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Effects of the Correlated Hopping on the d-Wave
Superconductivity

Luis A. Pérez1 and Chumin Wang1

A dx2
�y2 superconducting ground state has been obtained within a two-dimensional (2D)

generalized Hubbard model, in which a next-nearest-neighbor correlated-hopping interaction
is included. In spite of its smaller strength in comparison with other terms of the model, we
found its key participation in the d-channel hole pairing. The hole singlet ground-state phase
diagram shows a large d-symmetry pairing region that is enhanced by the on-site repulsive
Coulomb interaction. For finite density of holes (nh), the mean-field BCS theory is applied
to the model. The results show a maximum d-wave critical temperature (Tc) around nh �
0.35, and this Tc is favored by the presence of an antiferromagnetic background.
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1. INTRODUCTION

The two-dimensional (2D) Hubbard model has
attracted much attention since the discovery of aniso-
tropic cuprate superconductors. Features like the
short coherence length and the bidimensional behav-
ior of the carriers can be addressed properly by this
locally correlated electronic model. In order to de-
scribe the electron and hole dynamics on the CuO
planes, three-band Hubbard models have been pro-
posed [1], and these models can be reduced into sin-
gle-band Hubbard models [2] in which a next-nearest-
neighbor hopping (t�0) is included [3]. In spite of no
general consensus on the high-Tc superconducting
mechanism, important features have been well estab-
lished, such as the singlet pairing between holes (in-
stead between electrons) and clear dx2�y2 symmetry
gaps in several superconducting compounds [4,5].
However, no d-symmetry pairing indication has been
found within the usual generalized Hubbard mod-
els [6].

In this paper, we consider a generalized single-
band Hubbard model in which hopping (t�0) and corre-
lated hopping interaction (�t3) between next-nearest
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neighbors are included. We analyze the importance
of the correlated hopping interaction �t3 in the forma-
tion of dx2�y2 pairing ground state, in spite of its appar-
ently small strength in comparison with direct Cou-
lomb interactions. In Section 2, the Hamiltonian and
the mapping method are briefly discussed. The hole
singlet ground-state phase diagram for the case t�0 �
4�t3 is analyzed in Section 3. In Section 4, we present
the dx2�y2 symmetry solution of the BCS mean-field
equations and examine the dependence of critical
temperature on hole density, including the case of an
antiferromagnetic background. Finally, conclusions
are given in Section 5.

2. THE MODEL

The extended Hubbard model considers only
the on-site (U) and nearest neighbor (V) Coulomb
interactions. The inclusion of a nearest-neighbor cor-
related-hopping (�t) leads to an extended s-wave su-
perconductivity, without negative U and V [7]. In this
paper, we consider a generalized Hubbard model that
also includes a next-nearest-neighbor hopping (t�)
and correlated hopping interaction (�t3). In general,
the contribution of these interactions are very differ-
ent; for example, for 3d electrons in transition metals
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U, V, �t, and �t3 are typically about 20, 3, 0.5, and
0.1 eV, respectively [8,9].

The single-band generalized Hubbard Hamilto-
nian can be written as

H � �t0 �
�i, j�,�

c�
i,�cj,� � t�0 �

��i, j��,�
c�

i,�cj,�
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i

ni,�ni,� �
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ninj

� �t �
�i, j�,�

c�
i,�cj,�(ni,�� � nj,��)

� �t3 �
�i,l�,�j,l�,��i,j��,�

c�
i,�cj,�nl, (1)

where c�
i,� (ci,�) is the creation (annihilation) operator

with spin � � � or � at site i, ni,� � c�
i,�ci,�, ni �
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When an electron-hole transformation is made in
equation (1), i.e., electron operators are mapped onto
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where nh
i,� � h�

i,�hi,�, nh
i � nh

i,� � nh
i,�, Ns is the total

number of sites, and Z is the lattice coordination
number. The first term in equation (2) only contrib-
utes to a shift of the total energy and then, the holes
also interact via a generalized Hubbard model but
with effective hopping parameters th � t0 � 2�t and
t�h � t�0 � 4�t3, instead of �t0 and �t�0 for electrons.

When the correlated hopping interactions are
introduced, the previously developed mapping
method [10] should be extended. This method allows
to map the problem of electronic correlation into a
tight-binding one with impurities and therefore, the
correlated states correspond to those impurity states
with negative self-energies U and V [11]. In our case,
for a generalized Hubbard model, the correlated elec-
tronic states are originated from the enhanced bonds
(bond-impurities), with or without negative U or V.
Therefore, the two-particle wavefunction will be lo-
calized around these impurity bonds [12]. The main

features of the two-particle correlated states will be
analyzed in section 3.

3. HOLE PAIRING

The hole-singlet ground-state phase diagrams
shown in Fig. 2 are calculated for U � 0 (Fig. 1A)
and U � 10�t0� (Fig. 1B), both with V � 0 and t�0 �
4�t3. The numeric calculations are performed in a
truncated square lattice of 2401 mapped states [11].
Notice that for U � 0, there is no d-symmetry pairing
for small �t3, and as the on-site Coulomb repulsion
U increases, the dx2�y2 pairing zone is enlarged. For
U � 10�t0�, the s-wave pairing is essentially avoided
for positive �t3. It is somewhat expected because the
on-site repulsion U inhibits the formation of s-sym-
metry pairs and does not affect the d ones; therefore,
it favors the formation of dx2�y2 pairing ground state.
Furthermore, the dx2�y2 pairing requires �t3 � 0, re-
gardless of how small it is, in the large U limit. This

Fig. 1. Hole-singlet ground-state phase diagrams of the generalized
Hubbard model with V � 0, t�0 � 4�t3, and (a) U � 0 and (b)
U � 10 �t0�.
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Fig. 2. Dependence of the critical temperature (Tc) on the hole
density (nh) for systems with (solid circles) and without (open
circles) an antiferromagnetic background, both characterized by
�t � 0.5�t0�, �t3 � 0.25�t�0�, �t�0� � 0.25�t0�, U � 10�t0�, and V � 0.

result confirms the fact that the correlated hopping
�t alone can give rise only to extended s-wave pairing
[6]. Finally, the phase-transition lines between d wave
and nonpairing can be obtained analytically, and are
given by �t3 � 1.83�t0 � 2�t�.

4. FINITE HOLE DENSITY

In this section, the d-wave superconductivity is
analyzed within the generalized Hubbard model by
using the BCS theory, in which the reduced Hamilto-
nian [13] can be written as

H � �N � �
k,�

(�(k) � �) h�
k,�hk,�

�
1
Ns

�
k,k�

Vkk
�
O h�

k,�h�
�k,�h�k�,�hk�,�, (3)

where � is the chemical potential. In particular, for
the generalized Hubbard model we have

�(k) � �U
2

� ZV� nh � U � 2ZV � 2(th � nh�t)(cos(kxa)

� cos(kya)) � 4(t�h � 2nh�t3) cos(kxa) cos(kya),

Vkk�q � U � V�(k � k�) � �t [�(k � q)

� �(�k � q) � �(k� � q) � �(�k� � q)]

� �t3[�(k � q, k� � q) � �(k � q, k� � q)], (4)

where �(k) � 2(cos(kxa) � cos(kya)), �(k, k�) � 4 cos(kxa)
cos(k�ya) � 4 cos(k�xa) cos(kya) and 2q is the wave-vector

of the pair center of mass. Notice that the dispersion rela-
tion �(k) is now modified by adding terms nh�t, 2nh�t3 and
(U/2 � 4V) nh, to the single-hole hoppings th, t�h and the
self-energy, respectively. These terms are obtained from a
normal Hartree–Fock decoupling of the interaction terms
in Eq. (2). At a finite temperature T, the equations for
determining the superconducting gap and the chemical po-
tential [14] are
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1
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where Ek � �(�(k) � �)2 � �2
k and f(E) is the Fermi–Dirac

distribution. In our case, the d-wave superconducting gap
is given by �k � �d(cos(kxa) � cos(kya)). Therefore, after
some algebra, Eq. (5) becomes

1 � �
(V � 4�t3)

Ns
�

k

cos(kx)[cos(kx) � cos(ky)]
Ek

tanh � Ek

2kBT�.

(7)

Observe that Eqs. (6) and (7) are coupled integral equa-
tions and have been solved numerically for both cases with
and without an antiferromagnetic background.

Let us consider a half-filled single-band generalized
Hubbard square-lattice system (i.e., one electron per site).
Due to the presence of an effective Coulomb repulsion
Ueff, a charge-transfer gap appears and the system becomes
an antiferromagnet [1]. When a hole singlet is introduced
in the fully filled lower Hubbard band (i.e., two holes with
opposite spins in a quantum antiferromagnet), each hole
can move only in one of the two sublattices of the system
[15]. Therefore, the terms of (t0 � 2�t), U and �t in Eq.
(2) have no effects on the pairing process.

In Fig. 2, the critical temperature Tc, determined by
�d(Tc) � 0, as a function of the hole density (nh) is shown
for �t � 0.5�t0�, �t3 � 0.25�t�0�, �t�0� � 0.25�t0�, and U � 10�t0�.
The values of �t and �t3 are chosen to minimize the kinetic
energy of the pairs. Notice that Tc is expressed in units
of t�0, instead of t0 because t0 is absent in the case of an
antiferromagnet. Furthermore, Tc rises initially as nh in-
creases, because the attractive interaction grows with the
Fermi surface size. However, for high hole densities, the
decreasing of �t3 term in Eq. (4) dominates. Observe also
that the maximum Tc corresponds to those with an antifer-
romagnetic background (solid circles) (i.e., antiferromag-
nets enhance the d-wave superconductivity), and their
changes are more drastic due to the absence of the �t term
in the effective Hamiltonian.
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5. CONCLUSIONS

In summary, we studied the hole-pairing symme-
try within the generalized Hubbard model, in which a
second-neighbor correlated-hopping term is included.
In spite of its smaller strength in comparison with
other terms of the model, we found its key participa-
tion in the d-channel hole pairing. Furthermore, a
mean-field BCS analysis of the d-wave superconduct-
ing state within the generalized Hubbard model has
shown essentially the same results that the second-
neighbor correlated-hopping enhances the d-symme-
try pairing. The maxima Tc observed around nh � 0.35
in Fig. 2 is close to those obtained from the experimen-
tal data [1], considering the simplicity of the model.
Moreover, the importance of an antiferromagnetic
background has been also evident. Finally, the present
study has shown that terms usually ignored in the Hub-
bard model could be relevant in certain phenomena,
such as the d-wave superconductivity.

ACKNOWLEDGMENTS

This work was supported partially by CONA-
CyT-32148-E, DGAPA-IN105999, and UNAM-

CRAY-SC008697. L.A.P. acknowledges the UNAM
Ph.D. scholarship and supports from PAEP-202307.

REFERENCES

1. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).
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