,, shifting to 1.

In Fig. 4(a)—(c), the angular dependence of the single-particle
excitation gap [4y(0)] is shown for a system with V=Ar=3=0,
to=04, t)=—0.12eV, At=0.2 €V, 63=0.15 €V, arbitrary U
andn=0.5,0.55 and 0.6, respectively. The polar angle is given by
f=tan™ l(ky/kx) and 4, is defined as the minimum value of Ej
given by Eq. (17), with 4y = A4,[sin(k.a) + sin(k,a)], and we
have measured the energy from the (7,7) point since the
minimum is located there. Notice that 4, changes its form when n
grows from a p-wave spectrum to an f-wave one, in analogy to
that previously found for the d-wave case, where both d,>_ - and
d,, symmetry single-particle excitation energy gaps are predicted,
depending on the hole density [13].

4. Conclusions

In summary, we have studied the electron concentration
dependence of the p-wave superconducting state in a distorted
square-lattice by means of a Hubbard model, in which first- and
second neighbour correlated hoppings are considered. For the
dilute limit, we have been able to obtain an analytical solution.
Additionally, we have shown the correspondence between the
minimum of the potential energy and the maximum of the
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superconducting gap and critical temperature. We have also
shown the key participation of the second correlated hoppings
Ath’ in the formation of a p-wave superconducting state. The
results also show that the optimal carrier concentration 7, for 4,
coincide with that of the superconducting gap Wr. Finally, this
model predicts the existence of both p- and f-wave single-particle
excitation energy gaps depending on the electron density.
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