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Symmetry phase diagrams of the superconducting ground states
induced by correlated hoppings interactions
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Abstract

The formation of p- and d-wave superconducting ground states on a square lattice is studied within the BCS formalism and a general-
ized Hubbard model, in which a second-neighbor correlated hopping (Dt3) is included in addition to the on site and nearest neighbor
repulsions. The triplet superconductivity is obtained when a small distortion of the right angles in the square lattice is introduced. This
distortion can be characterized by the difference between the values of Dt�3 in the x ± y directions, i.e., d3 ¼ ðDtþ3 � Dt�3 Þ=2. The phase
diagram is analyzed in the space of the electron density (n) and d3. The results show that the p- and d-channel superconductivities
are respectively enhanced in the low and high electron density regions.
� 2007 Elsevier B.V. All rights reserved.
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The investigation of correlated electron models that
could lead to anisotropic superconducting gaps is highly
motivated by the observation of d-symmetry gap in the
cuprate superconductors [1] and p-wave spin-triplet super-
conducting state in Sr2RuO4 [2]. The two-dimensional
behavior, present in both mentioned systems, could be
essential to understand their peculiar properties. Single-
band second-neighbor Hubbard models on square lattices
have been proposed to describe the dynamics of the carriers
on the CuO2 [3] and RuO2 [4] planes. Recently, we have
found that the second-neighbor correlated-hopping inter-
action (Dt3) is essential in the dx2�y2 wave superconductivity
[5] and a further small distortion of the right angles in the
square lattice leads to p-wave superconductivity [6]. It is
worth mentioning that a similar distortion has been
observed on the surface of Sr2RuO4 [7]. In this article, we
report the phase diagram of p- and d-wave superconduc-
ting ground states by means of a previously used general-
ized Hubbard model [5,6] containing nearest (t) and
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next-nearest neighbor (t 0) hoppings, correlated-hopping
interactions between first (Dt) and second (Dt3) neighbors,
along with on-site (U) and nearest-neighbor (V) Coulomb
interactions [5]. If we consider a small distortion of the
right angles in the square lattice, the second-neighbor inter-
actions change and their new values are t0� � t0 � d and
Dt�3 � Dt3 � d3, where ± refers to the x̂� ŷ direction.
Applying the BCS formalism [8] to our model, we obtain
the following two coupled integral equations [5,6], which
determine the superconducting gap (Da) and the chemical
potential (la) for a given temperature (T) and electronic
density (n),
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where a = p or d, Ns is the number of sites, e(k) is the
mean-field dispersion relation given by
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Fig. 2. Superconducting ground-state phase diagram in the space of
electron density (n) and d3 for U = V = d = 0, t 0 = �0.6|t|, Dt = 0.5|t|, and
Dt3 = 0.15|t|. Inset: Difference of ground state energies (Wp �Wd) versus n

for the same parameters and d3 = 0.13|t|.
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eðkÞ ¼ ðU=2þ 4V Þnþ 2ðt þ nDtÞ½cosðkxaþ cosðkyaÞ�
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þ 2ðt0� þ 2nDt�3 Þ cosðkxa� kyaÞ; ð3Þ

and the single-particle excitation energy
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For the p-channel case, Kp = d3, Dp(k) = Dp[sin(kxa) ±
sin(kya)], gp = ±1, and gp(k) = sin(ka); whereas for the
d-channel Kd = Dt3, Dd(k) = Dd[cos(kxa) � cos(kya)], gd =
�1, and gd(k) = cos(ka).

The main difficulty to solve Eqs. (1) and (2) comes from
their integrands, which are governed by the behavior of
1/Ea(k) shown in Fig. 1 for U = V = d = 0, t 0 = �0.6|t|,
Dt = 0.5|t|, Dt3 = 0.15|t|, d3 = 0.11|t|, n = 0.8, Da =
0.00154|t|, and la = 0.147|t|. Using this set of parameters,
the plots for a = p and a = d are visually indistinguishable,
hence in Fig. 1 only the first case is presented. Observe that
the sharp peaks located at the Fermi surface defined by
e(k) = la are two orders of magnitude larger than the cor-
responding values in the rest of the first Brillouin zone.
Then, the superconducting ground-state properties are
mainly determined by the Fermi surface. This fact seems
to be in accordance to the BCS theory [8]. Also, it can be
proved that the integrands in Eqs. (1) and (2) do never
diverge.

On the other hand, the energy of the superconducting
ground state (Wa) per site at T = 0 can be written as [9]
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The phase diagram, shown in Fig. 2, between p- and d-
wave superconducting ground states has been obtained
Fig. 1. Integrand 1/Ea(k) plotted over the first Brillouin zone for
U = V = d = 0, t 0 = �0.6|t|, Dt = 0.5|t|, Dt3 = 0.15|t|, n = 0.8, Dp =
0.00154|t|, lp = 0.147|t|, and lattice parameter a.
by comparing Wp and Wd, as illustrated in the inset
of Fig. 2 for U = V = d = 0, t 0 = �0.6|t|, Dt = 0.5|t|, Dt3 =
0.15|t| and d3 = 0.13|t|. Notice that the p- and d-channel
superconductivities are, respectively, enhanced in the low
and high electron density regions. This fact is in agreement
with the hole nature of carriers observed in cuprate super-
conductors [1]. Moreover, for a given n, the p-wave super-
conductivity is enhanced by d3 and at the same time the
d-channel is being suppressed, since the anisotropy between
x̂þ ŷ and x̂� ŷ grows.

In summary, we have presented a generalized Hubbard
model which allows studying p- and d-wave superconduc-
tivities within the same framework. The application of
the BCS formalism to this kind of correlated electron
models leads to the coupled Eqs. (1) and (2), whose inte-
grals can be efficiently calculated by isolating the region
around the Fermi surface. Finally, the superconducting
ground-state phase diagram suggests that the number of
nodes in the single-particle wavefunction could be relevant
in the determination of pairing symmetry, i.e., electron-
and hole-like wavefunctions could favour p- and d-wave
superconductivities, respectively.
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