Spin triplet pairing and superconducting states in square lattices

J. Samuel Millán ${ }^{\text {a,c }}$, Luis A. Pérez ${ }^{\text {b }}$, Chumin Wang ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Instituto de Investigaciones en Materiales, Univ Nacional Autonoma de Mexico, Apartado Postal 70-360, CP 04510, México DF, Mexico
${ }^{\mathrm{b}}$ Instituto de Fisica, UNAM, P 20-364, CP 01000, México DF, Mexico
${ }^{\text {c }}$ Facultad de Ingeniería, UNACAR, Calle 56 No. 4, CP 24180, Cd. del Carmen, Campeche, Mexico

Abstract

In this work we study the pairing symmetry in a square lattice within a generalized Hubbard model, in which a second-neighbor correlated hopping is included in addition to the on-site and nearest-neighbor repulsions. When an infinitesimal distortion of the right angles in the square lattice is considered, we observe a spin triplet p-wave ground state for the case of electrons, but for holes a finite distortion is required, contrary to the d-wave case. In general, this spatial distortion induces a splitting of the doubly degenerate p-wave pairing states and one of them could become the ground state. On the other hand, this study has been extended to a finite density of electrons within the BCS formalism and the results show a maximum critical temperature of p-wave superconductivity around a $2 / 3$ band-filling, close to the Fermi energy in the γ-band of $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$ estimated by band-structure calculations.

© 2004 Elsevier B.V. All rights reserved.
Keywords: Spin-triplet pairing; Hubbard model; Two-dimensional systems

The recent discovery of the p-wave spin-triplet superconducting state in $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$ [1] has enhanced the research of models beyond the standard BCS theory to include anisotropic superconducting gap symmetries. The two-dimensional character of this material should be essential to understand its peculiarities. Three-band Hubbard models have been proposed to describe the electron dynamics on the planes and the electronic states close to the Fermi energy can be reasonably well described by a single-band tight-binding model with next-nearest-neighbor hoppings [2]. In this work, we investigate the spin-triplet p-wave pairing and superconducting states in a generalized Hubbard model.

Let us consider a two-dimensional square lattice with a lattice parameter a and a single-band generalized Hubbard Hamiltonian for electrons as [3]

[^0]\[

$$
\begin{align*}
\widehat{H}= & -t_{0} \sum_{\langle i, j\rangle \sigma} c_{i \sigma}^{+} c_{j \sigma}-t_{0}^{\prime} \sum_{\langle\langle i, j\rangle\rangle \sigma} c_{i \sigma}^{+} c_{j \sigma}+U \sum_{i} n_{i \uparrow} n_{i \downarrow} \\
& +\frac{V}{2} \sum_{\langle i, j\rangle} n_{i} n_{j}+\Delta t \sum_{\langle i, j\rangle \sigma} c_{i \sigma}^{+} c_{j \sigma}\left(n_{i-\sigma}+n_{j-\sigma}\right)+\Delta t_{3} \\
& \times \sum_{\substack{\langle\langle i, j\rangle\rangle \sigma \\
\langle i, l\rangle,\langle j, l\rangle}} c_{i \sigma}^{+} c_{j \sigma} n_{l-\sigma} \tag{1}
\end{align*}
$$
\]

where $c_{i \sigma}^{+}\left(c_{i \sigma}\right)$ is the creation (annihilation) operator with spin $\sigma=\downarrow$ or \uparrow at site $i, n_{i, \sigma}=c_{i \sigma}^{+} c_{i \sigma}, n_{i}=n_{i, \uparrow}+n_{i, \downarrow}$, $\langle i, j\rangle$ and $\langle\langle i, j\rangle\rangle$ denote respectively nearest-neighbor and next-nearest-neighbor sites. t_{0} and t_{0}^{\prime} are positive hopping-integral parameters. When an electron-hole transformation is made in Eq. (1) via $c_{i \sigma}^{+} \rightarrow h_{i \sigma}$, the Hamiltonian of holes has the same form as Eq. (1), except for containing new hopping integrals for holes $t=t_{0}-2 \Delta t$ and $t^{\prime}=t_{0}^{\prime}-4 \Delta t_{3}$, instead of $-t_{0}$ and $-t_{0}^{\prime}$ for electrons [3]. Furthermore, for the case of two fermions with a total spin $S=1$ (triplet), the real-space wave function should be anti-symmetric under the exchange
of particles, i.e., it should have p- or f-symmetry in the two-particle internal coordinate space. To break the degeneracy of p-wave pairing states, we consider a small distortion of the right angles in the square lattice, which leads to changes in the second-neighbor interactions, such as t^{\prime} and Δt_{3} terms in Eq. (1). The new values of these interactions are $t_{ \pm}^{\prime} \equiv t^{\prime} \pm \delta^{\prime}$ and $\Delta t_{3}^{ \pm} \equiv \Delta t_{3} \pm \delta_{3}$, where \pm refers to the $\widehat{x} \pm \widehat{y}$ direction.

The two-particle binding energy is defined as $\Delta_{2}=E_{2}-2 E_{1}$, where E_{n} is the ground state energy with the appropriate symmetry corresponding to the problem of n particles and it can be calculated by using a previously developed mapping method [3]. The electron- and hole-pairing phase diagrams are respectively shown in Fig. 1(a) and (b), for $U=6 t_{0}, V=0, t_{0}^{\prime}=0.45 t_{0}$, $\Delta t=0.5 t_{0}$, and $\Delta t_{3}=0.1 t_{0}$. The dashed line indicates the exception of p-wave pairing states at $\delta_{3}=0$. The numerical calculations are performed in a projected square lattice of 1741 two-particle states [3]. Notice the asymmetry between pairings of electrons and of holes, where the electron triplet has a larger p-wave region and requires only an infinitesimal distortion in the secondneighbor correlated-hopping interaction $\left(\Delta t_{3}\right)$, in contrast to the favored hole pairing with d symmetry when the distortion is small.

On the other hand, the real-space Hamiltonian [Eq. (1)] can be rewritten in the momentum space by making a Fourier transform of the creation and annihilation operators [4]. Within the BCS formalism, the equations for determining the p-channel superconducting gap $\left[\Delta(\mathbf{k})=\Delta_{p}\left(\sin \left(k_{x} a\right)+\sin \left(k_{y} a\right)\right)\right]$ and the chemical potential (μ) are [4]

Fig. 1. (a) Electron and (b) hole pairing phase diagrams in a distortion strength space. The dashed lines denote the absence of p-wave pairing at $\delta_{3}=0$.

$$
\begin{align*}
\mathbf{1}= & -\frac{\left(V-4 \delta_{3}\right)}{N_{\mathrm{s}}} \sum_{\mathbf{k}} \frac{\sin \left(k_{x} a\right)\left[\sin \left(k_{x} a\right)+\sin \left(k_{y} a\right)\right]}{E(\mathbf{k})} \\
& \times \tanh \left(\frac{E(\mathbf{k})}{2 k_{\mathrm{B}} T}\right) \tag{2}
\end{align*}
$$

$n-1=-\frac{1}{N_{\mathrm{s}}} \sum_{\mathbf{k}} \frac{\varepsilon(\mathbf{k})-\mu}{E(\mathbf{k})} \tanh \left(\frac{E(\mathbf{k})}{2 k_{\mathrm{B}} T}\right)$
where n is the density of particles, N_{s} is the total number of sites, the single excitation energy is given by
$E(\mathbf{k})=\sqrt{(\varepsilon(\mathbf{k})-\mu)^{2}+\Delta^{2}(\mathbf{k})}$,
and

$$
\begin{aligned}
\varepsilon(\mathbf{k})= & (U / 2+Z V) n+2(t+n \Delta t)\left[\cos \left(k_{x} a\right)+\cos \left(k_{y} a\right)\right] \\
& +2\left(t_{+}^{\prime}+2 n \Delta t_{3}^{+}\right) \cos \left[\left(k_{x}+k_{y}\right) a\right]+2\left(t_{-}^{\prime}+2 n \Delta t_{3}^{-}\right) \\
& \times \cos \left[\left(k_{x}-k_{y}\right) a\right] .
\end{aligned}
$$

In particular, the critical temperature $\left(T_{\mathrm{c}}\right)$ can be determined by $\Delta_{p}\left(T_{\mathrm{c}}\right)=0$ and its results are shown in Fig. 2 for $V=-0.39 t_{0}, t_{0}^{\prime}=0.45 t_{0}, \Delta t=0.5 t_{0}, \quad \Delta t_{3}=0.05 t_{0}$, $\delta^{\prime}=0.001 t_{0}, \delta_{3}=0.01 t_{0}$ and arbitrary U. Notice that there is a maximum around $n=4 / 3$ (corresponding to 2 / 3 band-filling), in agreement with the Fermi energy estimated by the band theory [5]. The value of T_{c} decreases as the inter-atomic interaction (V) diminishes and it remains finite even for $V=0$.

In summary, we have studied s -, p -, and d-wave pairings in a square lattice within the generalized Hubbard model. We observe that an infinitesimal distortion in the square lattice or in the second neighbor interactions can induce a p-symmetry spin-triplet electron pairing, but not for the p -wave hole pairing. This fact agrees with the sign of the low temperature Hall coefficient observed in $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$ [6]. On the other hand, the finite density calculation reveals a much lower T_{c} for the

Fig. 2. Critical temperature $\left(T_{\mathrm{c}}\right)$ as a function of the electron density (n) for $V=-0.39 t_{0}, t_{0}^{\prime}=0.45 t_{0}, \Delta t=0.5 t_{0}, \Delta t_{3}=0.1 t_{0}$, $\delta^{\prime}=0.001 t_{0}$ and $\delta_{3}=0.01 t_{0}$.
p-channel in comparison with that of d-channel, in qualitative agreement with experiment results.

Acknowledgements

This work was supported partially by UNAMIN101701 and CONACyT-P41492F. Computations have been performed at Bakliz of DGSCA-UNAM. J.S.M. acknowledges financial support from CONACyT and PROMEP UACAR-2001-01-01.

References

[1] Y. Maeno et al., Nature 372 (1994) 532;
K. Ishida et al., Nature 396 (1998) 658.
[2] C. Honerkamp, T.M. Rice, J. Low, Temp. Phys. 131 (2003) 159.
[3] L.A. Pérez, C. Wang, Solid State Commun. 118 (2001) 589.
[4] L.A. Pérez, C. Wang, Solid State Commun. 121 (2002) 669.
[5] T. Oguchi, Phys. Rev. B 51 (1995) 1385;
D.J. Singh, Phys. Rev. B 52 (1995) 1358.
[6] A.P. Mackenzie et al., Phys. Rev. B 54 (1996) 7425; L.M. Galvin et al., Phys. Rev. B 63 (2001) 161102.

[^0]: * Corresponding author. Tel.: +52-55-56224634; fax: +52-5556161251.

 E-mail address: chumin@servidor.unam.mx (C. Wang).

