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Abstract

Based on the BCS formalism, the electronic specific heat of d-symmetry superconducting states is studied. This study is performed on a

square lattice described by a generalized Hubbard model, in which correlated-hopping interactions are included in addition to the

repulsive Coulomb ones. Instead of the exponential temperature dependence for the s-channel, the results show second and higher

power-law behaviors for d-wave superconducting specific heat, depending on the angular dependence of the single-excitation energy gap

occurred at different carrier concentrations. The results of this study could help to understand a variety of power-law behaviors observed

in La2�xSrxCuO4 superconductors.

r 2007 Elsevier B.V. All rights reserved.
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The energy spectrum of elementary excitations in solids
determines the temperature dependence of their specific heat.
In particular, for a superconductor it gives information
regarding to the symmetry of its superconducting state. An s-
wave superconductor has an exponentially temperature-
dependent electronic specific heat (C), while an anisotropic
nodal superconducting gap leads to a power-law C, as occur
in the cuprate superconductors [1] and in Sr2RuO4 [2]. For
these materials, three-band Hubbard models have been
proposed to describe the dynamics of the carriers on the
CuO2 and RuO2 planes, and the electronic states close to the
Fermi energy can be reasonably well described by a single-
band square-lattice tight-binding model with second neighbor
hoppings [3,4]. In this work, we study C of d-wave super-
conducting states on a square lattice with a lattice parameter
a and a single-band generalized Hubbard Hamiltonian [5]:
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where cþis (cis) is the creation (annihilation) operator with spin
s ¼ k or m at site i, ni;s ¼ cþiscis, ni ¼ ni;" þ ni;#, /i, jS and
//i, jSS denote first- and second-neighbor sites, Dt and Dt3
are first- and second-neighbor correlated hopping integrals,
respectively. Applying the BCS formalism to Eq. (1), two
coupled integral equations are obtained [5]. They determine
the superconducting gap (Dd) and the chemical potential (m)
for a given temperature (T) and electronic density (n). The
critical temperature (Tc) is obtained when Dd ¼ 0. The C of
superconducting states is given by [6]
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where b ¼ 1/kBT, f(E) is the Fermi–Dirac distribution, Ek ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
is the single-excitation energy, e(k) is

the mean-field dispersion relation, m is the chemical potential
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Fig. 2. Theoretical (open circles) d-wave electronic specific heat (C) versus

temperature (T) for systems with the same parameters as in Fig. 1 in

comparison with experimental data (solid circles) obtained from

La2�xSrxCuO4 [7]. Insets: corresponding single-excitation energy gaps

(D/jtj) as a function of the polar angle (y).
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and DdðkÞ ¼ Dd ½cosðkxaÞ � cosðkyaÞ� [5]. The electronic
specific heat of the normal state can be obtained by taking
Dd equal to zero.

Fig. 1 shows Tc as a function of n for t0 ¼ �0.45jtj,
Dt ¼ 0.5jtj, Dt3 ¼ 0.1jtj, V ¼ 0 and arbitrary U. Observe
that the maximum Tc is located at the optimal n ¼ 1.73,
similar to that observed in cuprate superconductors since
the doping concentration x is related to 2�n in this model.

In Fig. 2, two electronic densities (a) n ¼ 1.2 and (b)
n ¼ 1.94 are chosen from Fig. 1 to calculate their C and
compared with experimental data obtained from La2�xSrx

CuO4 for x ¼ 0.22 and 0.1, respectively [7]. Insets of Fig. 2
show the corresponding theoretical angular dependences of
the single-excitation energy gap (D) defined as the
minimum value of Ek in k direction [8]. The polar angle
is given by y ¼ tan�1ðky=kxÞ. Notice that for the overdoped
regime, no1.73, D has a dx2�y2 symmetry and in con-
sequence C is proportional to T2 as obtained in Ref. [9].
However, for the underdoped regime, n41.73, CpTn with
n42 since D has a dxy-like symmetry without real nodes.
For low-energy single-particle excitations, the lack of real
nodes has a similar effect as in an s-wave superconductor.
In consequence, for T5Tc, C has an almost exponential
behavior. The residual C/T value at T ¼ 0 in experimental
data could be due to the chemical or electronic inhomo-
geneity of the sample [10], and this fact is not considered in
the theory.

In conclusion, the low-temperature behavior of C is very
sensitive to the deepness of nodes in D, which symmetry
depends on n, as found in scanning tunneling experiments
[11]. It is worth mentioning that dxy-like gaps without real
nodes have been observed in cuprate superconductors [12].
These results could help to understand the different C(T)
behaviors observed in d-wave superconductors.
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Fig. 1. Critical temperature (Tc) as a function of the electron density (n)

for t0 ¼ �0.45jtj, Dt ¼ 0.5jtj, Dt3 ¼ 0.1jtj, V ¼ 0 and arbitrary U.
UNACAR exchange project. Computations have been
performed at Bakliz and KanBalam of DGSCA, UNAM.
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