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Renormalization approach to the Kubo formula in Fibonacci systems

Vicenta Sa´nchez, Luis A. Pe´rez, Rau´l Oviedo-Roa,* and Chumin Wang
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A renormalization method is developed for the Kubo-Greenwood formula, in order to analyze the electronic
transport in large quasiperiodic lattices at zero temperature, within a tight-binding model. The results show a
scaling invariance of the conduction spectrum around the transparent state, where a periodic oscillating pattern
is found. However, the dc conductivity averaged over the transmission window of the leads presents a signifi-
cant reduction, when the system size becomes macroscopic. A detailed study of the boundary-condition effects
on the ac conductivity reveals the robustness of the transparent states, contrary to that observed in other high
dc-conduction states.
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I. INTRODUCTION

Nowadays, with the use of modern high-speed comput
large-scale numerical calculation have been carried ou
show the band structures and the eigenfunctions
thousands-atom systems. However, such computations
very time consuming and it is still difficult to address re
macroscopic-scale solids. An alternate and more effic
way to achieve this is the renormalization group meth
which has been quite successful in the theory of criti
phenomena.1 Recently, the real-space renormalization tec
niques have been applied to disordered2,3 and
quasiperiodic4–7 systems, due to the lack of a general Bloc
type theorem for these cases. In particular, the quasiperi
systems are highly sensitive to local defects8 and then, it
becomes essential to be able to study larger-size system
order to minimize the boundary effects. On the other ha
the localization and transport of electrons in these syst
have been a controversial issue, since the discovery of
sicrystalline alloys in 1984. At the present time, there is
consensus that the eigenvalue spectrum produced by a
siperiodic potential is singular continuous and the associa
eigenfunctions are critical.9 Moreover, the level-spacing sta
tistics show an inverse-power-law distribution of gaps10,11

and a semi-Poisson distribution of bands,12 both neither con-
ventional Poisson nor Wigner ones. Hence, the electr
conduction of these critically localized states becomes
especially interesting subject. The hopping conductivity
Fibonacci chains has been addressed by using the Mi
Abrahams equations13,14 and the optical conductivity ha
been analyzed within a generalized Drude formula.15 Re-
cently, transparent stateswith unity transmission coefficien
have been reported for mixing Fibonacci systems ofN
atoms.16 It is observed that the eigenfunctions of these tra
parent states, with energies satisfyingE5a(11g2)/(1
2g2) and E22a254t2 cos2(Kp/N), are periodiclike wave
functions,17 where1a (2a) are the on-site energies of a
oms A (B), g5tAA /tAB is the ratio of the hopping param
eters, andK andN/K are integer numbers. Furthermore, t
ac conductivity of these transparent states has been ana
within the Kubo-Greenwood formalism,18 which has the ad-
vantage of allowing the analysis of transport in any dime
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sional systems at finite electric-field frequency and fin
temperature. In this paper, we report a renormalizat
method for the Kubo-Greenwood formula and scale inva
ances of the dc and ac conductivities around the transpa
states in mixing Fibonacci chains.

This paper is organized as follows. Section II defines
system and introduces the renormalization method. T
mathematical details of the method are given in the App
dixes. In Sec. III, the dc conductivity is analyzed for diffe
ent quasiperiodic-system sizes and its behavior around
transparent state is investigated in detail. In Sec. IV, the
conductivities calculated by using free, finite-lead a
almost-infinite-lead boundary conditions are reported. In p
ticular, the low-frequency behaviors for the transparent a
non transparent states are comparatively shown. Finally,
conclusions are given in Sec. V.

II. THE RENORMALIZATION METHOD

In a mixing Fibonacci system~MFS! two kinds of atoms,
A andB, are arranged following the Fibonacci sequence a
the hopping integrals between the atoms depends on the
ture of them, giving rise to the existence of two differe
parameterstAA and tAB5tBA .16 In this paper, we define the
first generationF15A and the second generationF25BA.
The next generations are given byFn5Fn21% Fn22, con-
taining N(n) atoms. For the sake of simplicity, an uniform
bond length~a! is taken. Moreover, in order to isolate th
quasicrystalline effects on the physical properties of the s
tem, a simples-band tight-binding Hamiltonian is considere
as given in Ref. 18. The analysis of the electrical conduc
ity is carried out by using the Kubo-Greenwood formu
which can be written as19

s~m,v,T!5 lim
V→`

2e2\

pVm2E2`

`

dE
f ~E!2 f ~E1\v!

\v

3Tr@p Im G1~E1\v!p Im G1~E!#, ~1!

where V is the volume of the system, p
5( ima/\)( j$t j , j 11u j &^ j 11u2t j , j 21u j &^ j 21u% is the pro-
jection of the momentum operator along the applied elect
©2001 The American Physical Society05-1
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FIG. 1. ~a! Schematic repre-
sentation of the renormalization
procedure. The numbers on th
left side indicate the generation
The nature of atoms, their self
energies, and the hopping param
eters are specified inside, below
and between the open circles, re
spectively. At the end of the pro
cess one gets two effective atom
~black circles! with a single effec-
tive bond. There is an intermedi
ate step in which renormalized
chains of lower generations ar
connected together through a ho
ping tAB . ~b! Sketch of an MFS of
generationn connected to two pe-
riodic leads through the same hop
ping t of the periodic leads.
’s

es

a ide

not
ses
me
to
n-
field direction,G1(E) is the retarded one-particle Green
function, and f (E)5$11exp@(E2m)/kBT#%21 is the Fermi-
Dirac distribution with Fermi energym and temperatureT.

For an infinite periodic linear chain with null self-energi
and hopping integralt, the conductivity of a segment ofN
atoms at zero temperature can be calculated analytically
it is given by20

s~m50,v!5
8e2t2a

p~N21!\3v2 H 12cosF ~N21!
\v

2utuG J ,

~2!

where the system length isV5(N21)a. In the limit of v
→0, the dc conductivity within the energy band is
17420
nd

sp5
e2a

p\
~N21!. ~3!

This yields a finite conductanceg[sp /(N21)a52e2/h,
which has been observed recently.21

For quasiperiodic systems, however, in spite of the w
use of the renormalization group~RG! methods in their
study, the electrical conductivity in these systems has
been explored in that way, due to the complex proces
involved in transport phenomena. Following the RG sche
shown in Fig. 1~a!, we have found an iterative procedure
calculate directly the product of the Green’s function i
volved in the Kubo-Greenwood formula@Eq. ~1!#, which can
be written conveniently for a finite MFS of generationn at
T50 as
s.

e sites
s~m,v!52
2e2a2

pV\2v
E

m2\v

m

dE (
j ,k51

N(n)21

t j , j 11tk,k11@2 ImGj 11,k
1 ~Ev ,n!Im Gk11,j

1 ~E,n!2Im Gj 11,k11
1 ~Ev ,n!Im Gk, j

1 ~E,n!

2Im Gj ,k
1 ~Ev ,n!Im Gk11,j 11

1 ~E,n!#5
e2a2

2pV\2v
E

m2\v

m

dE@S~Ev
1 ,E1,n!2S~Ev

1 ,E2,n!2S~Ev
2 ,E1,n!

1S~Ev
2 ,E2,n!#, ~4!

where E65E6 id, Ev5E1\v, and thenEv
65E1\v6 id with d→0. Furthermore, the symmetryGj ,k5Gk, j and the

relationship ImG15(G12G2)/2i have been used, sinceG6(E)5G(E6) and the eigenfunctions are real for finite system
In Eq. ~4! the partial sumsS(Ev

n ,Eb,n) are defined as

S~Ev
n ,Eb,n!5 (

j ,k51

N(n)21

t j , j 11tk,k11@2Gj 11,k~Ev
n !Gk11,j~Eb!2Gj 11,k11~Ev

n !Gk, j~Eb!2Gj ,k~Ev
n !Gk11,j 11~Eb!#, ~5!

wheren andb can be either1 or 2. These partial sums can be expressed in terms of the Green’s functions at the extrem
of the MFS as
5-2
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S~Ev
n ,Eb,n!5A~Ev

n ,Eb,n!GL,L~Ev
n !GL,L~Eb!1B~Ev

n ,Eb,n!GL,R~Ev
n !GL,R~Eb!1C~Ev

n ,Eb,n!GR,R~Ev
n !GR,R~Eb!

1D~Ev
n ,Eb,n!GL,L~Ev

n !GL,R~Eb!1D~Eb,Ev
n ,n!GL,L~Eb!GL,R~Ev

n !1F~Ev
n ,Eb,n!GL,L~Ev

n !GR,R~Eb!

1F~Eb,Ev
n ,n!GL,L~Eb!GR,R~Ev

n !1I ~Ev
n ,Eb,n!GL,R~Ev

n !GR,R~Eb!1I ~Eb,Ev
n ,n!GL,R~Eb!GR,R~Ev

n !

1J~Ev
n ,Eb,n!GL,L~Ev

n !1J~Eb,Ev
n ,n!GL,L~Eb!1K~Ev

n ,Eb,n!GL,R~Ev
n !1K~Eb,Ev

n ,n!GL,R~Eb!

1L~Ev
n ,Eb,n!GR,R~Ev

n !1L~Eb,Ev
n ,n!GR,R~Eb!1Z~Ev

n ,Eb,n!, ~6!
-
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where the subindexesL andR denote the left- and the right
end atoms, respectively. The coefficientsA(E1 ,E2 ,n),
B(E1 ,E2 ,n), . . . , Z(E1 ,E2 ,n) in the last equation, being
E1 andE2 eitherEv

n or Eb, can be iteratively obtained from
those of generationsn21 andn22, as shown in Appendix
A and the detail of the calculation is given in Appendix B

For the free-boundary condition, the Green’s functio
GL,L , GR,R , andGL,R are determined by solving a two-sit
Dyson equation. In the case of finite periodic leads, the M
and the leads can be renormalized to two effective site
tems each one and then, a six-site Dyson equation shou
solved as shown in Fig. 1~b!. The leads and the MFS ar
connected by the same hopping parameter of the peri
leads. Finally, for the almost-infinite-periodic-lead case, w
more than 1020 atoms in each lead, we have to solve only
four-site Dyson equation since the renormalized hopping
tegral of the leads becomes essentially zero. On the o
hand, the total density of states can be also calculated
means of a similar renormalization procedure as shown
Eq. ~A1! of Appendix A. In the next section, we use th
method to analyze the dc conductivity of MFS for a wi
range of system sizes.

III. SIZE SCALING BEHAVIOR

Let us consider a MFS withk[N/K54, as defined in
Ref. 17, connected to two almost-infinite periodic line
chains~leads! with hopping integralst and null on-site ener-
gies, where almost-infinite means large enough so that
physical quantities have no important variation with the le
size. The trace in Eq.~1! is taken over the MFS. The numer
cal results of finite MFS withk52 and k53 have been
studied in Ref. 18. Figures 2~a! and 2~b! show respectively
the normalized density of states~DOS/N) and the normalized
zero-temperature dc Kubo conductivity (s(m,0)/sP), both
in logarithmic scale, of a MFS witha50.5utu, g5A2 and
n541. The spectra contain 105 data and have been calcu
lated in quadruple precision. The imaginary part of the
ergy in the Green’s function isd510211utu and the transpar
ent state energy (ET521.5utu) is indicated by a dashed line
Notice first that the considered MFS contains 267 914 2
atoms (n541), hence the multifractal band structure is qu
fine, and in consequence a finite number grid can not sh
the whole feature of the spectrum. Such is the case for th
conductivity spectrum aroundm51.4utu, since the conduc-
tion minibands are sharper than those of the DOS as oc
in disordered systems.22 On the other hand, it is observe
17420
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that around the transparent state both spectra have an a
constant behavior, as analyzed in the following.

Figures 3~a! and 3~b! show, respectively, amplifications o
the DOS and of the Kubo dc conductivity around the tra
parent state, for generationsn56l 21 ~open circles!; 6l ,
6l 11, 6l 22 ~black line!; 6l 12 ~gray line!; and 6l 13
~light gray line!, being l 51,2,3, . . . . Notice first that peri-
odic oscillating behaviors with the same energy period giv
approximately byD54.546utu/(N21) are present in both
amplified spectra. The dc conductivity spectrum can be
produced reasonably well by evaluating the transmittance
the MFS.18 For m5ET , the transfer matrices commute an
the transmittance (t) is given by16

t~m,N!5F11
~12g2!2sin2~Nf!

„42~m/t !2
…g2 G21

, ~7!

where 2utucosf5Am22a2, as shown in Fig. 3~c!. For ener-
gies very close toET , considering thatN@1, their transfer
matrices almost commute. Hence, a slight difference
tween Figs. 3~b! and 3~c! is observed. The general oscillatin
behavior for any generation can be explained by conside

FIG. 2. ~a! Density of states~DOS!, and ~b! the normalized
Kubo dc conductivity@s(m,0)/sP# for a mixing Fibonacci system
~MFS! of generationn541 with k54, a50.5utu andg5A2, con-
nected to two 1020-atom periodic linear chains witha50 and hop-
ping integral t. Both spectra contain 105 data and Im(E)
510211utu. The transparent state (ET521.5utu) is indicated by a
dashed line.
5-3
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FIG. 3. Amplifications of~a!
the density of states~DOS! and
~b! the Kubo dc conductivity (s)
around the transparent state, fo
generations n56l 21 ~open
circles!; 6l , 6l 11, 6l 22 ~black
line!; 6l 12 ~gray line!; and 6l
13 ~light gray line!, for a MFS
with the same Hamiltonian param
eters as in Fig. 2,l being a large
integer number. These spectra a
compared with that obtained b
evaluating Eq.~7! and shown in
~c!. The corresponding spectr
for an MFS with a50.85utu, g
51.25A2, andET521.65utu, are
shown in figures (a8), (b8), and
(c8).
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that Nf(ET)5Kp1(r /k)p, (m2ET)/utu!1, and f(m)
2f(ET)!1, being r 50,1,2, . . . ,k21 and N5Kk1r .
Thus,

cosf~m!.cosf~ET!2@f~m!2f~ET!#sinf~ET!

and

Am22a2

2utu
.

AET
22a2

2utu S 112
utuET

ET
22a2

~m2ET!

utu D .

Therefore, the definition off(m), 2utucosf(m)5Am22a2,
leads to

f~m!2f~ET!.2
ET

4utusinf~ET!cosf~ET!

~m2ET!

utu

5L
~m2ET!

utu
,

where L[2ET /$2utusin@2f(ET)#%. In consequence, forN
→`,

t~m,N!→F 11

~12g2!2sin2FL«1
r

k
pG

@42~ET /t !2#g2
G21

,

where«[N(m2ET)/utu andm in the denominator of Eq.~7!
has been replaced byET , because (m2ET)/utu!1. Notice
that the transmittance, or the conductivity, is an oscillat
function of « and size scaling invariant in the neighborho
of the transparent state. The phase of this oscillation is
termined byr. For the casek54, f(ET)5p/4. Hence, for
17420
g

e-

generationsn56l 21, N(n) is multiple of 4 and thenr 50;
for n56l , 6l 11, and 6l 22, r 51; for n56l 12, r 52; and
finally, for n56l 13, r 53.

Furthermore, the amplitude of these periodic oscillatio
increases when the chemical diversity parameter (a) of the
system grows. This feature is shown in Figs. 3(a8), 3(b8),
and 3(c8), for a MFS witha50.85utu, g51.25A2, andET
521.65utu. It is important to stress that the spectra arou
the transparent states are scale invariant even though
whole spectra is not.

In order to analyze the global dc conduction properties
the system, we introduce the lead-transmission-windo
averaged dc conductivity

^s~m,0!&5
1

Nm
(
j 51

Nm

s~m j ,0!, ~8!

where m j are uniformly chosen from the interva
@22utu,2utu#, which corresponds to the transmission windo
of the periodic leads. The number of energies contribut
significantly to this average can be quantified by using
conductivity participation ratio~CPR! defined by

CPR5

F (
j 51

Nm

s2~m j ,0!G2

Nm(
j 51

Nm

s4~m j ,0!

. ~9!

In Figs. 4~a!, 4~b!, and 4~c!, the transmission-window-
averaged dc conductivity@^s(m,0)&#, the conductivity par-
ticipation ratio~CPR! and the transparent-energy conduct
ity @s(ET,0)# are respectively plotted as a function of th
system size forNm5105 and the same MFS as in Fig. 2
5-4
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RENORMALIZATION APPROACH TO THE KUBO . . . PHYSICAL REVIEW B64 174205
Notice the clear decay of the averaged conductivity, wh
can be related to the opening of gaps when the MFS gro
This possible reason has been confirmed by the CPR
contrast to the monotonously decay behavior, the dc cond
tivity evaluated at the transparent state energy (ET5
21.5utu) oscillates periodically, because for MFS withk
54 the system has an unity transmission coefficient each
generations, sincek54 is divisor of N for generationsn
56l 21, with l 51,2,3, . . . .17 The oscillating behavior of
the normalized dc conductivity shown in Fig. 4~c! is con-
firmed by Eq.~7!, since the dc conductivity is proportional t
the transmittance through Landauer formula and it is in v

FIG. 4. ~a! Lead-transmission-window-averaged dc conductiv
„^s(m,0)&…, ~b! conductivity participation ratio~CPR!, and ~c!
transparent-energy conductivity@s(ET,0)# as a function of the sys
tem size for the same MFS as Fig. 2 andNm5105.
17420
h
s.
In
c-

ix

y

good agreement with that calculated by means of Ku
Greenwood formula.18 In the next section, the ac conductiv
ity and its sensitivity to boundary conditions are investigat

IV. BOUNDARY CONDITION ANALYSIS

In Fig. 5, the ac Kubo conductivity of the transparent st
is shown for three MFS with the same self-energies and h
ping integrals as in Fig. 2, but different boundary condition
i.e., (a8) 4 807 526 976 atoms without leads, (b8)
267 914 296 atoms connected to two 2 269 806 340 atom
riodic linear chains, and (c8) 267914296 atoms saturated b
two periodic linear chains of 1020 atoms. Figures 5~a!, 5~b!,
and 5~c! show the results obtained for a periodic system w
m50, and the same lengths and boundary conditions a
Figs. 5(a8), 5(b8), and 5(c8), respectively. The ac conduc
tivities are calculated by using Im(E)510211utu. Observe
that in Figs. 5~a! and 5~b! the systems including the lead
have an equal total number of atoms; therefore, the re
nance peaks are located at the same frequencies, sinc
eigenvalue spectra are the same and the resonance pea
determined by the Fermi-golden selection rules.23 However,
their amplitudes are very different, because the Kubo f
mula is evaluated on different system lengths. Furtherm
the minima of Figs. 5~b! and 5~c! seem to be located at th
same values of frequency, except that in Fig. 5~c! a continu-
ous behavior is observed due to the presence of alm
infinite leads. For the latter case, the ac conductivity is giv
by Eq. ~2!. All these features are mainly preserved for t
transparent states as shown in Figs. 5(a8), 5(b8), and 5(c8),
except for a compression of the spectra due to the pres
of gaps in the Fibonacci eigenvalue spectrum.
-
t

-

c

-
c

FIG. 5. ac Kubo conductivity
of the transparent state (m5ET)
for three MFS with the same
self-energies and hopping inte
grals as in Fig. 2, but differen
boundary conditions, i.e., (a8)
4 807 526 976 atoms (n547)
without leads, (b8) 267 914 296
atoms (n541) connected to two
2 269 806 340-atom periodic lin
ear chains, and (c8) 267 914 296
atoms saturated by two periodi
leads of 1020 atoms. Figures~a!,
~b!, and ~c! show the correspond
ing results obtained for a periodi
system withm50.
5-5
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In Fig. 6, the ac Kubo conductivity of two kinds of non
transparent states are shown in comparison with that of
transparent state~open circles! for the same MFS as in Fig
2. First, for generationsn56l , 6l 11, and 6l 14 ~up tri-
angles!, n56l 12 ~down triangles!, and n56l 13 ~open
squares!, the ac conductivity is evaluated at their maximu
dc-conductivity energies@see Fig. 3~a!# located atm5ET
2D/4, ET2D/2, and ET23D/4, respectively. Notice tha
these almost-transparent states have the same frequenc
pendence except that the initial value atv50 is strictly unity
only for the transparent state of generationn56l 15. It is
important to mention that these curves are scale invari
which is related to the scaling invariance shown in Fig.
since the zero-temperature ac conductivity is calculated
integrating a vicinity of\v around the Fermi energy@Eq.
~1!#. For the second kind of nontransparent states, i.e., h
dc conductivity states withmÞET in the same MFS of
generation 41 as in Fig. 2, a noisy behavior is obser
for m1520.591 763 398utu ~gray line! and m25
20.108 600 000 01utu ~light gray line!, with s(m1,0)/sP
50.9701 ands(m2,0)/sP50.95. It is important to stres
that these ac conductivities are not scale invariant, and de
with the frequency much faster than that of the transpa
ones, since the ac conductivity depends not only on the st
at the Fermi level but also on the localization condition
the states in a range of\v around it.

A log-log plot of the ac conductivity in the low-frequenc
limit is shown in the inset of Fig. 6, where the calculatio
were performed using Im(E)510215utu. Observe that the
transparent state and the almost-transparent states hav
same conductivity in the low-frequency limit, which follow
essentially the same relationship as the periodic case
m50,20

FIG. 6. ac Kubo conductivity for the same MFS as in Fig. 2 b
with n56l , 6l 11, 6l 14 ~up triangles!, n56l 12 ~down tri-
angles!, and n56l 13 ~open squares!, evaluated atm5ET2D/4,
ET2D/2, andET23D/4, respectively, in comparison with that o
the transparent state~open circles!, where D54.546utu/(N21).
The non-transparent-state ac conductivities withm15
20.591 763 398utu ~gray line! andm2520.108 600 000 01utu ~light
gray line! are also shown. In the inset a low-frequency-regime lo
log plot of the ac conductivity is presented.
17420
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s~0,v!5
e2a~N21!

p\ H 12
1

48F ~N21!\v

2utu G2J , ~10!

except for the coefficient of 0.084 84, instead of 1/48; wh
the coefficients are 22.3934 and 69.0557 for the nontrans
ent states withm1 andm2, respectively. Note that the large
coefficients of the nontransparent states confirm the dram
decay of their ac conductivity when an oscillating electric
field is turned on.

V. CONCLUSIONS

In summary, we have developed a renormalization pro
dure for evaluating the Kubo-Greenwood formula in F
bonacci lattices, which allows the study of the electric
transport in macroscopic quasiperiodic systems. In particu
we have analyzed the dc and ac conductivity at zero temp
ture in MFS. The results show ascale invarianceof the dc
conduction spectrum around the transparent state, whe
periodic oscillating pattern is found. The amplitude of the
oscillations increase when the inhomogeneity or chem
diversity of the system grows. Furthermore, a significant
duction of the transmission-window-averaged dc conduc
ity is observed when the MFS grows, fact related to t
multifractal band fragmentation,24 which is confirmed by
quantifying the number of participating states to the av
aged conductivity.

The ac conduction analysis reveals that in spite of a g
eral conductivity diminution as the frequency of the appli
field increases, the transparent and almost-transparent s
show the same regular oscillating behavior, which is hig
sensitive to the boundary conditions:~1! for the case without
leads the ac conductivity decreases monotonically;~2! with
finite leads an oscillatory decreasing behavior is found;~3!
when almost-infinite leads are introduced the ac conducti
becomes a smooth oscillating function of the frequen
where the results have been confirmed analytically for
periodic case. In particular, for the almost-infinite lead ca
a scale invarianceof the ac conductivity is observed for th
transparent and almost-transparent states. On the other h
the diminution of the non-transparent-states ac conducti
is much faster than that of transparent ones and do not s
a regular oscillating pattern. However, in the low-frequen
limit they also obey the square decay rule as in perio
systems.

This renormalization method can be used to analyze
electrical transport in quasiperiodic superlattices by introd
ing a two-dimensionalk space, which takes advantage of t
translational symmetry in the parallel planes, as in the st
of the Raman scattering in Fibonacci superlattices.25 This
work is currently in progress.
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APPENDIX A: RENORMALIZATION FORMULAS

As discussed in Sec. II, the Kubo-Greenwood conduc
ity can be written in terms of the partial sums,S(Ev

n ,Eb,n),
17420
-

defined in Eq.~5!. These partial sums can be expressed a
quadratic polynomial of the Green’s functions evaluated
the extreme sites of the system, as shown in Eq.~6!, where
the coefficients are iteratively given by
A~E1 ,E2 ,n!52@Ac~E1 ,E2 ,n!2Ac~E2 ,E1 ,n!#2,

B~E1 ,E2 ,n!52@Ac~E1 ,E2 ,n!2Ac~E2 ,E1 ,n!#@Bc~E2 ,E1 ,n!2Bc~E1 ,E2 ,n!#12@Cc~E1 ,E2 ,n!2Dc~E2 ,E1 ,n!#

3@Cc~E2 ,E1 ,n!2Dc~E1 ,E2 ,n!#,

C~E1 ,E2 ,n!52@Bc~E1 ,E2 ,n!2Bc~E2 ,E1 ,n!#2,

D~E1 ,E2 ,n!52@Ac~E1 ,E2 ,n!2Ac~E2 ,E1 ,n!#@Dc~E2 ,E1 ,n!2Cc~E1 ,E2 ,n!#,

F~E1 ,E2 ,n!52@Cc~E1 ,E2 ,n!2Dc~E2 ,E1 ,n!#2,

I ~E1 ,E2 ,n!52@Bc~E1 ,E2 ,n!2Bc~E2 ,E1 ,n!#@Dc~E2 ,E1 ,n!2Cc~E1 ,E2 ,n!#,

J~E1 ,E2 ,n!5J~E1 ,E2 ,n21!1h1
2~E1 ,n!@u2~E2 ,n!C~E1 ,E2 ,n21!1L~E1 ,E2 ,n21!#

1h1~E1 ,n!@u2~E2 ,n!I ~E1 ,E2 ,n21!1K~E1 ,E2 ,n21!1Vu~E1 ,E2 ,n!#1k1
2~E1 ,n!@u1~E2 ,n!

3A~E1 ,E2 ,n22!1J~E1 ,E2 ,n22!#1u2~E2 ,n!F~E1 ,E2 ,n21!1k1~E1 ,n!

3@h1~E1 ,n!u3~E2 ,n!Ao~E1 ,E2 ,n!

1u3~E2 ,n!Bo~E2 ,E1 ,n!1Wu~E2 ,E1 ,n!#,

K~E1 ,E2 ,n!5u2~E2 ,n!k2~E1 ,n!@2h1~E1 ,n!C~E1 ,E2 ,n21!1I ~E1 ,E2 ,n21!#1k2~E1 ,n!@2h1~E1 ,n!L~E1 ,E2 ,n21!

1K~E1 ,E2 ,n21!1Vu~E1 ,E2 ,n!#1u1~E2 ,n!k1~E1 ,n!@2h2~E1 ,n!A~E1 ,E2 ,n22!1D~E2 ,E1 ,n22!#

1k1~E1 ,n!@2h2~E1 ,n!J~E1 ,E2 ,n22!1K~E1 ,E2 ,n22!1Yu~E2 ,E1 ,n!#1h2~E1 ,n!

3@u3~E2 ,n!Bo~E2 ,E1 ,n!1Wu~E2 ,E1 ,n!#1h1~E1 ,n!@u3~E2 ,n!Do~E1 ,E2 ,n!1Xu~E1 ,E2 ,n!#1u3~E2 ,n!

3$@k2~E1 ,n!k1~E1 ,n!1h2~E1 ,n!h1~E1 ,n!#Ao~E1 ,E2 ,n!1Co~E2 ,E1 ,n!%,

L~E1 ,E2 ,n!5L~E1 ,E2 ,n22!1h2
2~E1 ,n!@u1~E2 ,n!A~E1 ,E2 ,n22!1J~E1 ,E2 ,n22!#1h2~E1 ,n!@u1~E2 ,n!

3D~E2 ,E1 ,n22!1K~E1 ,E2 ,n22!1Yu~E2 ,E1 ,n!#1k2
2~E1 ,n!@u2~E2 ,n!C~E1 ,E2 ,n21!

1L~E1 ,E2 ,n21!#1u1~E2 ,n!F~E2 ,E1 ,n22!1k2~E1 ,n!@h2~E1 ,n!u3~E2 ,n!Ao~E1 ,E2 ,n!

1u3~E2 ,n!Do~E1 ,E2 ,n!1Xu~E1 ,E2 ,n!#,

Z~E1 ,E2 ,n!5Z~E1 ,E2 ,n21!1Z~E1 ,E2 ,n22!1u1~E1 ,n!@u1~E2 ,n!A~E1 ,E2 ,n22!1J~E1 ,E2 ,n22!#1u2~E1 ,n!

3@u2~E2 ,n!C~E1 ,E2 ,n21!1L~E1 ,E2 ,n21!#1u1~E2 ,n!J~E2 ,E1 ,n22!1u2~E2 ,n!L~E2 ,E1 ,n21!

1u3~E1 ,n!u3~E2 ,n!Ao~E1 ,E2 ,n!1Zu~E1 ,E2 ,n!1Zu~E2 ,E1 ,n!,

whereE1 andE2 can be eitherEv
n or Eb, and

u1~E,n!5@E2ER~E,n21!#/gF~E,n!,

u2~E,n!5@E2EL~E,n22!#/gF~E,n!,

u3~E,n!5tAB /gF~E,n!,gF~E,n!5@E2ER~E,n21!#@E2EL~E,n22!#2tAB
2 ,

k1~E,n!5t~E,n21!u3~E,n!,k2~E,n!5t~E,n22!u3~E,n!,

h1~E,n!5t~E,n21!u2~E,n!,h2~E,n!5t~E,n22!u1~E,n!,
5-7
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Ac~E1 ,E2 ,n!5Ac~E1 ,E2 ,n21!1k1~E1 ,n!k1~E2 ,n!Ac~E1 ,E2 ,n22!1h1~E1 ,n!h1~E2 ,n!Bc~E1 ,E2 ,n21!

1h1~E2 ,n!Cc~E1 ,E2 ,n21!1h1~E1 ,n!Dc~E1 ,E2 ,n21!1tABk1~E1 ,n!h1~E2 ,n!,

Bc~E1 ,E2 ,n!5Bc~E1 ,E2 ,n22!1h2~E1 ,n!h2~E2 ,n!Ac~E1 ,E2 ,n22!1k2~E1 ,n!k2~E2 ,n!Bc~E1 ,E2 ,n21!

1h2~E1 ,n!Cc~E1 ,E2 ,n22!1h2~E2 ,n!Dc~E1 ,E2 ,n22!1tABk2~E2 ,n!h2~E1 ,n!,

Cc~E1 ,E2 ,n!5k1~E1 ,n!h2~E2 ,n!Ac~E1 ,E2 ,n22!1h1~E1 ,n!k2~E2 ,n!Bc~E1 ,E2 ,n21!1k2~E2 ,n!Cc~E1 ,E2 ,n21!

1k1~E1 ,n!Cc~E1 ,E2 ,n22!1tABk2~E2 ,n!k1~E1 ,n!,

Dc~E1 ,E2 ,n!5k1~E2 ,n!h2~E1 ,n!Ac~E1 ,E2 ,n22!1h1~E2 ,n!k2~E1 ,n!Bc~E1 ,E2 ,n21!1k2~E1 ,n!Dc~E1 ,E2 ,n21!

1k1~E2 ,n!Dc~E1 ,E2 ,n22!1tABh1~E2 ,n!h2~E1 ,n!,

Vu~E1 ,E2 ,n!52tAB$k1~E1 ,n!u1~E2 ,n!@Ac~E1 ,E2 ,n22!2Ac~E2 ,E1 ,n22!#1h1~E1 ,n!u3~E2 ,n!@Bc~E1 ,E2 ,n21!

2Bc~E2 ,E1 ,n21!#1u3~E2 ,n!@Cc~E1 ,E2 ,n21!2Dc~E2 ,E1 ,n21!#110.5tAB@k1~E1 ,n!u3~E2 ,n!

2h1~E1 ,n!u1~E2 ,n!#%,

Wu~E1 ,E2 ,n!52tAB$u2~E1 ,n!h1~E2 ,n!@Bc~E1 ,E2 ,n21!2Bc~E2 ,E1 ,n21!#1u2~E1 ,n!@Dc~E1 ,E2 ,n21!

2Cc~E2 ,E1 ,n21!#10.5tAB@h1~E2 ,n!u3~E1 ,n!2u2~E1 ,n!k1~E2 ,n!#

1u3~E1 ,n!k1~E2 ,n!@Ac~E1 ,E2 ,n22!2Ac~E2 ,E1 ,n22!#%,

Xu~E1 ,E2 ,n!52tAB$h2~E1 ,n!u1~E2 ,n!@Ac~E1 ,E2 ,n22!2Ac~E2 ,E1 ,n22!#1u1~E2 ,n!@Dc~E1 ,E2 ,n22!

2Cc~E2 ,E1 ,n22!#10.5tAB@h2~E1 ,n!u3~E2 ,n!2u1~E2 ,n!k2~E1 ,n!#

1k2~E1 ,n!u3~E2 ,n!@Bc~E1 ,E2 ,n21!2Bc~E2 ,E1 ,n21!#%,

Yu~E1 ,E2 ,n!52tAB$k2~E2 ,n!u2~E1 ,n!@Bc~E1 ,E2 ,n21!2Bc~E2 ,E1 ,n21!#1u3~E1 ,n!@Cc~E1 ,E2 ,n22!

2Dc~E2 ,E1 ,n22!#10.5tAB@k2~E2 ,n!u3~E1 ,n!2u2~E1 ,n!h2~E2 ,n!#

1u3~E1 ,n!h2~E2 ,n!@Ac~E1 ,E2 ,n22!2Ac~E2 ,E1 ,n22!#%,

Zu~E1 ,E2 ,n!52tAB$u3~E2 ,n!u2~E1 ,n!@Bc~E1 ,E2 ,n21!2Bc~E2 ,E1 ,n21!#1u3~E1 ,n!u1~E2 ,n!@Ac~E1 ,E2 ,n22!

2Ac~E2 ,E1 ,n22!#10.5tAB@u3~E2 ,n!u3~E1 ,n!2u2~E1 ,n!u1~E2 ,n!#%,

Ao~E1 ,E2 ,n!52@Ac~E1 ,E2 ,n22!2Ac~E2 ,E1 ,n22!#@Bc~E2 ,E1 ,n21!2Bc~E1 ,E2 ,n21!#,

Bo~E1 ,E2 ,n!52@Ac~E1 ,E2 ,n22!2Ac~E2 ,E1 ,n22!#@Cc~E2 ,E1 ,n21!2Dc~E1 ,E2 ,n21!#,

Co~E1 ,E2 ,n!52@Cc~E1 ,E2 ,n22!2Dc~E2 ,E1 ,n22!#@Cc~E2 ,E1 ,n21!2Dc~E1 ,E2 ,n21!#,

Do~E1 ,E2 ,n!52@Bc~E1 ,E2 ,n21!2Bc~E2 ,E1 ,n21!#@Cc~E2 ,E1 ,n22!2Dc~E1 ,E2 ,n22!#,

E being eitherE1 or E2. The effective hopping integral,t(E,n), and the effective self-energies of the left and right extre
sites of the renormalized MFS,EL(E,n) andER(E,n), are given by

ER~E,n!5ER~E,n22!1t2~E,n22!@E2ER~E,n21!#/gF~E,n!,

EL~E,n!5EL~E,n21!1t2~E,n21!@E2EL~E,n22!#/gF~E,n!,

t~E,n!5tABt~E,n21!t~E,n22!/gF~E,n!.

For the case of free boundary conditions, the Green’s functions at the ends of the system are

GL,L~E!5@E2ER~E,n!#/gG ,GR,R~E!5@E2EL~E,n!#/gG , GL,R~E!5t~E,n!/gG ,

gG5@E2EL~E,n!#@E2ER~E,n!#2t2~E,n!,
174205-8
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and for the case of finite-lead boundary conditions, they are

GL,L~E!5H E2EL~E,n!2
t2

E2ERP~E,m!
2

t2~E,n!

E2ER~E,n!2t2/@E2ELP~E,m!#
J 21

,

GR,R~E!5H E2ER~E,n!2
t2

E2ELP~E,m!
2

t2~E,n!

E2EL~E,n!2t2/@E2ERP~E,m!#
J 21

,

GL,R~E!5GR,R~E!t~E,n!/$E2EL~E,n!2t2/@E2ERP~E,m!#%,

where m is the generation number of theperiodic leads built following the Fibonacci procedure, and their effective s
energies and effective hopping are given by

ELP~E,m!5ELP~E,m21!1tP
2 ~E,m21!@E2ELP~E,m22!#/gP~E,m!,

ERP~E,m!5ERP~E,m22!1tP
2 ~E,m22!@E2ERP~E,m21!#/gP~E,m!,

tP~E,m!5t tP~E,m21!tP~E,m22!/gP~E,m!,

with

gP~E,m!5@E2ERP~E,m21!#@E2ELP~E,m22!#2t2.

Finally, the initial conditions for the iterative procedure are

t~E,2!5tBA ,EL~E,2!52a,ER~E,2!5a,

t~E,3!5tAAtBA /~E2a!,EL~E,3!52a1tBA
2 /~E2a!, ER~E,3!5a1tAA

2 /~E2a!,

tP~E,2!5t,ERP~E,2!5ELP~E,2!50,

tP~E,3!5t2/E, ELP~E,3!5ERP~E,3!5tP~E,3!,

A~E1 ,E2,2!5C~E1 ,E2,2!5D~E1 ,E2,2!5I ~E1 ,E2,2!50,

J~E1 ,E2,2!5K~E1 ,E2,2!5L~E1 ,E2,2!5Z~E1 ,E2,2!50,

B~E1 ,E2,2!52tBA
2 , F~E1 ,E2,2!52tBA

2 ,

A~E1 ,E2,3!52@ t~E1,3!2t~E2,3!#2tBA
2 /tAA

2 ,

B~E1 ,E2,3!54~ t2~E1,3!1t2~E2,3!!, C~E1 ,E2,3!52@ t~E1,3!2t~E2,3!#2tAA
2 /tBA

2 ,

D~E1 ,E2,3!52@ t2~E1,3!2t2~E2,3!#tBA /tAA , F~E1 ,E2,3!52@ t~E1,3!1t~E2,3!#2,

I ~E1 ,E2,3!52@ t2~E2,3!2t2~E1,3!#tAA /tBA , J~E1 ,E2,3!52t~E2,3!tBA /tAA ,

K~E1 ,E2,3!52t~E2,3!, L~E1 ,E2,3!52t~E2,3!tAA /tBA , Z~E1 ,E2,3!50,

Ac~E1 ,E2,2!5Bc~E1 ,E2,2!5Cc~E1 ,E2,2!50, Dc~E1 ,E2,2!5tBA ,

Ac~E1 ,E2,3!5tBA
2 /~E12a!, Bc~E1 ,E2,3!5tAA

2 /~E22a!, Cc~E1 ,E2,3!50,

and

Dc~E1 ,E2,3!5tAAtBA /@E12a#1tAAtBA /@E22a#.

For the case of the DOS, the renormalization procedure is much simpler, since only a sum of diagonal elements o
functions is involved, instead of products of them in the Kubo-Greenwood formula. In this case, we have
174205-9
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DOS~E!52
1

p
Im (

j
Gj , j~E1!52

1

p
Im$D1~E1,n!GL,L~E1!1D2~E1,n!GR,R~E1!1D3~E1,n!GL,R~E1!1D4~E1,n!%,

~A1!

where

D1~E1,N!5D1~E1,N21!1k1
2~E1,n!D1~E1,N22!1h1

2~E1,n!D2~E1,N21!1h1~E1,n!D3~E1,N21!,

D2~E1,N!5D2~E1,N22!1k2
2~E1,n!D2~E1,N21!1h2

2~E1,n!D1~E1,N22!1h2~E1,n!D3~E1,N22!,

D3~E1,N!5k2~E1,n!D3~E1,N21!1k1~E1,n!D3~E1,N22!12h2~E1,n!k1~E1,n!D1~E1,N22!

12h1~E1,n!k2~E1,n!D2~E1,N21!,

D4~E1,N!5D4~E1,N21!1D4~E1,N22!1u1~E1,n!D1~E1,N22!1u2~E1,n!D2~E1,N21!,

and the initial conditions are

D1~E1,2!5D2~E1,2!51, D3~E1,2!5D4~E1,2!50,

D1~E1,3!511
tBA
2

~E12a!2
, D2~E1,3!511

tAA
2

~E12a!2
, D3~E1,3!5

2tBAtAA

~E12a!2
, D4~E1,3!5

1

E12a
.

This renormalization procedure is very computationally efficient, however, high order numerical precision should b

APPENDIX B: CALCULATION OF THE RENORMALIZATION COEFFICIENTS

In this appendix we explain the procedure to obtain the coefficients in Eq.~6!. As an example, the first coefficien
A(E1 ,E2 ,n), will be calculated with detail.

From Eq.~5! we take one of the three terms and first, we will consider only the summation overj, which is defined as

Sc~E1 ,E2 ,n,k,k11![ (
j 51

N(n)21

t j , j 11Gj 11,k~E1!Gk11,j~E2!,

and it can be written as

Sc~E1 ,E2 ,n,k,k11!5Ac~E1 ,E2 ,n!G1,k~E1!Gk11,1~E2!1Bc~E1 ,E2 ,n!GN(n),k~E1!Gk11,N(n)~E2!

1Cc~E1 ,E2 ,n!G1,k~E1!Gk11,N(n)~E2!1Dc~E1 ,E2 ,n!GN(n),k~E1!Gk11,1~E2!,

whereAc(E1 ,E2 ,n), . . . ,Dc(E1 ,E2 ,n) are defined as the coefficients of the products of two Green’s functions that satis
homogeneous Dyson equation (@E2H#G50). The contributions of its inhomogeneous term are taken into account in
coefficientsJ(E1 ,E2 ,n), K(E1 ,E2 ,n), L(E1 ,E2 ,n), andZ(E1 ,E2 ,n).

The construction rule of the Fibonacci sequence, discussed in Sec. II, leads to

Sc~E1 ,E2 ,n,k,k11!5Sc~E1 ,E2 ,n21,k,k11!1Sc~E1 ,E2 ,n22,k,k11!1tABGN(n21)11,k~E1!GN(n21),k11~E2!.

Hence, the coefficientsAc(E1 ,E2 ,n), . . . ,Dc(E1 ,E2 ,n) of Appendix A can be obtained by substituting in the last equat
the relations

GN(n21),h~E!5h1~E,n!G1,h~E!1k2~E,n!GN(n),h~E!,

GN(n21)11,h~E!5k1~E,n!G1,h~E!1h2~E,n!GN(n),h~E!,

whereh andk are defined in Appendix A, andh can be eitherk or k11.
Now, rewriting Eq.~5! as

S~E1 ,E2 ,n!5 (
k51

N(n)21

tk,k11@2Sc~E1 ,E2 ,n,k,k11!2Sc~E1 ,E2 ,n,k11,k!2Sc~E2 ,E1 ,n,k,k11!#

and taking only the terms ofAc(E1 ,E2 ,n) in eachSc we obtain
174205-10
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SA~E1 ,E2 ,n![ (
k51

N(n)21

tk,k11@2Ac~E1 ,E2 ,n!G1,k~E1!Gk11,1~E2!2Ac~E1 ,E2 ,n!G1,k11~E1!Gk,1~E2!

2Ac~E2 ,E1 ,n!G1,k~E1!Gk11,1~E2!#

5@2Ac~E1 ,E2 ,n!2Ac~E2 ,E1 ,n!# (
k51

N(n)21

tk,k11G1,k~E1!Gk11,1~E2!

2Ac~E1 ,E2 ,n! (
k51

N(n)21

tk,k11G1,k11~E1!Gk,1~E2!

5@2Ac~E1 ,E2 ,n!2Ac~E2 ,E1 ,n!#@Ac~E2 ,E1 ,n!G1,1~E1!G1,1~E2!1•••#2Ac~E1 ,E2 ,n!

3@Ac~E1 ,E2 ,n!G1,1~E1!G1,1~E2!1•••#

52@Ac~E1 ,E2 ,n!2Ac~E2 ,E1 ,n!#2G1,1~E1!G1,1~E2!1•••,

where G1,1(E) corresponds to GL,L(E) in Eq. ~6!, and we have used the fact that the coefficie
Ac(E1 ,E2 ,n), . . . ,Dc(E1 ,E2 ,n) do not depend onk. Therefore

A~E1 ,E2 ,n!52@Ac~E1 ,E2 ,n!2Ac~E2 ,E1 ,n!#2.

The rest of the coefficients can be obtained following a similar procedure.
00
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