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Hole pairing symmetry in attractive Hubbard model.
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Geometrical effects on the pairing process between electrons and between holes are comparatively studied
by using an attractive Hubbard Hamiltonian. For triangular lattices, it is found that the hole pairing is always
stronger than the electron case due to the frustration of anti-bonding states; contrary to that occurred in bipartite
lattices, where there is a complete symmetry between the electron and hole pairings. The ground state of two
holes, when the attractive nearest-neighbor interaction is dominant, is surprisingly triplet and its wave function
has directional nodes. On the other hand, the hole pairing in disordered. lattices is analyzed and the results
show an enhancement of the pair-binding energy as the self-energy difference increases in a random binary alloy
AzBi_z. This fact suggests that the pairing process is highly sensitive to the one-particle localization condition.
The ground-state phase diagram for the case of on-site interaction disorder shows regions where pairing is avoid
for ordered diatomic systems but not for disordered cases.

For high-T superconductors, hole pairing, low
dimensionality and random doping seem to be im-
portant elements to consider [1]. The real-space
electronic correlation has been extensively stud-
ied by using the Hubbard model [2]. It has the
advantage of being simple and general, because
it does not depend explicitly on the nature of in-
teractions between particles. Recently, we have
introduced a new mapping method [3], which con-
sists on mapping the original many-body problem
onto a tight-binding one with some ordered im-
purities in an nd-dimensional space, being n the
number of electrons and d the dimensionality of
original system. In this hyper-space lattice, the
on-site (U) and the nearest neighbor (V) inter-
actions of the original Hamiltonian become the
self-energies of the impurities.
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Figure 1. Ground-state phase diagram for two
holes in a triangular lattice.

0921-4534/97/817.00 © Elsevier Science B.V. All rights reserved.
PII S0921-4534(97)00996-9

When a particle-hole transformation [4] is
made in the extended Hubbard Hamiltonian, the
holes also interact via the same Hamiltonian, ex-
cept that the sign of the hopping matrix (f) is
opposite and the density of holes is 1 —n in terms
of the electron density (n). Therefore, this trans-
formation becomes symmetric when the number
of holes is equal to the number of particles and
when the sign of ¢ is irrelevant as in the cases of
ordered and disordered bipartite lattices.

For the two-particle case on a triangular lat-
tice, we have found an asymmetry between the
electron pairing and the hole pairing, where the
latter is always stronger due to the frustration of
the anti-bonding states [5]. In Fig. 1 a ground-
state phase diagram for hole pairing is shown. We
can see that the pairs are singlets when U is dom-
inant, while they are triplets in the V-dominant
region. The transition between singlet and triplet
bound states in the strong interaction regime can
be obtained analytically and it is given by U =
V —t [5]. Finally, the transition between triplet
and non-pairing states occurs exactly at V = 0,
because there is no influence of U on the triplet
formation. Although there is no triplet super-
conductivity observed up today, triplet fermion-
pairing is well known, for instance, the superfluid
state of *He [6], where the fermionic He atoms
form p-wave spin-triplet pairs. Another interest-
ing result is that the triplet ground state has



1746 C. Wang et al./Physica C 282-287 (1997) 1745-1746

directional nodes, i.e., the corresponding wave
function of pairs has null amplitude along several
directions, similar to the recently observed d-wave
pairing symmetry [7], where directional nodes or
a phase shift of = predicted by the d,2_ 2 pairing
state is found.
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coincide with those calculated by Alexandrov, et
al.]9]. Notice that there is an intermediate re-
gion where the electron pairing is avoided for the
diatomic ordered case, but not for disordered sys-
tems. This fact is due to that the pairing states,
or impurity states in hyper-space, are proper only
for attractive-interaction atoms (B) and then the
extension of B-atom clusters in the system could
be essential for the binding energy.
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Figure 2. Comparison between the CPA {open
symbols) and ensemble-average (solid symbols)
results of the pairing energy (A) as a function of
the difference of self-energies for alloys AzB;_,.

On the other hand, in order to analyze the
effects of disorder on the hole pairing in low-
dimensional systems, we have applied [8] the
coherent potential approximation (CPA) to the
hyper-space lattice of a disordered binary chain
AzBj_z, since in this space we have just a single-
particle tight-binding problem. To verify the
CPA results we have performed the average of the
Green'’s function over all possible configurations
for lattices of few atoms.

In Fig. 2 the CPA results are compared with
those obtained from the ensemble-average calcu-
lation. Notice that there is an asymmetry with
respect to z = 0.5. It is unexpected because lat-
tices entirely formed by atoms A or B should have
the same pairing behavior. This asymmetry is
caused by the confinement effect, since it is en-
hanced when self-energies €4 > ¢g and A-atom
concentration increases. For the case of disorder
in hole-hole interactions (U4 and Ug), Fig. 3
shows the two-hole ground-state phase diagram
for Uy > 0, Ug < 0, and z = 0.5, in which the
lower curve indicates the transition between pair-
ing and non-pairing within the CPA and the up-
per one represents the same transition obtained
from an ordered diatomic chain. The latter curve
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Figure 3. Two-hole ground-state phase diagram
for ordered and disordered diatomic chains.
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