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Understanding anisotropic superconductivity has been one of
the major theoretical challenges in the solid state physics. In this
paper, we report a comparative study of chiral and non-chiral
p-wave superconducting states by means of a generalized
Hubbard Hamiltonian within the BCS formalism. The single-
electron parameters were obtained by fitting ab initio band
structure data supported by de Haas–van Alphen measurements
in Sr2RuO4 and the electron correlation parameter was
determined by the experimental critical temperature (Tc). This
study was carried out by looking at Tc, superconducting gap,

Helmholtz free energy, and electronic specific heat. The results
show that both chiral and non-chiral p-wave superconducting
states possess the same Tc but different superconducting energy
gaps. Moreover, both states have almost the same Helmholtz
free energy, which leads to their possible coexistence. Finally,
the calculated electronic specific heats without adjustable
parameters for both p-wave superconducting states are
compared with the experimental data obtained from Sr2RuO4,
observing a better agreement for the non-chiral case for
temperatures much lower than Tc.
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1 Introduction Five decades after the BCS theory,
pairing mechanism in unconventional superconductors
remains controversial. In these superconductors, the gap
amplitude depends on the electron wave vector (k) and its
average over the Fermi surface is zero [1]. In particular,
d-wave spin-singlet superconducting states were found in
most high-Tc cuprate superconductors, whose pair wave
function has lobes along �x with opposite sign to lobes
along �y [2]. In particular, the presence of gap nodal lines
gives rise to power-law behavior in low-temperature
electronic specific heat, instead of the exponential one
for the s-wave case. During the last years, the experimental
evidence favors a spin-triplet superconducting state in
Sr2RuO4, including phase sensitive measurements, which
indicate an odd parity superconducting state, most likely of
the p-wave type [3]. However, there is a controversy on the
nature of this p-wave superconducting state in Sr2RuO4 [4],
since spin-triplet states can be chiral or non-chiral,
according to whether they break or not the time reversal
symmetry [1].

On the other hand, Sr2RuO4 is structurally similar to
La2�xBaxCuO4 and the electrons on RuO2 planes are
expected to play a dominant role in the superconducting
transition [1]. The dynamics of these electrons can be
described by a single-band square-lattice Hubbard model,
which is often called g band and the pairing on the other two
bands, a and b, is induced passively through the inter-orbit
couplings [5]. In concordance to the recent de Haas–van
Alphen experiments, the band structure obtained from the
density functional theory can be reasonably well described in
the vicinity of the Fermi level by a single-band tight-binding
model with first- and second-neighbor hopping t¼ 0.4 eV
and t0 ¼ 0.16 eV, respectively [6]. In general, the kx� ky
oriented p-wave superconducting states are doubly degen-
erated in a square lattice and a small distortion [7] in its
right angles breaks this degeneracy, favoring one of the
p-wave states in competition with s- and d-wave super-
conducting states [8]. We have found that the second-
neighbor correlated-hopping interaction (Dt3) is essential in
p- and d-wave superconductivity, despite its relative small
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magnitude of 0.1 eV for 3d electrons in transition metals in
comparison with other interaction terms such as the on-site
Coulomb interaction U� 20 eV in the same systems [9]. In
this paper, we report a comparative study of the critical
temperature (Tc), superconducting gap and electronic specific
heat for chiral and non-chiral p-wave superconducting states
by means of a single-band generalized Hubbard model
containing nearest (t) and next-nearest neighbor (t0) hoppings,
correlated-hopping interactions between second neighbors
(Dt3), in addition to on-site (U) Coulomb interactions.

2 The model Let us start from the following general-
ized Hubbard Hamiltonian [8]

Ĥ ¼ t
X

<i;j>;s

ĉþis ĉjs þ t0
X

�i;j�;s

ĉþis ĉjs þ U
X
i;s

n̂isn̂i�s

þ Dt3
X

�i;j�;s
<i;l>;<j;l>

ĉþis ĉjsn̂l; ð1Þ

where n̂i ¼ n̂i" þ n̂i#, n̂is ¼ ĉþis ĉis, ĉ
þ
is (ĉis) is the creation

(annihilation) operator with spin s¼# or " at site i, hi; ji, and
hhi; jii, respectively, denote first and second neighbor sites in
a square lattice with lattice parameter a. If we also consider a
small distortion of the lattice right angles in order to include
the possible existence of a bulk structural distortion in
Sr2RuO4, the second-neighbor interactions, such as t0 and
Dt3 respectively change to t0� ¼ t0 � d and Dt�3 ¼ Dt3 � d3,
where � refers to the x� y direction.

In order to keep the minimal number of parameters, we
choose Dt3¼ d¼ 0 since Dt3 and d do not generate p-wave
superconductivity [10]. They only have an indirect effect
through the mean-field dispersion relation by changing the
effective second-neighbor hopping strength. However, such
change does not affect the conclusions of this study. In
this case, Hamiltonian (1) can be written in the momentum
space as [8]

Ĥ ¼ P
k;s

e0ðkÞĉþk;sĉk;s þ
1
Ns

X
k;k0

Vk;k0;qĉ
þ
kþq;"ĉ

þ
�k0þq;#ĉ�k0þq;#ĉkþq;"

þ 1
Ns

X
k;k0;s

Wk;k0;qĉ
þ
kþq;sĉ

þ
�k0þq;sĉ�k0þq;sĉkþq;s;

ð2Þ
where Ns is the total number of sites,

e0ðkÞ ¼ 2t cos ðkxaÞ þ cos ðkyaÞ
� �

þ 4 t0cos ðkxaÞ cos ðkyaÞ; ð3Þ

Vk;k0;q ¼ U þ d3 g kþ q;k0 þ qð Þ þ g �kþ q;� k0 þ qð Þ½ �
�d3 zðkþ q; k0 þ qÞ þ zð�kþ q;�k0 þ qÞ½ �;

ð4Þ
and

Wk;k0;q ¼ d3g kþ q;k0 þ qð Þ � d3 z kþ q;k0 þ qð Þ; ð5Þ

being

g k;k0ð Þ ¼ 2 cos kxaþ k0ya
� �þ 2 cos k0xaþ kya

� �
; ð6Þ

z k;k0ð Þ ¼ 2 cos kxa� k0ya
� �þ 2 cos k0xa� kya

� �
; ð7Þ

and 2q is the wave vector of the pair center of mass. After a
standard Hartree–Fock decoupling [11] of the interaction
terms in Eq. (2), the reduced Hamiltonian is obtained [8] by
taking q¼ 0 in Eq. (2) and replacing the dispersion relation
e0(k) of Eq. (3) by the mean-field one given by

eðkÞ ¼ U
n

2
þ 2t cos ðkxaÞ þ cos ðkyaÞ

� �
þ 2ðt0 þ 2nd3Þ cos ðkxaþ kyaÞ
þ 2ðt0 � 2nd3Þ cos ðkxa� kyaÞ;

ð8Þ

where the single electron dispersion relation e(k) is now
modified by adding terms Un/2 and�2nd3 to the self-energy
and the second-neighbor hopping integral t0, respectively.

Applying the BCS formalism to Eq. (2), we obtain the
following two coupled integral equations [12],

DaðkÞ ¼ � 1
Ns

X
k0

Zk;k0 Daðk0Þ
2Eaðk0Þ tanh

Eaðk0Þ
2kBT

� �

n� 1 ¼ � 1
Ns

X
k

eðkÞ � ma

EaðkÞ tanh
EaðkÞ
2kBT

� �
8>>>><
>>>>:

;

ð9Þ
where

Zk;k0 ¼
Vk;k0;0; for pairs with

1ffiffiffi
2

p "#j i þ #"j ið Þ

Wk;k0;0; for pairs with ""j i or ##j i

8<
: ;

ð10Þ
and the single excitation energy is given by

EaðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðkÞ � ma½ �2 þ DaðkÞj j2

q
; ð11Þ

being a¼ c for the chiral superconducting states with

DcðkÞ ¼ Dc½sin ðkxaÞ � i sin ðkyaÞ� ð12Þ

or a¼ nc for the non-chiral case with

DncðkÞ ¼ Dnc½sin ðkxaÞ � sin ðkyaÞ�: ð13Þ

Equation (9) can be used to determine, for example,
(a) the chemical potential (m) and the superconducting
gap [D(k)] for each given temperature (T) and electron
concentration (n), or (b) m and Tc for each n when the
superconducting gap vanishes.

It is worth mentioning that the gap equation in (9) is the
same for triplets with the three spin projections [8, 13, 14],
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as well as for both chiral and non-chiral cases when the gap
is zero. The latter can be proved by substituting Eqs. (12)
and (13) into (9), leading to the same equation

1 ¼ � 2d3
Ns

X
k0

½sinðk0xaÞ � sinðk0yaÞ�2
Eaðk0Þ tanh

Eaðk0Þ
2kBT

� �
;

ð14Þ

which differs for chiral and non-chiral cases because

DcðkÞj j2 ¼ ðDcÞ2½sin2 ðkxaÞ þ sin2 ðkyaÞ� ð15Þ

and

DncðkÞj j2 ¼ ðDncÞ2½sin ðkxaÞ � sinðkyaÞ�2; ð16Þ

except for calculating Tc since Da¼ 0.
On the other hand, the three site term in Eq. (1) is crucial

for anisotropic superconductivity, since it promotes a
change of sign of the pair wavefunction (w) between second
neighbor sites when it is written in the relative spatial
coordinate (r) representation [15]. In particular, second-
neighbor interactions with a finite d3 produce p-symmetry
pair wavefunctions [16] with wðrÞ ¼ �wð�rÞ and a node at
r¼ 0, which make them insensitive to the onsite interaction
(U). When a Fourier transform of w(r) is performed, we
get a p-wave function in the momentum space with
wðkÞ ¼ �wð�kÞ. Moreover, in the dilute limit we have
wðkÞ � DðkÞ=EðkÞ [17] and then a p-wave superconducting
gap.

3 Superconducting properties The single-particle
Hamiltonian parameters t¼�0.4 eV and t0 ¼�0.16 eV are
taken from Ref. [6]. The onsite Coulomb interaction
parameter (U) has no effect on the p-wave superconducting
states, within the BCS formalism [10]. In consequence, Tc
is a function of n and d3. By requiring Tc(n)¼ 1.5 K as a
maximum, we obtain n¼ 0.9 and d3¼ 0.064 eV. The
numerical calculations were performed by using a multi-
region integration method [18], i.e., by dividing the first
Brillouin zone in several regions, which are separately
integrated as shown in Fig. 1. This method allows an
efficient calculation of the integrals of Eq. (9) since the
integrand functions are extremely sharp around the Fermi
surface, especially for small pairing interactions or low
temperatures.

In Fig. 2a, the chiral and non-chiral superconducting
gaps (Da) and in Fig. 2b the critical temperature (Tc) are
shown as functions of electronic density (n). Observe that
both chiral and non-chiral symmetries have the same Tc but
the chiral superconducting gap is larger than the non-chiral
one.

There are analytical solutions for Eqs. (9) at T¼ 0
in the limit of low electronic density (n! 0) and strong
coupling [e(k)! 0], as those obtained for non-chiral
p-wave superconducting states [8]. In this limit, ma< 0

and

1
EaðkÞ � � 1

ma

1� DaðkÞj j2
2m2

a

" #
; ð17Þ

Figure 1 The integrand function of Eq. (14) with T¼Tc in color
scale over the 1BZ for the non-chiral p-wave case. Pink and orange
dashed lines indicate two contour lines obtained with e(k)¼ 1.2mnc

and e(k)¼ 0.85mnc around the Fermi surface e(k)¼mnc, respec-
tively. Seven integration regions in a fourth part of the 1BZ are
illustrated.

Figure 2 (a) Chiral (red open circles) and non-chiral (blue open
rhombuses) superconducting gaps (Da) at zero temperature and
(b) critical temperatures (Tc) as functions of electronic density (n),
for systems with t¼�0.4 eV, t0 ¼�0.16 eV, and d¼ 0.064 eV.

Phys. Status Solidi B (2014) 3

www.pss-b.com � 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Original

Paper



as in Ref. [19]. Hence, the second equation of (9) gives
Da ¼ maj j ffiffiffiffiffi

2n
p

and substituting it in Eq. (14) we obtain
Da ¼ 2d3

ffiffiffiffiffi
2n

p ð1� ganÞ, with gc¼ 7/4 and gnc¼ 9/4.
Notice that the chiral superconducting gap (Dc) is larger
than the non-chiral one (Dnc), in agreement with the
numerical results.

Figure 3 shows the chiral and non-chiral superconduct-
ing gaps as a function of the temperature for systems with
t¼�0.4 eV, t0 ¼�0.16 eV, d3¼ 0.064 eV, and n¼ 0.9.

From these data, the electronic specific heat (Ca) can be
calculated by using [20]

Ca ¼ 2kBb2a2

4p2

Zp=a
�p=a

Zp=a
�p=a

f ½EaðkÞ� 1� f ½EaðkÞ�f g

	 E2
aðkÞ þ bEaðkÞ dEaðkÞ

db

	 

dkxdky :

ð18Þ
where b¼ 1/(kBT) and f(E) is the Fermi–Dirac distribution.
The specific heat of the normal state can be obtained by
taking D(k) equal to zero in Eqs. (11) and (18). Figure 4
shows the normalized electronic specific heat for both chiral
and non-chiral superconducting gaps as functions of the
temperature, in comparison with the experimental data of
Sr2RuO4 from Ref. [21]. Observe that the non-chiral p-wave
specific heat has a better agreement with the experimental
results than the chiral one.

Moreover, Fig. 4 reveals that at very low temperatures
the chiral p-wave electronic specific heat has an exponential
behavior whereas the non-chiral one follows a power law.
This is due to fact that the former has no nodes and the latter
has a nodal line, as illustrated in Fig. 5 by means of the
single-particle excitation energy gap Dmin

a ðuÞ� �
defined

as the minimum value of E(k) along the polar angle
u ¼ tan�1ðky=kxÞ.

In Fig. 5, notice also that Dmin
nc ðp=4Þ > Dmin

c ðp=4Þ; in
spite of havingDc>Dnc as shown in Fig. 3. This fact can be

explained by considering that 2D2
nc > D2

c and for Da � jtj
the minimum of Ea(kx,ky) occurs at the Fermi surface,
e(k)¼ma, which leads to E2

ncðkF; kFÞ � E2
cðkF; kFÞ ¼

2ð2D2
nc �D2

cÞsin2ðkFaÞ > 0.

4 Conclusions In this work, we have studied within
the BCS formalism both chiral and non-chiral p-wave
superconducting states driven by an asymmetrical second-
neighbor correlated hopping interaction due to a small
orthorhombic distortion in the square lattice. Such asymme-
try [d3 ¼ ðDtþ3 �Dt�3 Þ=2] breaks the degeneracy of p-wave
superconducting states given by þ and � in Eq. (12) for the
chiral case, as well as in Eq. (13) for the non-chiral case. This
leads to an energetic stabilization of one p-wave state for
each case and then the physical properties of these lower
energy states are comparatively investigated. The results

Figure 3 Chiral (open red circles) and non-chiral (open blue
rhombuses) superconducting gaps (Da) versus temperature (T)
for the same systems of Fig. 2 with n¼ 0.9.

Figure 4 Normalized electronic specific heats (Ca) as functions of
temperature (T) for chiral (open red circles) and non-chiral (open
blue rhombuses) p-wave superconductors with the same parameters
as in Fig. 3, in comparison with Sr2RuO4 experimental data (solid
circles)

Figure 5 Chiral (open red circles) and non-chiral (open blue
rhombuses) single-particle excitation energy gaps Dmin

a ðuÞ� �
at

zero temperature as functions of the polar angle for the same
superconductors as in Fig. 3.
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show that the chiral p-wave gap (Dc) is, in general, larger
than the non-chiral one (Dnc). However, the electronic
specific heat of the non-chiral superconducting state has a
better agreement with the experimental data of Sr2RuO4.

In order to determine the symmetry of the ground
superconducting state, we further calculated the Helmholtz
free energy

Fa ¼ Wa � TSa; ð19Þ

where

Wa ¼ 1
Ns

X
k

eðkÞ � EaðkÞ½ � þ 1
Ns

X
k

DaðkÞj j2
2EaðkÞ

þ ðn� 1Þma �
U

4
n2 ð20Þ

is the electronic energy per site and

Sa ¼ �2kB
Ns

X
k

f 1� f aðkÞ½ � ln 1� f a kð Þ½ �

þ f a kð Þ ln f a kð Þ� ð21Þ

is the electronic entropy per site of the superconducting state.
The numerical results show a difference between Fc and Fnc

about 10�8 eV, which is of the same order of magnitude than
the numerical error of our calculations. Hence, this free-
energy analysis cannot distinguish if the p-wave super-
conducting ground state is chiral or non-chiral. However, the
specific heat analysis reveals only excitations from a non-
chiral p-wave superconducting state, since the presence of
line nodes leads to lower energy excitations from chiral and
non-chiral almost degenerate ground states. In consequence,
our results suggest that Sr2RuO4 has a non-chiral p-wave
superconducting gap within the generalized Hubbard model.
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