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Renormalization approach to the Kubo formula in Fibonacci systems
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A renormalization method is developed for the Kubo-Greenwood formula, in order to analyze the electronic
transport in large quasiperiodic lattices at zero temperature, within a tight-binding model. The results show a
scaling invariance of the conduction spectrum around the transparent state, where a periodic oscillating pattern
is found. However, the dc conductivity averaged over the transmission window of the leads presents a signifi-
cant reduction, when the system size becomes macroscopic. A detailed study of the boundary-condition effects
on the ac conductivity reveals the robustness of the transparent states, contrary to that observed in other high
dc-conduction states.
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[. INTRODUCTION sional systems at finite electric-field frequency and finite
temperature. In this paper, we report a renormalization
Nowadays, with the use of modern high-speed computersnethod for the Kubo-Greenwood formula and scale invari-
large-scale numerical calculation have been carried out t@nces of the dc and ac conductivities around the transparent
show the band structures and the eigenfunctions o$tates in mixing Fibonacci chains.
thousands-atom systems. However, such computations are This paper is organized as follows. Section I defines the
very time consuming and it is still difficult to address real system and introduces the renormalization method. The
macroscopic-scale solids. An alternate and more efficienthathematical details of the method are given in the Appen-
way to achieve this is the renormalization group methoddixes. In Sec. lll, the dc conductivity is analyzed for differ-
which has been quite successful in the theory of criticalent quasiperiodic-system sizes and its behavior around the
phenomené_ Recently, the real-space renormalization tech-transparent state is investigated in detail. In Sec. 1V, the ac
niques have been applied to disordéréd and conductivities calculated by using free, finite-lead and
quasiperiodit’ systems, due to the lack of a general Bloch-almost-infinite-lead boundary conditions are reported. In par-
type theorem for these cases. In particular, the quasiperiodiécular, the low-frequency behaviors for the transparent and
systems are highly sensitive to local defécamd then, it non transparent states are comparatively shown. Finally, the
becomes essential to be able to study larger-size systems ¢@nclusions are given in Sec. V.
order to minimize the boundary effects. On the other hand,
the localization and transport of electrons in these systems Il. THE RENORMALIZATION METHOD
have been a controversial issue, since the discovery of qua-
sicrystalline alloys in 1984. At the present time, there is a In @ mixing Fibonacci systertMFS) two kinds of atoms,
consensus that the eigenvalue spectrum produced by a qua-2ndB, are arranged following the Fibonacci sequence and
siperiodic potential is singular continuous and the associateti® hopping integrals between the atoms depends on the na-
eigenfunctions are criticdlMoreover, the level-spacing sta- ture of them, giving rise to the existence of two different
tistics show an inverse-power-law distribution of ggd ~ parameters,, andtag=tga.*® In this paper, we define the
and a semi-Poisson distribution of barfdfoth neither con- ~ first generationF; =A and the second generatiéip=BA.
ventional Poisson nor Wigner ones. Hence, the electricalhe next generations are given By,=F, 1&F,_,, con-
conduction of these critically localized states becomes ai@ining N(n) atoms. For the sake of simplicity, an uniform
especially interesting subject. The hopping conductivity inbond length(a) is taken. Moreover, in order to isolate the
Fibonacci chains has been addressed by using the Millefiuasicrystalline effects on the physical properties of the sys-
Abrahams equatioh$!* and the optical conductivity has tem, a simples-band tight-binding Hamiltonian is considered
been analyzed within a generalized Drude forntdl&e-  as given in Ref. 18. The analysis of the electrical conductiv-
cently, transparent statewith unity transmission coefficient ity is carried out by using the Kubo-Greenwood formula,
have been reported for mixing Fibonacci systemsNof Wwhich can be written 8
atoms:® It is observed that the eigenfunctions of these trans-
parent states, with energies satisfyirg=a(1+ y?)/(1 2e’h J'w dEf(E)—f(E+hw)

— %) and E2— a?=4t? cog(K/N), are periodiclike wave o(p,0,T)= lim

Qoemdm) —= ho

functions’ where+ « (— «) are the on-site energies of at-
omsA (B), y=taa/tag is the ratio of the hopping param- XTpIMG"(E+Aw)pImMG*(E)], (1)
eters, anK andN/K are integer numbers. Furthermore, the

ac conductivity of these transparent states has been analyzetdhiere () is the volume of the system,p
within the Kubo-Greenwood formalisif,which has the ad- = (ima/%)=;{t; ;. 4|j)(j +1|—t;;-a|i)(j—1[} is the pro-
vantage of allowing the analysis of transport in any dimen-jection of the momentum operator along the applied electric-
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FIG. 1. () Schematic repre-
sentation of the renormalization
procedure. The numbers on the
left side indicate the generation.
The nature of atoms, their self-
energies, and the hopping param-
eters are specified inside, below,
and between the open circles, re-
spectively. At the end of the pro-
cess one gets two effective atoms
(black circles with a single effec-

D .%‘). tive bond..There. is an interm.edi-

Fi(n) Ex(n) ate_step in which renormallzed
chains of lower generations are
connected together through a hop-

(a)

_> t(4)
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Erp(m) Ere(m)  Eu(n) Er(n) Erp(m)

tp(m) t t(n) t tp(m)

Erp(m)

pingtag - (b) Sketch of an MFS of
generatiom connected to two pe-
riodic leads through the same hop-
ping t of the periodic leads.

(b)

field direction,G"(E) is the retarded one-particle Green's
function, andf(E)={1+exg(E—w)/ksT]} ! is the Fermi-

Dirac distribution with Fermi energy. and temperatur@.

ea
O'pZ%(N—l). (3)

For an infinite periodic linear chain with null self-energies This vields a finite conductancg=o,/(N—1)a=2e* h,

and hopping integral, the conductivity of a segment &

which has been observed receritly.

atoms at zero temperature can be calculated analytically and FOr quasiperiodic systems, however, in spite of the wide

it is given by

B _ 8e’t’a ho
"W—O"”)—m[l‘“’ (D7)
2

where the system length @=(N—1)a. In the limit of @
—0, the dc conductivity within the energy band is

2e?a? (u N -1
o(p,w)=— f
K 'n'Qﬁzw p—ho j,k=1
2,2
+ + a
—ImGj(E,.MIMG,,,;.1(En)]= o ORe

+S(E, ,E",n)],

use of the renormalization grou(RG) methods in their
study, the electrical conductivity in these systems has not
been explored in that way, due to the complex processes
involved in transport phenomena. Following the RG scheme
shown in Fig. 1a), we have found an iterative procedure to
calculate directly the product of the Green’s function in-
volved in the Kubo-Greenwood formul&g. (1)], which can

be written conveniently for a finite MFS of generatiorat
T=0 as

E X tratkkral2 IMG; 1 ((E,,,MIMG, 1;(E,;n)=IMG/14.41(E,,n)IMGy(E,n)

M
f dE[S(E; ,E*,n)—S(E} ,E",n)—S(E_ ,E*,n)
pu—tho

4

where E*=E=*ié, E,=E+%w, and thenE_ =E+#w=*id with §—0. Furthermore, the symmeti§; (=G, ; and the
relationship InG* =(G" —G™)/2i have been used, sin€&* (E)=G(E™*) and the eigenfunctions are real for finite systems.

In Eq. (4) the partial sumsS(E” ,E,n) are defined as

N(n)—1

S(E! ,Ef,n)= jél ti+1tkk+ 102G+ 1x(EL) Gy 15(EP) = Gj 14+ 1(EL) Gy j(EP) = G ((EL) G111+ 1(EA],  (B)

wherev andg can be either- or —. These partial sums can be expressed in terms of the Green'’s functions at the extreme sites

of the MFS as
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S(E; .Ef,n)=A(E, ,EF,n)G ((E})G (EF)+B(E, ,E*,n)G r(E!)G r(EF)+C(E! ,EF,n)Gg r(E!)Gr r(EF)
+D(E;, ,EP,n)G L(E})G r(EP)+D(E”,E;,,n)G_ | (EF)GL r(E})+F(E;, ,E,n)GL (E})Ggr(EF)
+F(EP,E}, .G L(EP)GrRr(E,)+I(E; ,EP,n)G r(E;)GRrr(E”)+I(EFE! NG r(E”)GRrRr(E})
+J(E;, ,EX,n)G_ | (E})+I(EFE}, ,n)GL L(EP) +K(E! ,EP,n)G r(E;) +K(EP,E},,n)G r(EP)
+L(E. ,EP,n)Gr(EY)+L(EAE. ,n)Grr(EP)+Z(E. ,EF,N), (6)

where the subindexdsandR denote the left- and the right- that around the transparent state both spectra have an almost
end atoms, respectively. The coefficientE,,E,,n), constant behavior, as analyzed in the following.
B(E;,E,,n), ..., Z(E{,E5,n) in the last equation, being Figures 3a) and 3b) show, respectively, amplifications of
E, andE, eitherE! or E?, can be iteratively obtained from the DOS and of the Kubo dc conductivity around the trans-
those of generations—1 andn—2, as shown in Appendix parent state, for generatioms=6l—1 (open circley 6l,
A and the detail of the calculation is given in Appendix B. 6l+1, 61—2 (black ling; 61+2 (gray ling; and @+3

For the free-boundary condition, the Green’s functions(light gray ling), beingl=1,2,3 ... . Notice first that peri-
GL.., Grr, andG, g are determined by solving a two-site odic oscillating behaviors with the same energy period given
Dyson equation. In the case of finite periodic leads, the MFSpproximately byA=4.546t|/(N—1) are present in both
and the leads can be renormalized to two effective site sysamplified spectra. The dc conductivity spectrum can be re-
tems each one and then, a six-site Dyson equation should goduced reasonably well by evaluating the transmittance of
solved as shown in Fig.(h). The leads and the MFS are the MFS!® For u=E;, the transfer matrices commute and
connected by the same hopping parameter of the perioditie transmittancer) is given by®
leads. Finally, for the almost-infinite-periodic-lead case, with

more than 18 atoms in each lead, we have to solve only a (1— 42)%siP(N ) -1
four-site Dyson equation since the renormalized hopping in- 7(u,N)=| 1+ PN , )
tegral of the leads becomes essentially zero. On the other (4= (ult))y

hand, the total density of states can be also calculated by

means of a similar renormalization procedure as shown ifvhere 3t|cos¢=u“—a?, as shown in Fig. @). For ener-

Eq. (A1) of Appendix A. In the next section, we use this gies very close tdEr, considering thalN>1, their transfer

method to analyze the dc conductivity of MFS for a wide matrices almost commute. Hence, a slight difference be-

range of system sizes. tween Figs. &) and 3c) is observed. The general oscillating
behavior for any generation can be explained by considering

1 2

ll. SIZE SCALING BEHAVIOR ; T : T
10° |
Let us consider a MFS wittlk=N/K=4, as defined in
Ref. 17, connected to two almost-infinite periodic linear £ o' §
chains(leads with hopping integral¢ and null on-site ener- 3
gies, where almost-infinite means large enough so that thg e
physical quantities have no important variation with the lead
size. The trace in Ed1) is taken over the MFS. The numeri- 10°
cal results of finite MFS withk=2 and k=3 have been 10°
studied in Ref. 18. Figures(® and 2Zb) show respectively a
the normalized density of statd8OSN) and the normalized = 10"

zero-temperature dc Kubo conductivity(u,0)/op), both S

in logarithmic scale, of a MFS witv=0.5t|, y=v2 and & 10
n=41. The spectra contain 1@ata and have been calcu-

lated in quadruple precision. The imaginary part of the en-  1p¢
ergy in the Green’s function i6=10*Yt| and the transpar-

ent state energyH;= —1.9t|) is indicated by a dashed line. wid

Notice first that the considered MFS contains 267914296 g 2. (a) Density of statesDOS), and (b) the normalized

atoms 0=41), hence the multifractal band structure is quitekypo de conductivity o(,0)/op] for a mixing Fibonacci system
fine, and in consequence a finite number grid can not showyrs) of generatiom=41 with k=4, a=0.5t| and y= 2, con-
the whole feature of the spectrum. Such is the case for the dgected to two 18-atom periodic linear chains with=0 and hop-
conductivity spectrum aroung = 1.4t|, since the conduc- ping integral t. Both spectra contain 20data and ImE)
tion minibands are sharper than those of the DOS as occurs10-t|. The transparent stateE{=—1.9t|) is indicated by a
in disordered systenfs.On the other hand, it is observed dashed line.

| ml TIPS T

9
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FIG. 3. Amplifications of(a)
the density of statesDOS and
(b) the Kubo dc conductivity &)
around the transparent state, for
generations n=61—1  (open
circles; 61, 61+1, 6l—2 (black
line); 61+2 (gray ling; and 4
+3 (light gray line, for a MFS
with the same Hamiltonian param-
eters as in Fig. 2| being a large
integer number. These spectra are
compared with that obtained by
evaluating Eq.(7) and shown in
(c). The corresponding spectra
for an MFS with =0.85t|, y
=1.25/2, andE;=—1.65t|, are
shown in figures (9, (b’), and

(c).

(N-1)(u-E )/t (N-1)(u-E)/1

that N¢(Eq)=Km+ (r/k)m, (u—Eq7)/|t|<1, and ¢(u) generations1=61—1, N(n) is multiple of 4 and them=0;
—¢(E7)<1, being r=0,1,2... k=1 and N=Kk+r. forn=6I,6l+1,and6—-2,r=1;forn=61+2,r=2; and

Thus, finally, for n=61+3, r=3.

Furthermore, the amplitude of these periodic oscillations

cosp(u)=cose(Et)—[d(u)— d(Eq)]sine(Er) increases when the chemical diversity parameter ¢f the

system grows. This feature is shown in Figs. '3(&8(b’),

and and 3(¢), for a MFS with@=0.85t|, y=1.25/2, andE+
=—1.68t|. It is important to stress that the spectra around

Jul—a? \/E$—a2 [t|IEr (u—E7) the transparent states are scale invariant even though the
2~ 2 QT : whole spectra is not.

In order to analyze the global dc conduction properties of

_— _ the system, we introduce the lead-transmission-window-
Therefore, the definition o , 2|t|cos =Ju?=a? ' O
Blu), 2ltlcosd(m)=\p"=a averaged dc conductivity

leads to
N
d(w)— p(Eq)=— Er (n—Ev) <U(M,O)>:NL_EM U(Mjlo)y (8
g U7 atfsing(Er)cosp(Er) Y| wi=t
(n—E7) where u; are uniformly chosen from the interval

=A [—2|t[,2|t|], which corresponds to the transmission window

of the periodic leads. The number of energies contributing

where A=—E/{2|t|sif24(Ep]}. In consequence, foN significantly to this average can be quantified by using the
conductivity participation ratigCPR defined by

it

*)oo'

N, 2

> o%(u;,0)

(1—92)%sir? =

r -1
Ae+ Eﬂ'}

[4—(Er/)?]y?

CPR=

T(w,N)—| 1+ (9)

’ N,u, .
Nﬂjzl o*( 1,0
wheres=N(u— E7)/|t| andu in the denominator of Eq7)

has been replaced Wy, because 4 —E7)/|t|<1. Notice In Figs. 4a), 4(b), and 4c), the transmission-window-
that the transmittance, or the conductivity, is an oscillatingaveraged dc conductiviti{ o(x«,0))], the conductivity par-
function of ¢ and size scaling invariant in the neighborhoodticipation ratio(CPR and the transparent-energy conductiv-
of the transparent state. The phase of this oscillation is dety [ o(E+,0)] are respectively plotted as a function of the
termined byr. For the cas&k=4, ¢(E;)=w/4. Hence, for system size forNM=1O5 and the same MFS as in Fig. 2.
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good agreement with that calculated by means of Kubo-

ﬁ 0:20 Greenwood formuld® In the next section, the ac conductiv-
S o1s ity and its sensitivity to boundary conditions are investigated.
©
v 0.0

0.20 IV. BOUNDARY CONDITION ANALYSIS
o
S 0is

In Fig. 5, the ac Kubo conductivity of the transparent state
is shown for three MFS with the same self-energies and hop-
ping integrals as in Fig. 2, but different boundary conditions,
i.e., (d) 4807526976 atoms without leads, '{b
267914 296 atoms connected to two 2 269 806 340 atom pe-
riodic linear chains, and (§ 267914296 atoms saturated by
two periodic linear chains of 8 atoms. Figures &), 5(b),

N and 5c) show the results obtained for a periodic system with
©=0, and the same lengths and boundary conditions as in
Fi

({o(u,0))), (b) conductivity participation ratio(CPR, and (c) gs. 5(d), 5(b'), and 5(¢), respectively. The ac conduc-

Lo . PPNy
transparent-energy conductivityg(E1,0)] as a function of the sys- t|V|t|e_S afe calculated by using "EO_:!'O |t| Observe
tem size for the same MFS as Fig. 2 aNg—105. that in Figs. %a) and 8b) the systems including the leads

have an equal total number of atoms; therefore, the reso-
nance peaks are located at the same frequencies, since the

Notice the clear decay of the averaged conductivity, whicifigenvalue spectra are the same and the resonance peaks are
can be related to the opening of gaps when the MFS growsletermined by the Fermi-golden selection riffesiowever,

This possible reason has been confirmed by the CPR. [#eir amplitudes are very different, because the Kubo for-
contrast to the monotonously decay behavior, the dc condudnula is evaluated on different system lengths. Furthermore,
tivity evaluated at the transparent state enerdyy <  the minima of Figs. &) and §c) seem to be located at the
—1.5t|) oscillates periodically, because for MFS with ~same values of frequency, except that in Fig) & continu-

=4 the system has an unity transmission coefficient each sigus behavior is observed due to the presence of almost-
generations, sinc&=4 is divisor of N for generationsn infinite leads. For the latter case, the ac conductivity is given
=6l—1, with 1=1,2,3 ... ’ The oscillating behavior of by Eq. (2). All these features are mainly preserved for the
the normalized dc conductivity shown in Fig(chis con-  transparent states as shown in Figs.'p(&(b'), and 5(¢),
firmed by Eq.(7), since the dc conductivity is proportional to except for a compression of the spectra due to the presence
the transmittance through Landauer formula and it is in veryof gaps in the Fibonacci eigenvalue spectrum.

G(ET,O)/GP
(=]
[(e]

FIG. 4. (a) Lead-transmission-window-averaged dc conductivity

10° - - -
< ol @} (@
>§ 10‘2 !
= 10 [ t FIG. 5. ac Kubo conductivity
\6’ 10° i ' of the transparent_statw(: Eq)
‘ for three MFS with the same
107 y y y y y y lf-energies and hopping inte-
: b) (bv se g. } pp '9
b“- 10°} ( } grals as in Fig. 2, but different
= . i boundary conditions, i.e., (p
g 10 E | 4807526976 atoms ni=47)
= 10%f | ' without leads, (B) 267 914296
° 10°F I atoms fi=41) connected to two
I + i 2269 806 340-atom periodic lin-
107 ' ' i i i i ; ear chains, and (§ 267 914 296
& yg° ] (C ): atoms saturated by two periodic
’\E \ j : leads of 18° atoms. Figurega),
s ] 1 (b), and(c) show the correspond-
:3“_ 107 2 E ing results obtained for a periodic
‘-6 10° : 1 system withu=0.
10-8 ) ) ) 4 ) ) ) 1
0.0 5.0x10° 1.0x107 1.5x107 0.0  50x10® 1.0x107 1.5x107 2.0x10~

hw/|t] hw/|t|
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_efa(N-1) 1[(N-1)tw
A e R

2
] , (10

except for the coefficient of 0.084 84, instead of 1/48; while
the coefficients are 22.3934 and 69.0557 for the nontranspar-
ent states withu, and u,, respectively. Note that the larger
coefficients of the nontransparent states confirm the dramatic
decay of their ac conductivity when an oscillating electrical
field is turned on.

V. CONCLUSIONS

In summary, we have developed a renormalization proce-
(N-1)7i00/]t] dure for evaluating the Kubo-Greenwood formula in Fi-
bonacci lattices, which allows the study of the electrical
FIG. 6. ac Kubo conductivity for the same MFS as in Fig. 2 but transport in macroscopic quasiperiodic systems. In particular,
with n=6l, 6l+1, 6l+4 (up triangles, n=61+2 (down tri- We have analyzed the dc and ac conductivity at zero tempera-
angle3, andn==61+3 (open squargs evaluated au=E;—A/4,  ture in MFS. The results show scale invarianceof the dc
Er—A/2, andE;— 3A/4, respectively, in comparison with that of conduction spectrum around the transparent state, where a
the transparent statéopen circleg where A=4.546t|/(N—1).  periodic oscillating pattern is found. The amplitude of these
The non-transparent-state ac  conductivities — withw, = oscillations increase when the inhomogeneity or chemical
—0.591 763 39| (gray ling and u,=—0.108 600 000 41| (light  diversity of the system grows. Furthermore, a significant re-
gray ling are also shown. In the inset a low-frequency-regime log-duction of the transmission-window-averaged dc conductiv-
log plot of the ac conductivity is presented. ity is observed when the MFS grows, fact related to the

multifractal band fragmentatioff, which is confirmed by
guantifying the number of participating states to the aver-
aged conductivity.

The ac conduction analysis reveals that in spite of a gen-
eral conductivity diminution as the frequency of the applied
field increases, the transparent and almost-transparent states
show the same regular oscillating behavior, which is highly

In Fig. 6, the ac Kubo conductivity of two kinds of non-
transparent states are shown in comparison with that of th
transparent statepen circleg for the same MFS as in Fig.
2. First, for generations=6l, 61+1, and 6+4 (up tri-
angles, n=61+2 (down triangles and n=61+3 (open
squarey the ac conductivity is evaluated at their maximum

dc-conductivity energiegsee Fig. 8] located atu=Er sensitive to the boundary conditior(§) for the case without

—A/4, Ev—A/2, and E;r—3A/4, respectively. Notice that L i .
these almost-transparent states have the same frequency leads the ac conductivity decreases monotonic&ly with

pendence except that the initial valuewat O is strictly unity inite leads an (_)s_C|IIatory decr_easmg behavior is fomw;_ _
. : when almost-infinite leads are introduced the ac conductivity
only for the transparent state of generation 61 +5. It is

important to mention that these curves are scale invarianP ecomes a smooth oscillating function of the frequency,
porte Lo . A Where the results have been confirmed analytically for the
which is related to the scaling invariance shown in Fig. 3,

. O eriodic case. In particular, for the almost-infinite lead case,
since the zero-temperature ac conductivity is calculated b : : S
. . S . scale invarianceof the ac conductivity is observed for the
integrating a vicinity offiw around the Fermi energhEqg.

(1)]. For the second kind of nontransparent states, i.e.. hi ransparent and almost-transparent states. On the other hand,
de .conductivit states withz#E; in Qhe same M,F.S ”of 9the diminution of the non-transparent-states ac conductivity
generation 41yas in Fig. 2, a rToisy behavior is observei much faster than that of transparent ones and do not show
for m,=—0591763398| (gray lin@ and ,= regular oscillating pattern. However, in the low-frequency

—0.10860000001 (ight gray lin®, with o(uy.0)/cp Islysl':etntlzy also obey the square decay rule as in periodic

This renormalization method can be used to analyze the

ones, since the ac conductivity depends not only on the statg;
at the Fermi level but also on the localization condition of
the states in a range défw around it.

A log-log plot of the ac conductivity in the low-frequency
limit is shown in the inset of Fig. 6, where the calculations
were performed using Ini)=10 19t|. Observe that the
transparent state and the almost-transparent states have the
same conductivity in the low-frequency limit, which follows  This work has been partially supported by CONACyT-
essentially the same relationship as the periodic case witB2148E, DGAPA-IN105999 and IN101701. Computations
w=020 were performed at Origin2000 of DGSCA, UNAM.

of the Raman scattering in Fibonacci superlattfce$his
work is currently in progress.

ACKNOWLEDGMENTS

174205-6



RENORMALIZATION APPROACH TO THE KUBO.. .. PHYSICAL REVIEW B64 174205

APPENDIX A: RENORMALIZATION FORMULAS defined in Eq(5). These partial sums can be expressed as a

_ _ _ quadratic polynomial of the Green’s functions evaluated at
As discussed in Sec. Il, the Kubo-Greenwood conductivthe extreme sites of the system, as shown in (Bj. where

ity can be written in terms of the partial sun&E” ,E®,n),  the coefficients are iteratively given by

A(E1,Ez,n)=—[Ad(E1,Ep,n) —Ac(Ez,Eq,n)]?,
B(E1,E»,n)=2[A(E1,E>,n)—A(E,E1,n)][B(Ey,E1,n)—B(E1,E,n)]+2[C(Ey,E»,n)—D(Ey,Eq,N)]
X[Ce(Ez,Eq,n)—D¢(Ey,Ez,n) ],

C(E;,Ez,n)=—[B.(E;,Ez,n)—B(Ez,Eq,n) 75,
D(E{,E;,n)=2[A(E{,E;,n)—AL(E,,E1,n)][D(Es,E;1,n)—C.(Eq1,Ez,N)],
F(Ey,Ep,n)=—[C(Ey,Ep,n)—Do(Ep,E1,n)]?,
[(E1,E»,n)=2[B(E1,E>,n)—B(E>,Eq,n)][D(Es,Eq,n)—C(Eq,Ez,N)],

J(E1,E5,n)=J(E{,Ey,n—1)+ ni(El,n)[ﬂz(Ez,n)C(El,Ez,n—1)+L(El,Ez,n—l)]
+71(E1,M[02(E5,nI(Ey,Ep,n—1)+K(Ey,Eo,n— 1)+ V(E1,Ep,n) ]+ k3(E,n)[ 61(E,,N)
XA(E{,E;,n—2)+JI(E1,E5,n—2)]+ 0,(E> ,n)F(E{,Eo,n—1)+ k1(Eq,N)

X[71(E1,n) 63(E2,n)A(Eq,Ez,N)
+605(E,,n)By(Es,Eq,n)+W,(Es,Eq,n)],
K(E1,E5,n)=05(E5,n)ko(Eq,n)[27%1(E1,n)C(E1,E5,n—1)+1(E{,Es,n—1)]+ ko(Eq,n)[27%:(E1,n)L(E;,E5,n—1)
+K(E1,Ex,n—1)+V,(E1,Ez,n)]+ 0.(Es,n)k1(Eq,N)[27(E1,N)A(E,,E5,n—2)+D(E;,,E;,n—2)]
+k1(Eq1,n)[279,(E1,n)I(E1,E;,n—2)+K(E{,E>,n—2)+Y,(E,,Eq,n) ]+ 5o(Eq,N)
X[03(E2,n)Bo(Ez,Eq,n) +Wy(Ez,Eq,n) ]+ 71(E1,n)[ 63(E2,n)Do(Eq,Ez,n) + X (Eq,Ez,n) ]+ 05(Ez,0)
X{[k2(Eq,n)k1(Eq,n)+ 72(Eq,n) 72(Eq,n) JA(Eq,E,n) + Co(Ez, Eq,n)},
L(Eq,E,n)=L(E1,E»,n—2)+ 735(E1,n)[ 01(E»,N)A(E;,E»,n—2)+J(E1,E»,n—2)]+ 7,(E1,n)[ 61(E;,N)
XD(EZ,El,n—Z)-I—K(El,Ez,n—2)+Yu(E2,E1,n)]+K%(El,n)[ﬁz(Ez,n)C(El,Ez,n—1)
+L(E{,Eo,n—1)]+ 60.(Es,n)F(E5,Eq  ,n—2)+ k2(E1,n)[ 72(E1,n) O3(E5,n)AL(E1,E5,N)
+ 63(E,,n)Dy(Eq1,E5,n)+ X (Eq,Es,N)],
Z(Eq,E»,n)=Z(Eq,Ey,n—1)+Z(E;,Ep,n—2)+ 61(E1 ,n)[ 61(Eo,N)A(E;,Ep,n—2) +I(Eq,E,n—2)]+ 65(Eq,N)
X[60,(E»,n)C(E{,Eo,n—1)+L(E;{,E;,n—1)]+ 64(E5,n)I(E5,E;,n—2)+ 65(E5,N)L(E5,E{,n—1)

+ BS(El’n)03(E2!n)A0(E11E2!n)+Zu(El1E2!n)+ZU(E21E11n)y
whereE; andE, can be eitheE! or E#, and

0,(E,n)=[E—Egr(E,n=1)]/vye(E,n),
62(E,n)=[E—EL(E,n=2)]/ve(E,n),
03(E,n)=tas/ve(E.N), ye(E,n)=[E—ER(E,n—1)[E-E (E,n—2)]~t5g,
k1(E,n)=t(E,n—1)63(E,n),k(E,n)=t(E,n—2)63(E,n),
71(E,n)=t(E,n—1)6,(E,n), no(E,n)=t(E,n—2)0,(E,n),

174205-7



SANCHEZ, P'E?EZ, OVIEDO-ROA, AND WANG PHYSICAL REVIEW B64 174205

Ac(E1,Ez,n)=Ad(E1,Ex,n—1)+ k1(E1,n)k1(Ez,n)A(EL, E2,n—2)+ 71(Eq,n) 71(E2,n)B(E1 ,E2,n—1)

+71(E2,n)Ce(Ey,Ex,n—1)+ 71(E1,n)D(Eq ,Ez,n—1) +tapki(Ep,n) 71(Ez,N),

Be(E1,E2.n)=Be(E1,E2,n=2)+ 72(E1,n) m2(Ez,n)A(E1,E2.n—2) + k2(Ep,n) ka(Ez ,n)B(E Bz ,n—1)

+72(E1,n)C(E,E,n—=2)+ 72(E3,n)D(Eq,Ez,n—2) +tapka(Ez,N) 72(Eq,N),
Ce(E1,Ez2,n)=ky(E1,n) 72(Ez,N)A(E B2 ,n—=2) + 51(Eq,n) k(B2 ,N)Be(Eq, B ,n—1) + k(B2 ,n)Ce(Ey ,Ex,n—1)
+k1(E1,n)Ce(Eq,Ez,n—2) +tapka(Ez,n) k1(Eyg,N),
De(E1,E2,n)=k1(Ez,n) ma(Ey ,n)A(EL E2,n—2) + 775(E3,N) ko(Ep,N)B(Eq Bz ,n—1) + k2(Ey,n)D(Eq  Ez,n—1)
+k1(E2,n)D(E1,Ex,n—2) +tagni(Ez,n) 72(Eq,N),
Vu(E1,Ez,n)=2taglk1(E1,n) 01(Ez,N)[A(E1, B ,n—=2) —A(E,E1,n=2)]+ 71(E1,n) O3(E5,n)[Be(Eq,Ex,n—1)
—Be(Ez,E1,n—=1)]+ 63(E2,n)[Cc(Ey,Ez,n—1) = D(Ez,E1,n—=1)]+ + 0.5 ag[ k1(E1,N) 03(E2,N)
—71(E1,n) 61(E2,n)]},

Wy(Eq,E,n) =2t 02(E1,n) 91(E2,N)[B(E1,Ez,n—1) = Be(Ez,Eq,n—=1)]+ 05(E1,n)[D(Eq,Ez,n—1)
—C(E2,E1,n—=1)]+0.5ap[ 71(E2,N) O3(E1,n) = 6:(E1,N) k1(Ez,N) ]
+03(E1,n)k1(Ez,N)[AL(EL,Ez,n=2)=A(Ez,E1,n—=2)]},

Xu(E1,E2,n)=2tap{ 72(E1,n) 01(E2,N)[Ac(E1,E2,n=2) = A(E2,E1,n—=2)]+ 61(E3,n)[Dc(E1,Ez,n—2)
—Cc(Ez,Eq,n=2)]+0.5ap 72(E1,n) O3(E2,N) = 61(E2,N) ko(Eq,N) ]

+ Kko(Eq,n)03(E5,n)[B(Eq,E;,n—1)—B.(Ey,E;,n—1)]},

Yu(E1,Ez,n)=2tap{k2(E2,n) O2(E1,N)[Be(Eq,Ex,n—1) = Be(Ep,Eq ,n—=1)]+ 03(E1 ,n)[C(E1,Ez,n—2)
—Dc(Ez,E1,n=2)]+0.5a5[ k2(E2,n) 63(E1,n) = 62(Eq,n) 72(E2,N) |
+ 03(E1,n) 72(Ex ,M[A(EL, Ex,n—=2) —A(Ey,E1,n—=2) ]},

Z,(E1,Ez,n)=2tpp{03(E2,n) 05(E1,N)[Be(E1,Ex,n—1) = Bc(E,Eq ,n—=1)]+ 03(E1,n) 01(Ex,n)[Ac(E1,Ex,n—2)
—Ac(Ez,E1,n—2)]+0.5ap[ 03(E2,n) 63(E1,n) — 05(Eq,n) 61(E2,N) ]},
Ao(E1,E2 M) =2[Ac(E1,E2.n—=2)—A(Ez,E1,n—=2)][B(Ez By ,n—1)—B(E;,E5,n—1)],
Bo(E1,E2,n)=2[A(E1,Eo,n—2)—A(Ez,E1,n—2)][Cc(Ez,E1,n—=1)—D¢(Ey,Ez,n—1)],
Co(E1,E2,n)=2[C(E1,E2,n—=2)—=D¢(Ez,E1,n—=2)][C(Ez,E1,n—1)—=D(E1,Ez,n—1)],
Do(E1,Ez,n)=2[Bc(Eq,E,n—1) = Be(Ez,E1 ,n—=1)J[Cc(Ez,E;,n—2) —D¢(E; ,E;,n—2)],

E being eitherE, or E,. The effective hopping integral(E,n), and the effective self-energies of the left and right extreme
sites of the renormalized MF&,(E,n) andEg(E,n), are given by

Er(E,N)=ERr(E,n—2)+t%(E,n—2)[E—ER(E,n—1)]/ye(E,n),
EL(E,n)=E_(E,n—1)+t%E,n—1)[E—E (E,n—2)]/y(E,n),
t(E,n)=tagt(E,n—1)t(E,n—2)/y:(E,n).
For the case of free boundary conditions, the Green’s functions at the ends of the system are
GLL(E)=[E—ERr(E,N)]/yg,Grr(E)=[E—EL(E,M)]/ys, GLr(E)=t(E,n)/yg,
¥6=[E—EL(E,n)][E—Er(E,n)]—t*(E,n),
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and for the case of finite-lead boundary conditions, they are
2 t2(E,n) -t
E—Erp(E.M)  E—Eg(E,n)—t¥[E—E_p(E,m)]

t2 - t2(E,n) -t
E—ELp(E.Mm)  E—E_(E,n)—tY[E—Erp(E,m)]|

GL,L(E):{E_EL(Evn)_

GgrRr(E)=)E—Eg(E,n)—

G r(E)=Ggrr(E)X(E,n)/{E—E (E,n)—t*[E—Erp(E.m 1},

wherem is the generation number of theeriodic leads built following the Fibonacci procedure, and their effective self-
energies and effective hopping are given by

ELp(E,m)=E_p(E,m—1)+t5(E,m—1)[E~E_p(E,m—2)]/yp(E,m),
Erp(E,m)=Erp(E,m—2) +t3(E,m—2)[E—Erp(E,m— 1)1/ yp(E,m),
tp(E,m)=ttp(E,m—1)tp(E,m—2)/yp(E,m),
with
yp(E,m)=[E—Egp(E,m—1)]J[E-E p(E,m—2)] -t
Finally, the initial conditions for the iterative procedure are
t(E.2)=tpa,EL(E,2)=—a,Er(E,2)=0,
t(E.3) =tantea/(E—a),EL(E3)=—a+t3,/(E-a), Er(E3)=a+ti/(E-a),
tp(E,2) =t,Erp(E,2)=E p(E,2)=0,
tp(E,3)=t?/E, E_p(E,3)=Erp(E,3)=tp(E,3),
A(E1,E22)=C(E;,Ez,2)=D(E;,Ez2)=1(E;,E22) =0,
J(E1,E2,2)=K(E1,E22)=L(E,Ez,2)=Z(Ey,E5,2) =0,
B(E1,E22) =2t5a, F(E;,Ep2)=—1t3,,
A(E;,E;3)=—[t(E1,3) —t(Ex3) Ptantia,
B(E;,E5,3)=4(t%(E1,3) +t3(E,,3)), C(E;,Ez3)=—[t(E1,3)—t(E53) 22/ t3A,
D(Ey,E23=2[t*(E1,3) —t?(Ez,3)tealtan, F(E1,Ep3)=—[t(E1,3)+t(Ez3)]%
1(Eq,Ep,3)=2[t*(E5,3) —t*(E1,3)Jtan/tea, J(E1,Ep3)=—t(E23)tgaltan,
K(E1,E»,3)=2t(E,,3), L(E{,E»,3)=—1t(E;,3)tan/tga, Z(Eq,E53)=0,
Ac(E1,E2,2)=Bc(E1,E,2)=Cc(E1,E2,2) =0, Dc(Eq,Ez2) =tga,

A(E;,Ep,3)=t3u(E;—a), B(E1,Ep3)=tap/(E;—a), C(E;,E,3)=0,
and
D(E1,Ez3)=tantga/[E1— a]+tanteal/[Er—al.

For the case of the DOS, the renormalization procedure is much simpler, since only a sum of diagonal elements of Green’s
functions is involved, instead of products of them in the Kubo-Greenwood formula. In this case, we have
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1 1
DOSE)=— ;Im; G;(E")=~- ;Im{Dl(E+,n)GL,L(E+)+DZ(E+,n)GR,R(E+)+D3(E+,n)GL,R(E+)+D4(E+,n)},
(A1)
where
D(E",N)=D(E",N—1)+ «5(E*,n)Dy(E",N—2)+ 2(E",n)D,(E*,N—1)+ 5,(E*,n)D4(E",N—1),
D,(E*,N)=Dy(E",N—2)+ «k5(E*,n)Do(E",N—1)+ 75(E",n)D,(E*,N—2)+ 5,(E*,n)D5(E",N—2),

D3(E+,N):K2(E+,n)D3(E+,N_1)+Kl(E+,n)D3(E+,N_2)+27]2(E+,n)K1(E+,n)Dl(E+,N_2)
+27]1(E+,n)K2(E+,n)D2(E+,N_1),

D4(E+1N):D4(E+!N_1)+D4(E+1N_2)+01(E+!n)Dl(E+!N_2)+02(E+1n)D2(E+!N_1)1

and the initial conditions are
Dl(E+,2): D2(E+,2): 1, D3(E+,2): D4(E+,2):0,

2 2
tga tan 2tgatan

Dy(E",39=1+———, Dy(E".3=1+ (E—af?

(Et—a)?’ 2° D3(E",9)= D4(E",3)=

(E*—a)?’ Ef—a

This renormalization procedure is very computationally efficient, however, high order numerical precision should be used.

APPENDIX B: CALCULATION OF THE RENORMALIZATION COEFFICIENTS

In this appendix we explain the procedure to obtain the coefficients in(@gAs an example, the first coefficient,
A(E1,E5,n), will be calculated with detail.
From Eq.(5) we take one of the three terms and first, we will consider only the summationj,owkich is defined as

N(n)—1
S«(Eq,Ex,nkk+1)= X 111G+ 1x(E1)Gis1j(Ea),

and it can be written as

Sc(E1,E2,n K k+1)=A(E1,E;,n)G1x(E1) Gy 11(E2) +Be(E1,E2,n) Gy k(E1) Gy 1nn)(E2)
+ Cc(E1,E2.N)G1x(E1) Gy anmy(E2) + De(Eq,E2,n) Gy k(E1) Gy 1,1(E2),

whereA.(E;,E,,n), ... ,D.(E1,E5,n) are defined as the coefficients of the products of two Green’s functions that satisfy the
homogeneous Dyson equatiofE(—H]G=0). The contributions of its inhomogeneous term are taken into account in the
coefficientsJ(E4,E,,n), K(E{,E,,n), L(E;,E,,n), andZ(E,,E,,n).

The construction rule of the Fibonacci sequence, discussed in Sec. I, leads to

Sc(E1,Ez,n K k+1)=S(E1,Eo,n—1Kk+1)+S(Eq,Ez,n—2Kk+1)+tagGnen-1)+1k(E1) Cnin-1) k+1(E2).

Hence, the coefficientd (E;,E,,n), ... ,D.(E1,E,,n) of Appendix A can be obtained by substituting in the last equation
the relations

Gnn-1),n(E) = 71(E,n)G1p(E) + x2(E,N) Gy n(E),

Gnn-1)+1h(E) = k1 (E,n)G1p(E) + 72(E,N) Gy n(E),

where 7 and « are defined in Appendix A, anld can be eithek or k+1.
Now, rewriting Eq.(5) as
N(n)—1
S(El’EZln): 2 tk,k+1[28C(ElrE2!nlkik+1)_SC(E11E2!nlk+ 11k)_SC(E21E1!n;kyk+l)]
k=1

and taking only the terms d&;(E;,E,,n) in eachS; we obtain
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N(n)—1

SA(ElvEZ!n)E I(Zl

—A(E2,E1,n)G1(E1)Gyi11(En)]

N(n)—

PHYSICAL REVIEW B64 174205

ti k1l 2Ac(E1,E2,n) G k(E1) Gyr11(Ex) —A(E1,E,n) Gy 1(E1) Gy a(E2)

1

=[2Ac(Ey,E2,n)—A(E;,E1,n)] gl tikr1G1x(E1)Grr1.1(E2)

N(n)—1

—A(Eq,E5,N) gl tiks 161k 1(E1)Gya(Eo)

=[2Ac(E1,E3,n) —A(Ez,E1,n) J[A(E2,E1,n)Gy1(E1) Gy 1(Ex) + - - - ]=Ac(Eq,Ep,N)

X[A(E1,E;,n)Gq1(E1) Gy 1(Ep) +-

=—[Ac(E1,E2,n)—AL(E;,E1,n)]°Gy 4(E1)Gy1(Ep) + - - -,

where G; (E) corresponds
A (E{,Eyn), ...

toG_ (E) in Eq. (6),

and we have used the fact that the coefficients

,D:(E1,E,,n) do not depend oRk. Therefore

A(E1,Ep,n)=—[Ac(E1,Ez,n)—Ac(E; Eq,n) ]2

The rest of the coefficients can be obtained following a similar procedure.
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