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ac conductivity of the transparent states in Fibonacci chains
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~Received 30 March 2000; revised manuscript received 17 July 2000!

The electrical transport in quasiperiodic systems at zero temperature is studied by means of the Kubo-
Greenwood formula within a tight-binding model. Their dc conductivity is compared with that obtained from
the Landauer formula. Special attention is paid to the transparent states, whose transmittance is unity. The ac
conductivity of these states shows a rapid diminution as a function of the frequency, in comparison with that
of periodic systems. Minima in these conduction spectra are observed, which are located at (N21)\v
54nputu for the periodic case. Finally, the localization of the eigenstates is analyzed by looking at the
Lyapunov exponent and the participation ratio. The latter is shown to be an inappropriate quantity to charac-
terize the critically localized states.
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I. INTRODUCTION

The quantum transport in aperiodic systems is an o
and interesting problem. In particular, the relationship
tween the exotic localization of states and the anomal
transport phenomena is not fully understood.1 Since the dis-
covery of the quasicrystals, considerable effort has been
pended in the study of their localization properties.2 It has
been established that both electronic and phonon spect
Fibonacci chains or Fibonacci superlattices are of Cantor
with zero Lebesgue measure and the corresponding ei
states are critical.3–7 Thus, the electronic conduction in qua
siperiodic structures is not expected to be ballistic as i
periodic lattice neither diffusive as in a disordered one.6 The
hopping conductivity in Fibonacci chains has been addres
by using the Miller-Abrahams equations8,9 and by the dc
Kubo-Greenwood conductivity.10 Recently, transparen
states with unity transmission coefficient have been repo
for mixing Fibonacci systems~MFS! of N atoms.11 However,
their localization nature is still controversial. It is observ
that the eigenfunctions of these transparent states, with e
gies satisfying E5a(11g2)/(12g2) and E22a2

54 t2cos2(Kp/N), are periodiclike wave functions,12 where
1a(2a) are the on-site energies of atomsA(B), g
5tAA /tAB is the ratio of the hopping parameters,K andN/K
are integer numbers. On the other hand, the ac conduct
of these transparent states is an unclear issue. In genera
ac electrical conductivity at zero temperature is a good pr
of the nature of the electronic eigenvalue spectrum and
localization of wave functions, since it depends not only
the states at the Fermi level but also on the global struc
of the spectrum.

A general quantum mechanical expression, within the
ear response approximation, for calculating the real par
the electrical conductivity for finite temperature~T! and fre-
quency (v) is given by the Kubo-Greenwood formula13

s~m,v,T!5 lim
V→`

2e2\

pVm2E2`

`

dE
f ~E!2 f ~E1\v!

\v

3Tr@p Im G1~E1\v!p Im G1~E!#, ~1!
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whereV is the volume of the system,p is the projection of
the momentum operator along the applied electric-field
rection,G1(E) is the retarded one-particle Green’s functio
and f (E) is the Fermi-Dirac distribution with Fermi energ
m and temperatureT. In this paper, the ac conductivity of th
transparent states at zero temperature is addressed by e
ating Eq.~1!.

The present paper is organized as follows. Section II
fines the system and the Hamiltonian. An analytical solut
of the Kubo conductivity for a periodic linear chain is als
given. In Sec. III, the dc-conductivity numerical results f
quasiperiodic systems are compared with the transmitta
and the localization spectra. In Sec. IV, the frequency dep
dence of the transparent-state conductivity is reported. P
ticularly, the ac conductivity in the low-frequency regime
analyzed in detail. Finally, some conclusions and poss
extensions of the model are given in Sec. V.

II. THE MIXING FIBONACCI SYSTEM

There are several ways to generate a Fibonacci sys
for example, by using two hopping strengths~bond problem!
or two sorts of atoms~site problem!. In this paper, we con-
sider a MFS, in which two kinds of atomsA and B are
arranged following the Fibonacci sequence, i.e., if one
fines the first generationF15A and the second generatio
F25BA, the next generations are given byFn5Fn21
% Fn22. For instance,F55BAABABAA. In particular, this
sequence is chosen in order to obtain the transparent s
reported in Refs. 11,12. In the MFS, the hopping integr
between atoms depends on the nature of them, contrar
the same hopping in the site problem, giving rise to the
istence of two different parameterstAA and tAB5tBA . For
the sake of simplicity, a uniform bond length~a! is consid-
ered.

In order to isolate the quasicrystalline effects on t
physical properties of the system, we consider a sim
s-band tight-binding Hamiltonian, which can be written as

H5(
j

$e j u j &^ j u1t j , j 11 u j &^ j 11u1t j , j 21 u j &^ j 21u%,

~2!
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13 806 PRB 62BRIEF REPORTS
wheree i denote the on-site energieseA (eB) and t i , j are the
corresponding hopping parameters. To evaluate the Ku
Greenwood formula, Eq.~1!, one needs the Green’
function14 and the momentum operator (p). The latter can be
determined by using the relationsp5( im/\)@H,x# and x
5( j jau j &^ j u. Thus, in the Wannier representation, we ha

p5
ima

\ (
j

$t j , j 11u j &^ j 11u2t j , j 21u j &^ j 21u%. ~3!

For instance, in the case of an infinite periodic linear ch
with on-site energye0 and hopping parametert, the one-
particle retarded Green’s function is given by14

Gl ,m
1 ~E!5

ieiuu l 2mu

2utusinu
, ~4!

where cosu5(E2e0)/2utu. Substituting this expression into
Eq. ~1! and defining cosu85(E1\v2e0)/2utu, s(n)
5sinnu sinnu8, andn(n)512cosnu cosnu8, we can write,
after some algebra, the following general expression fo
system ofN identical sites saturated by two semi-infini
periodic linear chains

s~m,v,T!5
8e2t2a

p~N21!\3v2E2`

`

dE
f ~E!2 f ~E1\v!

\v

3H 1

2
n~N21!S n2~1!

s~1!
1s~1! D

2s~N21!n~1!J , ~5!

FIG. 1. ~a! Density of states~DOS!, ~b! Kubo conductivity
(sF), ~c! transmittance (T), ~d! Inverse of the Lyapunov exponen
(gF

21), and~e! participation ratio~PR! for a mixing Fibonacci sys-
tem of 2584 atoms witheA5eB50, tAB5tBA5t, and tAA5(A5
21)t/2. The system is saturated by two semi-infinite periodic line
chains withe50 and hopping integralst. sF andgF

21 are normal-
ized by their respectivesP andgP

21 of a periodic chain. The trans
parent state (m50) is indicated by a dashed line.
o-

n

a

where we have taken the system lengthV5(N21)a. In the
limit of T andv→0, the factor@ f (E)2 f (E1\v)#/\v be-
comes tod(E2m), wherem is the Fermi energy. Therefore
the dc conductivity of a periodic linear chain within the e
ergy band is

sp5
e2a

p\
~N21!. ~6!

Notice that this conductivity is not dependent on the Fer
energy. Moreover, in the thermodynamic limit the dc co
ductivity of a periodic linear chain at zero temperature
verges, because in this case the electrical conduction is
listic and then the mean free path is as large as the size o
system.15 However, for quasiperiodic systems the mean fr
path is bounded, except for the transparent states, which
a transmission coefficient of unity and their Landauer sc
terer resistance of the system becomes zero.15 In the next
section, some characteristic quantities of the localization
the dc electrical conductivity of these transparent states
comparatively investigated.

III. dc CONDUCTIVITY

Let us consider a finite MFS, connected to two sem
infinite periodic linear chains with hopping integralst and
null on-site energies. Its electrical conductivity can be stu
ied by means of the Kubo-Greenwood formula, in which t
Green’s function is calculated with the mentioned bound
conditions and the trace in Eq.~1! is taken over the Fi-
bonacci system. Figure 1~a! shows the density of state
~DOS!, in logarithmic scale, of a MFS of generationn517

r

FIG. 2. ~a! Density of states~DOS!, ~b! Kubo conductivity
(sF), ~c! transmittance (T), ~d! Inverse of the Lyapunov exponen
(gF

21), and~e! participation ratio~PR! for a mixing Fibonacci sys-
tem of 987 atoms witheA52eB50.225utu, tAA51.25t, and tAB

5tBA5t. The system is also connected to two semi-infinite perio
linear chains withe50 and hopping integralst. In this case, the
transparent state is located atm521.025utu, and indicated by a
dashed line.sF andgF

21 are normalized by their respectivesP and
gP

21 of a periodic chain.
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with 2584 atoms, in whicheA5eB50, tAA5(A521)t/2,
and tAB5tBA5t. Observe that this spectrum shows ma
fine structures, since it contains 100 000 data and the im
nary part of the energy in the Green’s function is 1027utu.
The zero-temperature dc Kubo conductivity of the same
bonacci system as Fig. 1~a! (sF) is calculated by means o
Eq. ~1! and presented in Fig. 1~b! in units of that for a peri-
odic linear chain (sp) given by Eq.~6!. Notice that there are
many states having an electrical conductivity very close
that of a periodic system, and a more detailed analy
reveals that the normalized Kubo conductivity (sF /sp)
of the state atm50 is exactly unity, which confirms tha
it is a transparent state as reported by Macia´ and
Domı́nguez-Adame.11 It is worth mentioning that the double
precision numerical results do not show any other trans
ent states, despite that the normalized Kubo conductivity
many eigenstates is larger than 0.99999.

On the other hand, the transmittance of the system~T! can
be written as1,16

T~E!

5
42~E/t !2

@t212t121~t222t11!E/2t#21~t221t11!
2~12E2/4t2!

,

~7!

in which

S cN11

cN
D 5S t11 t12

t21 t22
D S c1

c0
D 5)

i 51

N S E2e i

t i ,i 11
2

t i ,i 21

t i ,i 11

1 0
D S c1

c0
D ,

~8!

whereci are the normalized amplitudes of the wave functi
(C), i.e., C5( i 51

N ci u i & and ( i 51
N uci u251. Figure 1~c!

shows the transmittance~T! calculated for a MFS as in Fig
1~a!. Observe that there is a remarkable similarity betwe
Figs. 1~b! and 1~c!, since the electrical conductance is pr
portional to the transmission coefficient via the Landa
formula.17 The difference between these two spectra see
to be originated from the small imaginary part (1027utu) in-
cluded in the calculation of the Kubo conductivity throug
the Green’s function.

The localization of the eigenstates is studied by looking
the Lyapunov exponent (g) and the participation ratio~PR!,
which can be written, respectively, as13

g5
1

N
lnAt11

2 1t12
2 1t21

2 1t22
2 and PR5S (

i 51

N

uci u4D 21

.

~9!

The inverse of the Lyapunov exponent, calculated for a M
as in Fig. 1~a! and normalized with respect to that of a pe
odic chain, is presented in Fig. 1~d!. Notice its remarkable
coincidence with Figs. 1~b! and 1~c!, which is somewhat
expected.18 However, the participation ratio for this syste
shown in Fig. 1~e! differs clearly from the spectra Fig. 1~b!,
Fig. 1~c!, and Fig. 1~d!, which indicates that the PR is not
good quantity to characterize critical states.

Finally, the same analysis as in Fig. 1 is applied to
other MFS, in which eA50.225utu, eB520.225utu, tAA
i-

i-

o
is

r-
f

n

r
s

t

S

-

51.25t, andtAB5tBA5t. In this case, the transparent state
located atm521.025utu for generationsn54l 13, beingl a
positive integer.12 The results of this analysis are shown
Fig. 2 for a MFS of generationn515 with 987 atoms. First,
notice that the spectra lose the symmetry aroundm50, since
the lattice is not bipartite. On the other hand, the gene
behavior observed in Fig. 1 is also present in Fig. 2. In p
ticular, the density of states around the transparent state
dicated by the dashed line in the figures, resembles that
periodic linear chain.

IV. ac CONDUCTIVITY

It is interesting to study the behavior of the transpar
states under perturbations such as the application of osc
ing external fields, since the ac conductivity is very sensit
to the distribution nature of eigenvalues and the localizat
of wave functions close to the Fermi energy. In Fig. 3 the
conductivity of the same two MFS as in Figs. 1 and 2 form
at the transparent-state energies is shown, in compar
with the universalac-conductivity spectrum of the periodi
case obtained from Eq.~5!, since it remains the same for an
value ofN. Notice first that, in general, the conductivity d
minishes as the frequency increases, as reported by Al
and Gubernatis for periodic and disordered systems.19 Fur-
thermore, several minima of the ac conductivity are o
served. For the periodic case, they are located atN
21)\v54nputu, beingn an integer number. These freque
cies can be obtained from the analytical solution@Eq. ~5!#, by
considering uEu/2utu,\v/2utu!1 for m50 and retaining
only their linear terms in the Taylor expansion, i.e.,

1

2
n~N21!S n2~1!

s~1!
1s~1! D2s~N21!n~1!

>12cos~N21!f cos~N21!f8

2sin~N21!f sin~N21!f8

50, ~10!

FIG. 3. Transparent-state ac conductivity of a periodic ch
~open circles! and of two mixing Fibonacci systems~solid circles
and solid triangles! with the same parameters as in Figs. 1 and
respectively. In the inset a low-frequency-regime log-log plot of t
ac conductivity is shown.
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wheref5E/2utu andf85(E1\v)/2utu. On the other hand
in logarithmic scale, it is observed that the diminution of t
quasiperiodic case is faster than that of periodic one, a
havior directly related to the nontransparency of the sta
around the transparent ones. Furthermore, an almost con
separation of the minima is found for the MFS, similar to t
periodic case. This fact could be due to the nearly cons
density of states close to the transparent states shown in
1~a! and 2~a!.

In particular, for the low-frequency regime the ac condu
tivity of a periodic linear chain can be obtained analytica
from Eq. ~5! after performing a Taylor expansion,

sp~v!5spH 12
1

48F ~N21!\v

utu G2J . ~11!

For the quasiperiodic case, the exponent in Eq.~11! remains
unchanged, as shown in the inset of Fig. 3. Nevertheless
MFS have larger curvatures, i.e., coefficients of 0.06025
0.03311 for the systems analyzed in Figs. 1 and 2, res
tively, instead of 1

48 for the periodic case. It would be wort
mentioning that for the low-frequency regime a smal
imaginary part (10210utu) of the energy in the Green’s func
tion and quadruple precision calculation are needed. On
other hand, for the high-frequency regime the ac conduc
ity of both periodic and quasiperiodic systems diminish
rapidly as the frequency increases.

V. CONCLUSIONS

In summary, we have studied the ac conduction of tra
parent states in the MFS. In spite of having the same
conductivity as the ordered lattice, the transparent state
MFS do not have the same behavior under an oscilla
electrical field, i.e., their ac conduction decreases much fa
than those of the crystalline case. On the other hand,
analysis of the dc electrical transport shows that the par
,
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pation ratio does not accurately quantify the transport cap
ity of the critically localized states, since it indicates only t
fraction of contributing sites to the wavefunction, and do
not specify their spatial distribution.

For the ac case, the rapid diminution of the transpare
state ac conductivity is a general feature in the MFS, si
they are isolated in the spectrum,11 i.e., they are always sur
rounded by non-transparent states, and the ac conduct
involves states within an interval of\v around the Fermi
energy. On the other hand, oscillatory length-dependent c
ductivities have been found by Sokoloff for both period
and quasiperiodic chains.20 This fact can be obtained from
Fig. 3 by fixing a frequency and changing the system leng
Moreover, the almost null ac-conductivity observed at c
tain frequencies in Fig. 3 is expected to be a strict o
dimensional behavior, since for three-dimensional syste
an integration over the first Brillouin zone of thek-space
perpendicular to the applied electrical field is require
Therefore, a smooth variation is obtained.21 In addition, if
fluctuations such as the Peierls distortion are considered
dc conductivity of one-dimensional metals should vanish
T50K. It would be worth mentioning that if free boundar
conditions, i.e., without the semi-infinite saturators, are c
sen, the ac conductivity becomes a spectrum of peak22

where resonances23 and wave function-symmetry selectio
rules are present. Finally, an important extension to this w
is the temperature-dependence analysis of the transpa
state ac conductivity including phonon participation, whi
is currently in progress.
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