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Abstract

In this work, we study the p-wave superconductivity in a square lattice within a Hubbard model, in which a second-neighbour correlated

hopping Dt3 is included. An infinitesimal distortion of the right angles in the square lattice is considered, which leads to second correlated

hoppings Dt3Gd3 in the x̂Gŷ directions, respectively. This study is carried out by means of the BCS formalism and we found a triplet

superconducting ground state even though VZ0. The optimal electron density for the critical temperature and the superconducting gap is

analyzed as a function of the parameters of the model. Finally, the single-particle excitation gap is also calculated for different electron

densities.
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1. Introduction

It has been proposed that the Sr2RuO4 exhibits a spin-

triplet or p-wave superconductivity [1], in contrast to the

d-wave pairing found in many cuprates [2]. In fact, Sr2RuO4

is structurally similar to the first cuprate superconductor,

(La,Sr)2CuO4, and its electrons in the RuO2 planes are

expected to play the most important role for the supercon-

ductivity [1]. It is accepted that the so-called g band plays the

dominant role in the superconducting transition, and the

pairing on the other two bands, a and b, is induced passively

through the inter-orbit couplings [3]. Furthermore, a structural

distortion has been observed at the surface of the Sr2RuO4 [4],

although it is not clear its occurrence in the bulk. In order to

describe the electron dynamics on the RuO2 planes, a single-

band Hubbard model is considered [3,5] and, in the vicinity of

the Fermi level, the LDA band structure can be reasonably

well described by a square-lattice single g-band tight-binding

model with first- and second-neighbour hoppings t0Z0.4 and

t 00ZK0:12 eV, respectively, [6]. On the other hand, it has been
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reported that the Hubbard model could lead to an anisotropic

superconducting gap if a second-neighbour correlated hopping

(Dt3) is included, in addition to the on-site U and nearest-

neighbour V repulsions [7]. In this paper, we study the effects

of a structural distortion on the p-wave superconducting state

as well as the electron density dependence of the critical

temperature and superconducting gap. By considering a small

distortion in the right angles of a square lattice, the

degeneracy of the kxGky oriented p-wave superconducting

states is broken favouring one of the p-wave states in

competition with the s- and d-wave superconducting states.

Moreover, the existence of an optimal doping in the

superconducting state is analyzed in terms of the expectation

value of the potential energy of the system. Finally, we

calculated the single-particle excitation energy gap for

different values of the electron concentration.
2. The model

We start from a Hubbard model in which first- (Dt) and

second-neighbour (Dt3) correlated-hopping interactions are

considered in addition to the on-site (U), and nearest-

neighbour (V) Coulomb interactions. This model has lead to

s- and d-wave hole-superconducting ground states without

negative U and V [7,8], hence this Hubbard Hamiltonian can

be written as [9,10]
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i;sðci;sÞ is the creation (annihilation) operator with spin

sZY or [ at site i, ni;sZc†
i;sci;s, niZni,[Cni,Y, hi,ji and hhi,jii

denote, respectively, the nearest-neighbour and the next-

nearest-neighbour sites.

Let us consider a square lattice with lattice parameter a. In

order to break the degeneracy of p-wave pairing states, we will

further consider a small distortion of the right angles in the

square lattice, which leads to changes in the second-neighbour

interactions, such as t 0 and Dt3 terms in Eq. (1), and their new

values are t 0GZ t 00Gd and DtG3 ZDt3Gd3, where G refers to

the xGy direction. Performing a Fourier transform,
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the Hamiltonian [Eq. (1)] in the momentum space becomes
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where Ns is the total number of sites,
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and 2q is the wave vector corresponding to the centre of mass

of pairs. Notice that Vkk 0q and Wkk 0q, respectively, contribute to

antiparallel and parallel spin pairings, and their main

contributions come from qZ0 terms.

Within the standard BCS formalism, a normal Hartree–Fock

decoupling of the interaction terms in Eq. (4) leads to the

following reduced Hamiltonian for pairs with parallel spins

[11,12],
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m is the chemical potential, N is the number of electrons, and
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being n the density of electrons per site. Notice that the single-

electron dispersion relation 3(k) is now modified by adding

terms nDt, 2nDtG3 and (U/2C4V)n to the hoppings t0, t 00 and the

self-energy, respectively.

At finite temperature T, the equations that determine the

superconducting gap (Dk) and the chemical potential (m) for the

case of parallel spins are [7],
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where the single-particle excitation energy (Ek) is
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Fig. 1. Numerical results (solid lines) of p-channel (a) superconducting gap

(Dp) and (b) critical temperature (Dc) versus the electron concentration (n), for

arbitrary d3 and U, and the other are taken parameters equal to zero, in

comparison with the analytical solutions (dashed lines) valid for n/0.
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and the p-wave superconducting gap is given by

DkZDp½sinðkxaÞGsinðkyaÞ�. It is worth mentioning that for

the case of ðj[YiC jY[iÞ=
ffiffiffi
2

p
pairs, the same Eqs. (15) and (16)

are obtained except that Vkk 00 replaces Wkk 00, hence the Eq. (15)

can be written as

1 ZK
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X
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where d3Z ðDtC3 KDtK3 Þ=2. Notice that, for given n and T, Eqs.

(16) and (18) have to be solved simultaneously for m and Dp. In

particular, the critical temperature Tc is determined by

Dp(Tc)Z0. For the case of triplets with ðj[YiC jY[iÞ=
ffiffiffi
2

p
and

qZ0, the terms U and Dt in Eq. (7) are even functions in the k 0

space and DkZDp½sinðkxaÞGsinðkyaÞ� is odd, and then the

sum over the first Brillouin zone of the product of them is zero.

Furthermore, the terms V and DtG3 reduce to those of Wkk 00,

except for a factor of 2. However, due to the sum over the spin

index s in the third term of Eq. (4), it turns out that triplets with

antiparallel spins obey the same Eqs. (16) and (18).

In order to analyze the doping dependence of the super-

conducting gap and critical temperature, we studied the

average potential energy (WT) given by [12]
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Replacing the expression for the electron-electron inter-

action (Eq. (7)), WT becomes
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where each integral is performed over the first Brillouin zone

(BZ).
3. The results

For the strong coupling limit, i.e. t0, t 00/0, analytical

solutions of Eqs. (15) and (16) have been obtained for the low

density regime (n/0), and they are

Dp
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In Fig. 1(a) and (b), numerical results of Dp/d3 and Tc/d3

versus n are, respectively, shown for arbitrary d3 and U, and the

rest of parameters equal to zero, where the analytical solutions

are indicated by dashed lines. Notice that in this limit Dp/d3 and

Tc/d3 are functions of n only.

Fig. 2(a)–(c) show Tc, Dp and WT,, respectively, for VZ
DtZdZ0, t0Z0.4, t 00ZK0:12 eV, dZ0.15 eV and Dt3Z
0.3 eV (circles), 0.2 eV (up triangles), and 0 (down triangles)

as a function of n. We can observe the existence of an optimal

electron density (nop), given by nopz0.52, 0.55, and 0.61 for

Tc(n); nopz0.528, 0.592 and 0.64, for Dp(n); and nopz0.524,

0.592 and 0.64 for WT(n), respectively. Notice that for the three

systems shown, the optimal doping for Dp is shifted to higher

carrier concentrations with respect to the optimal doping for Tc,

which is due to the slight change of the chemical potential (m)

when T changes from Tc to 0 K. However, the optimal electron

density for WT is essentially the same as Dp. Moreover, for
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U and electron densities (a) nZ0.5, (b) nZ0.6, and (c) nZ0.7.
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fixed t0O0 and t 00!0, nop shifts to higher densities when Dt3 or

d3 diminish as shown in Fig. 3, where Tc is plotted as a function

of n, for VZDtZDt3ZdZ0, t0Z0.4 eV, t 00ZK0:12 eV, and

d3Z0.06 eV. In this case, nopz0.875 and the maximum

critical temperature is about 2 K.

On the other hand, the influence of the kinetic energy on the

location of nop is important, since if it is diminished, Tc and Dp

increase and nop moves to a greater value. In general, it has

been seen that, for t0Z0.4 and t 00ZK0:12 eV, by increasing Dt,

nop shifts towards 1, and Tc and Dp decrease but if Dt or d3

increase, nop moves towards 0 and Tc and Dp increase.
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Fig. 3. Critical temperature (Tc) versus electron density (n) for VZDtZDt3Z
dZ0, t0Z0.4, t 00ZK0:12, d3Z0.06 eV and arbitrary U.
However, for t0!0 the effect is inverse for Dt and Dt3,

respectively, the diminished of d3 act always with a decreasing

for Tc and Dp and nop shifting to 1.

In Fig. 4(a)–(c), the angular dependence of the single-particle

excitation gap [D0(q)] is shown for a system with VZDtZdZ0,

t0Z0.4, t 00ZK0:12 eV, Dt3Z0.2 eV, d3Z0.15 eV, arbitrary U

and nZ0.5, 0.55 and 0.6, respectively. The polar angle is given by

qZtanK1(ky/kx) and D0 is defined as the minimum value of Ek

given by Eq. (17), with DkZDp½sinðkxaÞCsinðkyaÞ�, and we

have measured the energy from the (p,p) point since the

minimum is located there. Notice thatD0 changes its form when n

grows from a p-wave spectrum to an f-wave one, in analogy to

that previously found for the d-wave case, where both dx2Ky2 - and

dxy symmetry single-particle excitation energy gaps are predicted,

depending on the hole density [13].
4. Conclusions

In summary, we have studied the electron concentration

dependence of the p-wave superconducting state in a distorted

square-lattice by means of a Hubbard model, in which first- and

second neighbour correlated hoppings are considered. For the

dilute limit, we have been able to obtain an analytical solution.

Additionally, we have shown the correspondence between the

minimum of the potential energy and the maximum of the
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superconducting gap and critical temperature. We have also

shown the key participation of the second correlated hoppings

DtG3 in the formation of a p-wave superconducting state. The

results also show that the optimal carrier concentration nop for Dp

coincide with that of the superconducting gap WT. Finally, this

model predicts the existence of both p- and f-wave single-particle

excitation energy gaps depending on the electron density.
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