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ABSTRACT

The electronic transport in Fibonacci lattices at zero temperature is studied by means of the
Kubo-Greenwood formula within the tight-binding scheme, where a renormalization process
capable to address the electrical conductivity in macroscopic quasiperiodic systemsisused. The
effects of the Fermi-energy location on the ac conductivity are analyzed in detail for awide
range of the system sizes. Special attention is paid to the transparent states, whose transmission
coefficient is unity. The results show arapid decay of their ac conductivity as the frequency
increases in comparison with that of periodic systems, and the spectra scale with the inverse of
the system size as occur in periodic ones, where analytical results are obtained. Furthermore, a
new low-frequency minimum appears when the inhomogeneity of the Fibonacci lattice grows.

INTRODUCTION

The localization and transport of electrons in quasi periodic systems have been an interesting
and controversial issue, since the discovery of quasicrystalline alloysin 1984. Nowadays, thereis
a consensus that the eigenvalue spectrum produced by a quasi periodic potential is singular
continuous and the associated eigenfunctions are critical [1]. Moreover, the level statistics show
an inverse-power-law level-spacing distribution [2], neither Wigner nor Poisson ones. Hence, the
electrical conduction of these critically localized states becomes an especially interesting subject.
In particular, Fibonacci quasiperiodic superlattices have been built [3] and their properties can be
well understood by means of simple models [4]. The hopping conductivity in Fibonacci chains
has been addressed by using the Miller-Abrahams equations [5] and the optical conductivity has
been analyzed recently within a generalized Drude formula[6]. On the other hand, transparent
states with unity transmission coefficient have been found [7] in mixing Fibonacci systems
(MFS) and their ac conductivity has been studied by using the Kubo-Greenwood formula[8]. In
general, agood probe of the nature of the electronic eigenvalue spectrum and the localization of
wave functionsisthe ac electrical conductivity at zero temperature, since it depends not only on
the states at the Fermi level but also on the global structure of the spectrum. In Ref. [8] the
electrical conductivity for two different MFS with k=2 and 3, as defined in Ref. [9], has been
studied. However, the effects of the Fermi-energy location and the system inhomogeneity on the
ac conductivity are not widely analyzed in the literature. In this work, we investigate three
different MFS within k=3 and report a system-size scale invariance and a new minimum of the
Fibonacci ac conductivity which deepens when the system becomes more inhomogeneous.

DENSITY OF STATESAND DC CONDUCTIVITY

A mixing Fibonacci system (MFS) is built by alternating two sorts of atoms A and B
following the Fibonacci sequence (F=F»1@®F,2) and the hopping integral between atoms
depends on the nature of them. In this work, the first two generations are chosen as F1=A and
F,=BA, and then, for example, F,=BAABA. The energies of the transparent states in these

K9.20.1



systems should satisfy [9] E=o(1+77)/(1-77) and E*o#=4t°cos’(k7dN), where o () are the self-
energies of atoms A (B), y=taa/tag iSthe ratio of the hopping parameters, k and N/k are integer
numbers. A single s-band tight-binding Hamiltonian is considered in order to isolate the
quasicrystalline effects.

The ac dectrical conductivity of a one-dimensional system at zero temperature can be
calculated by means of the Kubo-Greenwood formula [10]

_2en EfTr[plmc;-+(E+ha))p|mG+(E)]dE (1)
Lam’he Y, ’

where L isthe system length, p is the linear momentum operator, G* (E) is the retarded one-
particle Green’s function, and Tr indicates the trace of the matrix. For a periodic linear chain of
N atoms saturated by two semi-infinite periodic chains, the dc conductivity within the energy
band is [see Eq.(A4) in Appendix]
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Figure 1. The density of states (DOS) around the transparent states (Ey), indicated by dashed lines, and the dc Kubo

conductivity (oyc) are shown for three N-atom mixing Fibonacci systems: (a, a') a=0.225|t|, 1=1.25, E;=-1.025|t|,

(b, b') e=0.75|t], 3=2.0, Er=-1.25]t|, and (c, ¢') o=1.05]t|, 3=2.5, Ey=-1.45]t|. All these systems are saturated by
two semi-infinite periodic linear chainswith hopping integralst and null self-energies.

In figure 1, an amplification of the density of states (DOS) around the transparent states and
the dc Kubo conductivity (ouc) are comparatively shown for three MFS: (a, @) o=0.2251t|, y=1.25,
Er=-1.025|t|, (b, b") o=0.75[t|, y=2.0, Ex=-1.25|t|, and (c, ¢') o=1.05}t|, y=2.5, Ex=-1.45[t|, where
Er isthe transparent-state energy, indicated by dashed linesin the figure. In the three cases the
MFS have k=3, i.e., their size, N, is multiple of 3[9], and they are saturated by two semi-infinite
periodic linear chains with hopping integralst and null self-energies. The DOS is calculated by
means of DOS(E) =—Im[Tr G*(E)]/ z , and the imaginary part of the energy in the Green's
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function is 10™|t]. By using a renormalization method [11], we have checked that the curvesin
Fig. 1 closeto the transparent states remain the same for MFS containing 6765, 317811, and
102334155 atoms, i.e., they scale with the inverse of the system size. Likewise, oscillationsin both
DOS(E) and oy(E), contrary to the periodic case, are observed. The location of the maximain
these oscillations can be obtained by a perturbation analysis of the transparent-state condition,
givenin Ref. [9]. It should be mentioned that the normalized dc conductivity, oud op, is strictly
unity only for the transparent state located at E=Ey. Notice also that the amplitude and the

frequency of these oscillations increase as the system inhomogeneity is enhanced, i.e., when the
parameters o and y increase.

AC CONDUCTIVITY

In figure 2, we show the ac Kubo conductivity [ o(w)] calculated using equation (1) with
Er=Er for the samethree MFS asin figure 1 in comparison with that of the periodic case (open
circles), where open pentagons, open sguares, and open triangles correspond to the systems of
figures 1(a), 1(b), and 1(c), respectively. For the periodic case, the ac conductivity at Er=0is
given by Eq. (A3). Notice that when o, and y increase, the minima of o(®) move toward lower
frequencies, and a new minimum appears and deepens in the low frequency regime. The depth of

this low-frequency minimum could be related to the oscillating amplitude observed in DOS(E)
and ou(E) (Fig. 1).
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Figure 2. The ac conductivities [ o( )] of three MFSindicated by open pentagons, open sguares, and open
triangles, with the same parameters asin figures 1(a), 1(b) and 1(c), respectively, in comparison with that of a
periodic chain (open circles). In theinset a low-frequency log-log plot of o( @) is shown.

In the insert of figure 2, we show alog-log plot of the ac conductivity in the low frequency
limit, where the numerical calculations were performed in quadruple precision and the imaginary
part of the energy in the Green’s function is 10™|t], instead of 10™'°lt| used in the main part of
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figure 2. For the periodic case, the ac conductivity in thislimit is given by Eq. (A4). Now, for
MFS, in spite of the appearance of the low-frequency minimum, their o(w) follows essentially
the same relationship of the periodic case, except that the MFS have larger curvatures, i.e.,
coefficients of 0.03311, 0.14983, and 0.41299 for the systems analyzed in figures 1(a), 1(b), and
1(c), respectively, instead of 1/48 for the periodic case [Eq. (A4)]. It isworth mentioning that the
normalized ac conductivity of MFS also scales with the inverse of the system size, as found for
the periodic case [§].

CONCLUSIONS

The frequency dependence of the transparent-state electrical conductivity in MFS with k=3
has been analyzed in detail. An oscillating behavior around the transparent state has been found
for both the density of states and the dc conductivity. The amplitude of these oscillationsincrease
when the inhomogeneity of the system is enhanced, i.e., when o. and y grow. Likewise, the ac
conductivity of MFS present an oscillatory behavior similar to that observed in the periodic
chain, except for the appearance of a new minimum in the low-frequency regime, which could be
related to the oscillations of the dc conductivity around the transparent states. Finally, an
universal behavior is observed in o(w) of MFS, where the normalized o() scales with the
inverse of the system size in the same way asin the periodic chains.

APPENDIX. ANALYTICAL SOLUTION FOR PERIODIC SYSTEMS

In this section we calculate the Kubo conductivity for a periodic chain of N atoms, with
lattice constant a, null self-energies and hopping integral t, saturated by two semi-infinite
periodic chains with the same parameters. The linear momentum operator for this caseis given

by
imat N N
p=— =2 i){i+1-i)i -1}
We define
g, =Imi|G*(E)j) and g}, =Imi|G"(E+hw) j)
then,
m2a2t2
Tr[pImG*(E + hw)pImG* (E)]= - 2 (S-S,-S,+S,),
where
N-1N-1 N-1 N N N-1 N N
S= zzgiﬂ,j g’j+1,i S, = zz Qi g’j—l,i Sy = Zz Qi g’j+1,i ,and S, = Zz Oiaj g’j—l,i' (Al
i=1 j=1 i=1 j=2 i=2 j=1 i=2 j=2
The Green’s function for an infinite periodic chain can be written as[12]
G = i ei\[—m\e
"M lsineg
where
cosf = X = E;teo . and sinf@=—/1-x2.
Thus,
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Ecos&cos&#chos(li —~ j+16)cos(j —i+16°)+ NiZcos(]i — j+16)cos(j -i+16)

i=1 i=1 j<i i=1 j>i
= , (A2
3 4t’sin@sing’ (A2)

where cosf'= x'= IEJthtH) and sing’= —/1—(x)* . Thefirst sumin Eq. (A2) gives

N-1
)" cosf cosé’ = (N —1)cosé cosé’= 1 (N —1)(cosy, +cosy,),

i=1
where y, =0 +6’ and y, =6 —-6'. To evaluate the second sum in EqQ. (A2), we define

ZZcos(ﬁ ~j+10)cosl|j —i+10")= N 1-n)cos (n+1)0]cos (n—1)9’] = 1(S*2 + §*)

i=1 j<i

where
N-—

S Z(N ~1-n)cos(ny, +%,)= Z[N 1)g7a*%) _ng n7a+7b)]}

n=1

=R (|\| 1) i% ﬂ—l +e” —(N_]_)el - 7a+(N_2)eiNya+eiya
1—ge (1_ o )2 :

Likewise, thethird termis

ZZCOSQI—J+1|0 cosl|j i +16’)= N 1-n)cog(n—1)9]cod(n+1)6’]=Z(6",6),

i=1 j>i
and the sum of these last two termsin Eq. (A2) can be written as

>(6,6')+(6",0)

—2(N —1)cos® y, + (4N —6)cosy, + (— 2N +4)+cosNy, +cos(N —2)y, —2cos(N —1)y,
4(1-cosy, )

—2(N =1)cos® y, + (4N —6)cosy, + (= 2N +4)+cosNy, +cos(N — 2)y, — 2cos(N - 1)y,

= COSY,

+Cos

& 4(1-cosy, )*
Therefore,

S - 1 cosy,[1—cos(N —1)y,] . cosy,[1-cos(N —1)y,] .
4t*sin@sing’ 2(1-cosy,) 2(1-cosy,)
Anaogously,
1 55 6 o)=L I(N-1)+ 3 (N-1-n)
S, = WSnoSn Z;‘JZ;COSQI_” Jos(j —ile) anoeng [( )+Z1( —1-n) cosn;/1+cosn;/2)]

B 1 1-cos(N -1)y, 1= cos(N -1)y,
4t’sin@sing’| 2(1-cosy,) 2(1-cosy,) |

Moreover, taking advantage of the dumb indexes in the definition of S [Eq. (A1)], wefound S
isalmost the same as S, except that dand & are exchanged. However, S is an even function of
Y2, consequently, S= S. Analogoudly, &= S. Therefore,
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Tr|pImG* (E +hw)pImG* (E)|
m’a®  —(1-cosy,)’[1-cos(N —1)y,|- (1—cosy, )*[1—cos(N -1)y,]

Ah2Sin@sing’ (1—cosy, JA—cosy, )
1-cosfcost’)’ .
2a%t? |1|1-cos|N —1)@cos(N —-1)¢’ ( singsing’

hw’
—sin(N -1)9sin(N —1)9’(1- cosé cos8’)

For the case of null Fermi energy (Er=0) and low frequencies of the applied electrical field, we
have |E|/2ft| < 7w/ 2}t| << 1. Hence, performing a Taylor expansion in the last equation we obtain

Tr[pImG+(E+ha))p|mG+(E)]z 4m2a2t2{1_ Cos[(N —l)hw} ;

h'w? 2t
consequently,
2¢’h ¢ 8t%e’a [ ho

=———— |dETr|pImG*(E+# ImMG*(E)|l=———~+——~-—5131-coq (N-1)— [}, (A3
O'(a)) Lmnzha)_;!.w [p ( w)p ( )] (N —1)7'[?1%02 { _( ) ZM :|} ( )
where the system length is L=(N-1)a. Finaly, in the low-frequency limit, we have

2 2
a(a))zw 1_1[(N_1)ha)] . (A4)
Th 48 t
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