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Two- and three-body correlation in dilute Hubbard systems
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Abstract

In order to find an exact solution for the Hubbard systems with few electrons, we have developed a new method, which
consists of mapping the original many-body problem onto a tight-binding one in a higher-dimensional space. Applying
this mapping method to a chain, a square lattice and a triangular one, the pairing problem of two electrons and two holes
with anti-parallel spins has been analyzed by looking at the binding energy and the coherence length for attractive
interactions. Finally, some results of the three-body correlation are also reported.

The Hubbard model has been extensively used to
describe a variety of cooperative phenomena, such as,
charge density wave [1], spin density wave [2], and
superconductivity [3], since it is probably the simplest
model which takes into account the many-body effects.
In spite of its simplicity, rigorous results have been ob-
tained only for one [4] and infinite [5] dimensions.
Recently, the pairing problem has been studied by using
k-space [3, 6]. In this paper, the mapping method de-
veloped previously [7] is applied to analyze electron and
hole correlation in one- and two-dimensional low-den-
sity systems using the extended Hubbard Hamiltonian
(EHH).

In order to present a brief explanation of the mapping
method, let us consider the case of two electrons with
opposite spins in a square lattice. There are N* possible
states, where N is the number of sites of the lattice. These
states form a hyper-cubic network in a 4-dimensional
space, which can be described by a tight-binding Hamil-
tonian, as explained in detail in Ref. [7]. A simple
way to obtain the solution is taking advantage of the
translational symmetry of the network of states in two
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directions and mapping this 4-dimensional network onto
a 2-dimensional one, similar to that introduced by
Falicov and Yndurain [8]. This mapped lattice is also
a square one, which has a center “impurity” with a site-
energy U, surrounded by four V-energy “impurities”, and
the remainder states with null site energies, where U and
I are, respectively, the on-site and the nearest-neighbor
interactions in the EHH. For a triangular lattice, the
mapping procedure is the same as the square lattice case
explained before, except that the final mapped lattice is
a triangular one, where a central U-site is surrounded by
six V-sites, and the remaining states with null site ener-
gies [9]. The mapped lattices can be solved numerically,
where the exact diagonalization was carried out in
a truncated square lattice of 2401 effective states, and in
a truncated triangular lattice of 2269 effective ones. The
variations of the binding energy (4) and the coherence
length (&) as functions of U are shown in Fig. 1(a) and
1(b), respectively. Notice that for triangular lattices, the
holes can be paired by on-site attractions ( — U) more
easily than for the electron case. This asymmetry between
electron and hole pairing is caused by the frustration
of several anti-bonding states in triangular lattices.
It is worth mentioning that the results of 4 for the
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Fig. 1. Plots of (a) the binding energy (4) and (b) the coherence
length (&), for electrons and holes with opposite spins with an
on-site attractive interaction ( — U) in a square and a triangular
lattice.

square lattice coincide with those calculated by Micnas
et al. [3].

For the three-body problem in a linear chain, the
mapped lattice is a two-dimensional one, which has been
explained in detail in Ref. [10]. The numerical calcu-
lations were carried out for a truncated lattice of 1176
and 1276 effective states for the parallel (T 1 1) and
non-parallel cases (| T | ). respectively. Figure 2 shows
the results of 4 and of & as functions of V for the
three-electron case. A4 has been calculated from the en-
ergy difference between the lowest correlated state
(K = 0) and the original lower band edge when there is
no electron—electron interaction. Likewise, ¢ is computed
from |W(ry.2 r1,3)|% where r;; is the distance between
electrons i and j. The results presented in Fig. 2b,
were obtained from r, ,=a and |(a,&)|* = max
(| lar, 3)|*)/e. In Fig.2b, it is observed that the
coherence length for the non-parallel case is always
larger, and this behavior is similar to the two-body
case [10].
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Fig. 2. A comparison of (a) the binding energy (4), and (b) the
coherence length (£) between the parallel and non-parallel cases
for three electrons with an inter-site attractive interaction ( — V)
in a linear chain.
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