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Abstract

In this work, a comparative study of pairing and superconducting states in square lattices with s-, p- and d-symmetries is performed

within the BCS formalism and a generalized Hubbard model, in which correlated-hopping interactions are considered in addition to the

repulsive Coulomb interactions. The two-particle analysis reveals the importance of the van Hove singularity in the formation of pairs

and then the two-particle states with different pairing symmetry have their maximum binding energies at the same hopping strength. This

feature is confirmed by the superconducting critical temperature (Tc) calculation at the low-density regime. However, a different picture

is found for the high-density regime, i.e., the maxima of the s- and d-channel Tc split from the expected value and no p-wave

superconducting state is found. This study suggests that the three superconducting symmetries can be analyzed within a single

framework.
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The discovery of d-symmetry pairing in the cuprate
superconductors [1] and a probably p-wave spin-triplet
superconducting state in Sr2RuO4 [2] has enhanced the
search of microscopic models being able to describe
different anisotropic superconducting states in a single
framework. In particular, the essentially two-dimensional
behavior, present in both mentioned systems, could be
basic for understanding their peculiar properties. Three-
band Hubbard models have been proposed to describe the
dynamics of the carriers on the planes and the electronic
states close to the Fermi energy can be reasonably well
described by a single-band tight-binding square lattice with
second-neighbor hoppings [3,4]. Recently, we have found
that the second-neighbor correlated-hopping interaction
(Dt3) is essential in the dx

2
–y

2-wave superconductivity [5] and
that a further small distortion of the right angles in such
square lattices leads to p-wave superconductivity [6]. In this
work, we start from a single-band Hubbard model, in
which first (Dt) and second (Dt3) neighbor correlated-
e front matter r 2006 Elsevier B.V. All rights reserved.
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hopping interactions are considered in addition of the on-
site (U) and nearest-neighbor (V) Coulomb interactions.
The corresponding Hamiltonian can be written as
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where cþis cisð Þ is the creation (annihilation) operator with
spin s ¼# orm at site i, ni;s ¼ cþiscis, ni ¼ ni;" þ ni;#, oi,j4
and � i; j � denote first- and second-neighbor sites, �t

and �t0 are the first- and second-neighbor hopping
parameters, respectively. When an electron–hole transfor-
mation is made in Eq. (1), the hopping parameters for holes
are given by th � t� 2Dt and t0h � t0 � 4Dt3 instead of �t

and �t0 for electrons, as done in Ref. [7]. In order to break
the degeneracy of p-wave pairing states, we further
consider a small distortion of the right angles in the square
lattice with lattice parameter a, which leads to changes in
the second-neighbor interactions and their new values are
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t0� � t0 � d0 and Dt�3 � Dt3 � d3, where 7 refers to the x̂�

ŷ direction.
For the two-particle case, analytical solutions can be

found [8] by means of s-, p- and d-symmetry two-particle
wavefunctions and the respective binding energies (D2) are
determined by

UV þ 4UDt3 � 16Dt2
� �

I0I2 � I21
� �

�UI0 � 8DtI1 � V þ 4Dt3ð ÞI2 þ 1 ¼ 0

1� V � 4d3ð ÞI2 ¼ 0;

and

1� V � 4Dt3ð ÞI2 ¼ 0,

where
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being
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¼ 2t cos kxað Þ þ cos kya
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þ 2t0þ cos kxaþ kya

� �
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the dispersion relation, |E0| the lower one-particle band
edge, and f kx; ky

� �
¼ cos kxað Þ þ cos kya

� �
, cos kxað Þ �

cos kya
� �

and sin kxað Þ þ sin kya
� �

for s-, p- and d-channel,
respectively. Insets (a) and (b) of Fig. 1, respectively show
D2 versus t0 for two holes and for two electrons with s

(circles), p (triangles) and d (squares) symmetries, using
V ¼ 0, Dt ¼ 0.5t, Dt3 ¼ 0.15t, d‘ ¼ 0, d3 ¼ 0.1t, U ¼ 0 for
electrons and U ¼ 3t for holes. Notice that the maxima of
D2 are located at �t0 ¼ �0:6t for holes and �t0 ¼ 0:5t for
electrons, independently of the pairing symmetry, since
when �t0 ¼ 0:5t the van Hove singularities collapse into the
lower band edge and when �t0 ¼ 0:6t the bandwidth for
holes tends to zero with the chosen parameters.

To analyze the superconducting states we apply a normal
Hartree–Fock decoupling of the interaction terms in
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Fig. 1. Critical temperature (Tc) versus second-neighbor hopping para-

meter (t0) for n ¼ 0.2 (solid) and n ¼ 1.8 (open) with s- (circles), p-

(triangles) and d- (squares) symmetries. Insets: binding energy (D2) versus

t0 for (a) two holes and (b) two electrons.
Eq. (1) [5] and then, within the BCS formalism, we obtain
two coupled integral equations, which determine the
critical temperature (Tc) and the chemical potential [9].
The results obtained by using the same parameters as in the
two-particle analysis are shown in Fig. 1 for the electron
density n ¼ 0.2 (solid symbols) and n ¼ 1.8 (open symbols).
Observe that for n ¼ 0.2 the maxima of Tc corresponding
to the three superconducting symmetries are located at
�t0 ¼ 0:4t, because the mean-field hopping parameters [9]
are tMF ¼ �tþ nDt ¼ �0:9t and t0MF ¼ �tþ 2nDt3 ¼ 0:46t

for �t0 ¼ 0:4t and then �t0MF ffi 0:51tMF close to the two-
electron case. On the other hand, for n ¼ 1.8 the first-
neighbor mean-field hopping parameter is tMF ¼ �0:1t and
using the two-hole results, �t0MF ¼ �0:6tMF ¼ 0:06t, we
obtain �t0 ¼ t0MF � 2nDt3 ¼ �0:6t, which is the expected
location of maximum Tc. However, observe that the
calculated maximum-Tc locations for s- and d-channels
are �t0 ¼ �0:32t and �t0 ¼ �0:91t, respectively. Further-
more, there is no solution for p-channel Tc within the BCS
formalism.
In summary, we have presented a comparative analysis

of the s-, p- and d-symmetry pairing and superconducting
states. For the low-density regime, the finite-density results
can be inferred from the two-electron analysis, where the
single-particle van Hove singularity determines the location
of maximum Tc. However, for high band fillings, the results
of superconducting states, depending strongly on the
pairing symmetry, differ from the two-hole analysis
revealing a complex picture where the van Hove singularity
seems to not be the dominant factor.
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