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ac conductivity of the transparent states in Fibonacci chains
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The electrical transport in quasiperiodic systems at zero temperature is studied by means of the Kubo-
Greenwood formula within a tight-binding model. Their dc conductivity is compared with that obtained from
the Landauer formula. Special attention is paid to the transparent states, whose transmittance is unity. The ac
conductivity of these states shows a rapid diminution as a function of the frequency, in comparison with that
of periodic systems. Minima in these conduction spectra are observed, which are locatee BY%i(w
=4nm|t] for the periodic case. Finally, the localization of the eigenstates is analyzed by looking at the
Lyapunov exponent and the participation ratio. The latter is shown to be an inappropriate quantity to charac-
terize the critically localized states.

I. INTRODUCTION where() is the volume of the systenp,is the projection of
the momentum operator along the applied electric-field di-
The quantum transport in aperiodic systems is an openection,G+(E) is the retarded one-particle Green'’s function,
and interesting problem. In particular, the relationship beandf(E) is the Fermi-Dirac distribution with Fermi energy
tween the exotic localization of states and the anomaloug and temperaturg. In this paper, the ac conductivity of the
transport phenomena is not fully understdogiince the dis- transparent states at zero temperature is addressed by evalu-
covery of the quasicrystals, considerable effort has been exting Eq.(1).
pended in the study of their localization propertids.has The present paper is organized as follows. Section Il de-
been established that both electronic and phonon spectra Bfes the system and the Hamiltonian. An analytical solution
Fibonacci chains or Fibonacci superlattices are of Cantor séf the Kubo conductivity for a periodic linear chain is also
with zero Lebesgue measure and the corresponding eigeiven. In Sec. lll, the dc-conductivity numerical results for
states are critical.’ Thus, the electronic conduction in qua- quasiperiodic systems are compared with the transmittance
siperiodic structures is not expected to be ballistic as in &nd the localization spectra. In Sec. IV, the frequency depen-
periodic lattice neither diffusive as in a disordered 8ite  dence of the transparent-state conductivity is reported. Par-
hopping conductivity in Fibonacci chains has been addresseéfularly, the ac conductivity in the low-frequency regime is
by using the Miller-Abrahams equatiditsand by the dc analyzed in detail. Finally, some conclusions and possible
Kubo-Greenwood conductivit}. Recently, transparent extensions of the model are given in Sec. V.
states with unity transmission coefficient have been reported
for mixing Fibonacci system@iFS) of N atoms'! However,
their localization nature is still controversial. It is observed  There are several ways to generate a Fibonacci system,
that the el_gen.functlons of these transparent states, with enggr example, by using two hopping strengti®nd problem
gies satisfying E=a(1+7°)/(1-9*) and E?’-a®  or two sorts of atomssite problen. In this paper, we con-
=4 t*coS(Km/N), are periodiclike wave function$,where  sider a MFS, in which two kinds of atom& and B are
+a(—a) are the on-site energies of atonm®(B), y  arranged following the Fibonacci sequence, i.e., if one de-
=taa/tag is the ratio of the hopping parameteksandN/K  fines the first generatiof;=A and the second generation
are integer numbers. On the other hand, the ac conductivitg,=BA, the next generations are given Hy,=F,_;
of these transparent states is an unclear issue. In general, th&=_ . For instanceFs=BAABABAA In particular, this
ac electrical conductivity at zero temperature is a good probgequence is chosen in order to obtain the transparent states
of the nature of the electronic eigenvalue spectrum and thgsported in Refs. 11,12. In the MFS, the hopping integrals
localization of wave functions, since it depends not only onhetween atoms depends on the nature of them, contrary to
the states at the Fermi level but also on the global Structurﬁ]e same hopp|ng in the site prob|em, g|v|ng rise to the ex-
of the spectrum. _ . o _ istence of two different parametetg, and tag=tga. For
A general quantum mechanical expression, within the linthe sake of simplicity, a uniform bond length) is consid-
ear response approximation, for calculating the real part ofred.
the electrical conductivity for finite temperatuf€) and fre- In order to isolate the quasicrystalline effects on the
quency ) is given by the Kubo-Greenwood formdfa physical properties of the system, we consider a simple
s-band tight-binding Hamiltonian, which can be written as

II. THE MIXING FIBONACCI SYSTEM

o(p,0,T)=lim

Q_mc”Ql | 0

ho =20 {e DX+t G +2+t o G-
XTpIMGT(E+%Zw)pIMGT(E)], (1) 2
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FIG. 1. (@) Density of statesDOS), (b) Kubo conductivity FIG. 2. (a) Density of statesDOS), (b) Kubo conductivity
(og), (c) transmittance T), (d) Inverse of the Lyapunov exponent (o), (c) transmittance 1), (d) Inverse of the Lyapunov exponent
(v&1), and(e) participation ratio(PR) for a mixing Fibonacci sys- (y; '), and(e) participation ratio(PR) for a mixing Fibonacci sys-
tem of 2584 atoms withea=eg=0, tag=tga=t, andtaa=(5  tem of 987 atoms withen=— eg=0.225t|, taa=1.2%, andtag
—1)t/2. The system is saturated by two semi-infinite periodic linear=tg,=t. The system is also connected to two semi-infinite periodic

chains withe=0 and hopping integrals o andyz* are normal-  linear chains withe=0 and hopping integrals In this case, the
ized by their respectivep and ygl of a periodic chain. The trans- transparent state is located at= —1.023t|, and indicated by a
parent state £ =0) is indicated by a dashed line. dashed lineor andyz* are normalized by their respectivg, and

yp* of a periodic chain.
wheree; denote the on-site energieg (eg) andt; ; are the
corresponding hopping parameters. To evaluate the Kubdvhere we have taken the system lenftk (N—1)a. In the
Greenwood formula, Eq.(1), one needs the Green’'s limitof T andw—0, the factor f(E) —f(E+#Aw)]/fiw be-
function** and the momentum operatqu). The latter can be comes to5(E— ), wherep is the Fermi energy. Therefore,
determined by using the relations=(im/#)[H,x] and x the dc congiuctivity of a periodic linear chain within the en-
=3;jalj)(j|. Thus, in the Wannier representation, we have®€rgy band is

ima L . UZi(N—l). (6)
p:T;{tj,j+l|J><J+1|_tj,jfl|1><1_1|}- ©) Poah

Notice that this conductivity is not dependent on the Fermi
For instance, in the case of an infinite periodic linear chairenergy. Moreover, in the thermodynamic limit the dc con-
with on-site energye, and hopping parametey the one-  ductivity of a periodic linear chain at zero temperature di-
particle retarded Green's function is given'by verges, because in this case the electrical conduction is bal-
listic and then the mean free path is as large as the size of the
ie system:> However, for quasiperiodic systems the mean free
W' 4 path is bounded, except for the transparent states, which have
a transmission coefficient of unity and their Landauer scat-
where cogi=(E—¢)/2[t|. Substituting this expression into terer resistance of the system becomes Zia. the next
Eq. (1) and defining co® =(E+ho—e€)/2t], s(N)  section, some characteristic quantities of the localization and

=sinn@sinng’, andv(n)=1-cosnfcosnd’, we can write,  the dc electrical conductivity of these transparent states are
after some algebra, the following general expression for &omparatively investigated.

system ofN identical sites saturated by two semi-infinite
periodic linear chains

6|1 —m|
G/ m(E)=

Ill. dc CONDUCTIVITY

8e2t2a =  f(E)-f(E+hw) Let us consider a finite MFS, connected to two semi-
o(u,w,T)= infinite periodic linear chains with hopping integralsand
3 2 ho ) . X -
m(N=Dh e = null on-site energies. Its electrical conductivity can be stud-
1 201 ied by means of the Kubo-Greenwood formula, in which the
v(1) : o - :
X{=p(N— 1)( +s(1)) Green'’s function is calculated with the mentioned boundary
2 s(1) conditions and the trace in Edql) is taken over the Fi-

bonacci system. Figure(d shows the density of states
—s(N— 1)v(1)J, (5) (DOY), in logarithmic scale, of a MFS of generatior=17
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with 2584 atoms, in whichea=e€g=0, tan=(/5—1)t/2,
and ty,g=tga=t. Observe that this spectrum shows many
fine structures, since it contains 100 000 data and the imagi
nary part of the energy in the Green’s function is 1fa|.
The zero-temperature dc Kubo conductivity of the same Fi-
bonacci system as Fig(d (of) is calculated by means of

Eq. (1) and presented in Fig.(t) in units of that for a peri- € 07

odic linear chain §p) given by Eq.(6). Notice that there are <, | ﬁ /

many states having an electrical conductivity very close to " 10°k 1 |

that of a periodic system, and a more detailed analysis WI

reveals that the normalized Kubo conductivity (/o) .

of the state atu=0 is exactly unity, which confirms that 10°F

it is a transparent state as reported by Madiad i y
Dominguez-Adamé! It is worth mentioning that the double- w0l .

precision numerical results do not show any other transpar- 0 10

ent states, despite that the normalized Kubo conductivity of (N-1)ho/|t]

many eigenstates is larger than 0.99999.
On the other hand, the transmittance of the syqfEncan
be written a&®

FIG. 3. Transparent-state ac conductivity of a periodic chain
(open circley and of two mixing Fibonacci systemsolid circles
and solid triangleswith the same parameters as in Figs. 1 and 2,
respectively. In the inset a low-frequency-regime log-log plot of the

T(E) ac conductivity is shown.
_ 4—(Elt)? =1.2%, andtyg=tga=t. In this case, the transparent state is
[ To1— TyoF (Top— T19) EI2U]12+ (7ot 710)2(1— E2/4t2) located atu = — 1.025t| for generations1=41+3, beingl a

7) positive integer? The results of this analysis are shown in
. ) Fig. 2 for a MFS of generation= 15 with 987 atoms. First,
in which notice that the spectra lose the symmetry arourd0, since
the lattice is not bipartite. On the other hand, the general
Cnat 1 Tol(c) N E-e i N behavior observed in Fig. 1 is also present in Fig. 2. In par-

( ) :( )( ) = tiit1 i1 ( ) ticular, the density of states around the transparent state, in-

Cn T21 T2/ \Co/ =1 0 Co dicated by the dashed line in the figures, resembles that of a

(8)  periodic linear chain.

wherec; are the normalized amplitudes of the wave function
(), ie., ¥=3N ¢li) and =N ,|ci|?=1. Figure 1c)
shows the transmittanad) calculated for a MFS as in Fig. It is interesting to study the behavior of the transparent
1(a). Observe that there is a remarkable similarity betweerstates under perturbations such as the application of oscillat-
Figs. 1b) and Xc), since the electrical conductance is pro-ing external fields, since the ac conductivity is very sensitive
portional to the transmission coefficient via the Landauetto the distribution nature of eigenvalues and the localization
formulal’ The difference between these two spectra seemsf wave functions close to the Fermi energy. In Fig. 3 the ac
to be originated from the small imaginary part (Z{t|) in-  conductivity of the same two MFS as in Figs. 1 and 2 for
cluded in the calculation of the Kubo conductivity through at the transparent-state energies is shown, in comparison
the Green’s function. with the universalac-conductivity spectrum of the periodic
The localization of the eigenstates is studied by looking acase obtained from E@5), since it remains the same for any
the Lyapunov exponenty) and the participation ratiPR), ~ value ofN. Notice first that, in general, the conductivity di-
which can be written, respectively,'ds minishes as the frequency increases, as reported by Albers
and Gubernatis for periodic and disordered syst&hizur-

IV. ac CONDUCTIVITY

1 — N . -1 thermore, several minima of the ac conductivity are ob-
7=N|ﬂ\/711+712+ T+ T, and PR= 21 |cil : served. For the periodic case, they are located Mt (
. @ 1)hw=4n|t|, beingn an integer number. These frequen-

cies can be obtained from the analytical solufigq. (5)], by
The inverse of the Lyapunov exponent, calculated for a MFRonsidering |E|/2|t| <A w/2|t|<1 for =0 and retaining
as in Fig. 1a) and normalized with respect to that of a peri- only their linear terms in the Taylor expansion, i.e.,
odic chain, is presented in Fig(d). Notice its remarkable

. . . . . . 2
coincidence with Figs. (b) and Xc), which is somewhat 1 (v L
expected® However, the participation ratio for this system 7 VIN=1) s(1) (1) | =s(N=1)»(1)
shown in Fig. 1e) differs clearly from the spectra Fig(l), ,
Fig. 1(c), and Fig. 1d), which indicates that the PR is not a =1-cogN-1)¢coN—-1)¢
good quantity to characterize critical states. —sin(N—1)$ sin(N—1) ¢’

Finally, the same analysis as in Fig. 1 is applied to an-
other MFS, in which e,=0.225t|, eg=—0.2258t|, taa =0, (10
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where¢=E/2|t| and¢’ = (E+7%iw)/2|t|. On the other hand, pation ratio does not accurately quantify the transport capac-
in logarithmic scale, it is observed that the diminution of theijty of the critically localized states, since it indicates only the
quasiperiodic case is faster than that of periodic one, a b&raction of contributing sites to the wavefunction, and does
havior directly related to the nontransparency of the stategot specify their spatial distribution.
around the transparent ones. Furthermore, an almost constantFor the ac case, the rapid diminution of the transparent-
separation of the minima is found for the MFS, similar to thestate ac conductivity is a general feature in the MFS, since
periodic case. This fact could be due to the nearly constanthey are isolated in the spectrdti.e., they are always sur-
density of states close to the transparent states shown in Figgunded by non-transparent states, and the ac conductivity
1(a) and 2a). involves states within an interval dfw around the Fermi
In particular, for the low-frequency regime the ac conduc-energy. On the other hand, oscillatory length-dependent con-
tivity of a periodic linear chain can be obtained analytically ductivities have been found by Sokoloff for both periodic
from Eq. (5) after performing a Taylor expansion, and quasiperiodic chairf8.This fact can be obtained from
2 Fig. 3 by fixing a frequency and changing the system length.
_ _ i (N-Dio Moreover, the almost null ac-conductivity observed at cer-
op(w)=0p1 1 78 il . (11

tain frequencies in Fig. 3 is expected to be a strict one-
For the quasiperiodic case, the exponent in @d) remains dimensional behavior, since for three-dimensional systems
unchanged, as shown in the inset of Fig. 3. Nevertheless, t

{0 integration over the first Brillouin zone of thespace
MFS have larger curvatures, i.e., coefficients of 0.06025 an erpendicular to the applied electrical field is required.
0.03311 for the systems analyzed in Figs. 1 and 2, respe i

‘herefore, a smooth variation is obtairédn addition, if
tively, instead of for the periodic case. It would be worth uctuations such as the Peierls distortion are considered, the
1 48 -
mentioning that for the low-frequency regime a smaller

dc conductivity of one-dimensional metals should vanish at
imaginary part (10%9t|) of the energy in the Green’s func-

T=0K. It would be worth mentioning that if free boundary
tion and quadruple precision calculation are needed. On th%ondmons, €., wnhoyt‘ the semi-infinite saturators, arz%:ho-
other hand, for the high-frequency regime the ac conductiv>e" the ac con%d%uctlwty becomes_ a spectrum of p .ks,
ity of both periodic and quasiperiodic systems diminishesWhere resonanc gnd wave functlon-symme_try sele_ctlon
rapidly as the frequency increases. rules are present. Finally, an important gxtensmn to this work

is the temperature-dependence analysis of the transparent-
state ac conductivity including phonon participation, which

is currently in progress.

In summary, we have studied the ac conduction of trans-
parent states in the MFS. In spite of having the same dc
conductivity as the ordered lattice, the transparent states of
MFS do not have the same behavior under an oscillatory This work has been partially supported by CONACyYT-
electrical field, i.e., their ac conduction decreases much fast&32148E, DGAPA-IN105999, and UNAM-CRAY-
than those of the crystalline case. On the other hand, th8C008697. Computations were performed at the Cray
analysis of the dc electrical transport shows that the particiY-MP4/432 of DGSCA, UNAM.

V. CONCLUSIONS
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