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Abstract

The pairing between holes in a square lattice and the two-particle wave-function symmetry are studied within a generalized

Hubbard model. The key participation of the next-nearest-neighbor correlated-hopping interaction in the appearance of d-wave

two-hole ground state is found, which is enhanced by the on-site repulsive Coulomb interaction. There is a clear pairing

asymmetry between electrons and holes, where the hole pairing occurs in a realistic regime of interactions. The two-particle

states are analyzed by looking at the binding energy, the coherence length, and the effective mass of the pairs. Finally, the case

of a hole-singlet in an antiferromagnetic background is also studied. q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Since the discovery of high-Tc anisotropic cuprate super-

conductors, the two-dimensional Hubbard model has been

extensively studied, due to its simplicity and emphasis on

the local electron±electron correlation which is highly

related to the short coherence length observed in these

materials [1]. There is a general consensus that the singlets

are formed by holes (instead of electrons) and they are

mainly restricted to move on the CuO2 planes. To describe

the electron and hole dynamics on these planes, three-band

Hubbard models have been proposed [2]. However, these

models can be reduced into a single-band ones [3], and the

electronic states close to the Fermi energy could be reason-

ably well described by a square-lattice single-band tight-

binding model with a next-nearest-neighbor hopping t 0 �
0:45t0 [4], where t0 is the nearest-neighbor hopping para-

meter.

During the last six years, experimental evidence has

shown that there is a condensate of pairs with dx2±y2 sym-

metry in several cuprate superconductors [5,6,7]. Numerical

studies performed in t±J model indicate a dominant d-super-

conducting channel [2], in spite of no long-range d-wave

superconducting correlation has been found for J=t # 0:5

[8]. The dx2±y2 pairing correlation is also observed in a nega-

tive nearest-neighbor interaction Hubbard model [9,10] and

within a Hubbard like model containing a three-body inter-

action term [11,12,13]. However, only extended s-symmetry

pairing has been found within the usual generalized

Hubbard models [14], in which a correlated hopping

between nearest-neighbors (Dt) is included. In this paper,

we consider a generalized single-band Hubbard model

without attractive density±density interactions, in which

hopping (t 0) and correlated hopping interaction (Dt3)

between next-nearest-neighbors are considered. We analyze

the importance of the correlated hopping interaction Dt3 in

the formation of dx2±y2 pairing ground-state, in spite of its

apparently small strength in comparison with direct

Coulomb interactions.

The present paper is organized as follows. Section II

contains a brief description of the generalized Hubbard

Hamiltonian and the mapping method. In Section III, the

two-hole ground-state phase diagram is analyzed, where a

d-channel pairing zone is observed. In Section IV the case of

a hole singlet in an antiferromagnet is investigated. Proper-

ties of dx2±y2 pairing states, such as their binding energy,

coherence length and effective mass, are reported. Finally,

some conclusions are given in Section V.

2. The model

The original Hubbard model considers only the on-site
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Coulomb interaction (U), since it is the largest term.

However, the addition of a nearest-neighbor Coulomb repul-

sion (V) allows, for instance, to describe the competition

between the charge and spin density waves [17]. Further-

more, the introduction of a nearest-neighbor correlated-

hopping interaction (Dt) has shown an enhanced hole-super-

conductivity without negative U and V [18]. In this paper,

we consider a generalized Hubbard model that includes

additionally a next-nearest-neighbor correlated hopping

interaction (Dt3). Certainly, all these interactions are present

in a real solid, even their contributions are very different, for

example, for 3d electrons in transition metals U, V, Dt, and

Dt3 are typically about 20, 3, 0.5, and 0.1 eV, respectively

[19,20]. In general, the single s-band generalized Hubbard

Hamiltonian can be written as

H � 2t0
X

ki;jl;s
c 1

i;scj;s 2 t0
0 X

kki;jll;s
c 1

i;scj;s 1 U
X

i

ni;"ni;#

1
V

2

X
ki;jl

ninj 1 Dt
X

ki;jl;s
c 1

i;scj;s�ni;2s 1 nj;2s�

1 Dt3

X
ki;ll;kj;ll;kki;jll;s

c 1
i;scj;snl; �1�

where c1
i;s (ci;s) is the creation (annihilation) operator with

spin s �# or " at site i, ni;s � c1
i;sci;s , ni � ni;" 1 ni;#, ki; jl

and kki; jll denote respectively the nearest-neighbor and the

next-nearest-neighbor sites. In this case, t0 and t 00 are posi-

tive quantities. When an electron±hole transformation is

made in Eq. (1), i.e., electron operators are mapped onto

holes via c1
i;s ! hi;s, the Hamiltonian becomes:
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where nh
i;s � h1

i;shi;s, nh
i � nh

i;" 1 nh
i;# , Ns is the total number

of sites, and Z is the lattice coordination number. The ®rst

term in Eq. (2) only contributes to a shift of the total
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Fig. 1. Schematic representation of the mapped states (circles) of

two particles in a square lattice. Their self-energies are shown inside

circles, and the hopping strengths between them bx�y�, b^, bimp
x�y�, and

bimp
^ are indicated respectively by thin solid, thin dashed, thick solid,

and thick dashed lines.

Fig. 2. Hole±singlet ground-state phase diagrams of the generalized

Hubbard model with V � 0, t 00 � 0:45t0, and (a) U � 0, (b) U�
2t0, and (c) U � 5t0.



energy and then, the holes also interact via a generalized

Hubbard model but with effective hopping parameters t �
t0 2 2Dt and t 0 � t 00 2 4Dt3, instead of 2t0 and 2t 00 for

electrons.

When the second-neighbor correlated-hopping interac-

tion is introduced, the previously developed mapping

method [21] should be modi®ed. For the case of two holes

in a square lattice, as shown in Fig. 1, the projected

hopping parameters bx, by, b^, bimp
x , bimp

y , and bimp
^ are

respectively given by 2tcos�Kxa=2�, 2tcos�Kya=2�,
2t 0cos��Kx ^ Ky�a=2�, 2timpcos�Kxa=2�, 2timpcos�Kya=2�, and

2t3cos��Kx ^ Ky�a=2�, where timp � t 1 Dt, t3 � t 0 1 Dt3,

�Kx;Ky� is the wave vector of the center of mass of the

pair and a is the lattice constant. Notice that the projected

hopping strengths, bimp
x , bimp

y , and bimp
^ , between ªimpurity

statesº (with self-energies U or V) are enhanced by adding

respectively Dt, Dt, and Dt3, since the correlated hopping

interactions have contributions only on single-particle

hopping between sites close to those occupied by the other

particle.

3. Hole pairing

The pairing between electrons with U � V � Dt3 � 0

requires Dt . 2t0 for one- and two-dimensional systems

[20], which clearly exceeds estimated values of Dt [18],

and then only the pairing of holes will be analyzed in this

paper in detail. The hole-singlet ground-state phase

diagrams shown in Figs 2(a), 2(b), and 2(c) are calculated,

respectively, for U � 0, U � 2t0, and U � 5t0, all with V �
0 and t 00 � 0:45t0 as suggested by J. Yu, et al. [4]. The

numerical calculations are performed in a truncated square

lattice, as shown in Fig. 1, of 2401 projected two-particle

states. The projected lattice sizes for numerical calculation

are chosen as the minimum size so that the physical

quantities have no important variation with the lattice size.

Note that for U � 0 there is no d-symmetry pairing, and as

the on-site Coulomb repulsion U increases the dx2±y2 pairing

zone is enlarged. For U � 10t0 the s-wave pairing is

essentially avoided. It is some what expected, since the

on-site repulsion U inhibits the formation of s-symmetry

pairs and does not affect the d ones, therefore it favors the

formation of dx2±y2 -pairing ground state. Furthermore, the

dx2±y2 pairing requires that Dt3 . 0, regardless of how

small it is, which is in agreement with the fact that the

correlated hopping Dt alone can give rise only to extended

s-wave pairing [14].

The effects of Coulomb interactions U and V on the hole-

pairing process are shown in Fig. 3 for t 00 � 0:45t0, Dt �
0:5t0 and Dt3 � 0:25t 00. Notice that for negative V, pairing is

essentially in the d-wave channel, as observed previously

[9,10]. The phase-transition lines between d-wave and non-

pairing, between s-wave and non-pairing, and between d-

wave and s-wave regions are respectively found at

V � 4Dt3, U � 4t2
0=�V 1 2t 00�, and U � V 1 t2

0=t
0
0 2 2t 00,

since for Dt � 0:5t0 and Dt3 � 0:25t 00 the mapped lattice

(see Fig. 1) is reduced into a molecule of 5 sites whose

self-energies are U and V, and then analytical results are

obtained. For Dt and Dt3 being around 0.5t0 and 0.25t 00,
respectively, the general feature of the U±V phase diagrams

is essentially the same as Fig. 3.

4. Hole singlets in an antiferromagnet

In this section, we consider a half-®lled single-band

square lattice, i.e., one electron per site, where an antiferro-

magnetic long-range order is found for almost all values of

the Coulomb repulsion U [15,16]. In this staggered ordered

spin background, holes tend to move within the same sub-

lattice to avoid distorting the spin order. Hence, as a ®rst

approximation we assume that the antiferromagnetic back-

ground remains static when a hole singlet is introduced,

although there is evidence that the antiferromagnetic order
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Fig. 3. Hole±singlet ground-state phase diagram in the U±V space,

for t 00 � 0:45t0, Dt � 0:5t0 and Dt3 � 0:25t 00.

Fig. 4. Ground-state phase diagram of a hole singlet in an antiferro-

magnet for arbitrary U and Dt.



is sensitive to the ®nite-density doping [16]. Therefore,

within this approximation, each hole can move only in

one of the two sublattices of the system [9]. This is equiva-

lent to remove the sublattice containing the site with self-

energy U in Fig. 1, i.e., the terms of (t0 2 2Dt), U and Dt of

the Hamiltonian of holes (Eq. 2) have no effects on this

pairing process.

In Fig. 4 the ground-state phase diagram of a hole singlet

in a static antiferromagnetic background is shown. Notice

that the correlation strengths are expressed in units of the

next-nearest-neighbor hopping parameter t 00, instead of t0,

being t 00 , t0. Furthermore, the s-wave ground state requires

a large value of Dt3 and an attractive nearest-neighbor inter-

action V , 2 4Dt3, and the d-wave pairing needs a

screened nearest-neighbor interaction V , 4Dt3 for

Dt3 , 0:25t 00, or V , 2 12p18
p2 2

Dt3 1 4p
p2 2

t 00 for

0:25t 00 # Dt3 # p
2p14

t 00. Figures 5(a), 5(b) and 5(c) show,

respectively, the binding energy (DB), the coherence length

(j ) and the effective mass (m2) of a d-symmetry hole-singlet

in an antiferromagnet (solid squares), in comparison with s-

channel (open circles) and d-channel (open squares) without

antiferromagnetic background. The binding energy is

de®ned as DB � E2 2 2E1, where En is the ground-state

energy corresponding to the problem of n holes, and the

coherence length is calculated using [20,21]

j �

X
r

c p�r�r2c�r�X
r

c p�r�c�r�

0BB@
1CCA

1=2

; �3�

where c�r� is the two-particle wave-function amplitude and

r represents the internal coordinates of the pair. Finally, in

order to study the dynamics of the pairs, their effective mass

(m2), calculated from the dispersion curve of the paired

ground-state, is analyzed in comparison with the single-

hole effective mass of the lowermost state (m1). From Fig.

5(a) it can be noted that the antiferromagnetic background

enhances the d-wave pairing. Also, notice that in general a

short coherence length is associated to a larger binding

energy, as occurred in the BCS theory [22]. However, the

d-channel pairs in an antiferromagnet, having a larger bind-

ing energy in comparison with the s-channel ones, do not

possess a shorter coherence length around Dt3 � 0:225t 00.

This fact could be important since a larger binding energy

leads to a higher pair-formation temperature and a longer

coherence length could help the condensation of Bose±

Einstein [24]. On the other hand, a signi®cant reduction of

m2=2m1 around t � 2t 0 is observed, because the correlated

hopping interactions enhance the mobility of the pairs and

the effective mass of single holes (m1) becomes extremely

large in this region, similar to that occurred in generalized

Hubbard systems with only a nearest-neighbor correlated

hopping [20].

5. Conclusions

In summary, we have studied the hole-pairing symmetry

within the generalized Hubbard model, in which a second-

neighbor correlated-hopping term is included. In spite of its

smaller strength in comparison with other terms of the

model, we have found its key participation in the formation

of the d-channel hole pairs. The single-pair dynamics has

been studied by extending a previously developed mapping

method. This method has the advantage of giving a clear

association between the pairing and the impurity states [20],

and provides a new way to analyze the pairing process in

randomly disordered systems [25].

No matter how small is the value of the second-neighbor

correlated hopping, a d-symmetry ground-state region is

found for U . 0, and such region grows with U. It is

worth mentioning that the d-channel pairing is sensitive to

the next-nearest neighbor electron±electron interaction.
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Fig. 5. (a) The binding energy, (b) the coherence length, and (c) the

effective mass of s-channel (open circles) and d-channel (open

squares) hole singlets for U � 5t0, V � 0, t 00 � 0:45t0, and Dt �
0:45t0 in comparison with those of d-channel hole singlets in an

antiferromagnet (solid squares) for V � 0 and arbitrary U and Dt.



However, some effective one-band Hubbard models that

describe the low-energy physics of cuprate superconductors

usually take V � 0 [23]. On the other hand, a larger binding

energy and longer coherence length of the d-channel pairs in

an antiferromagnetic background have been obtained

around Dt3 � 0:225t 00, as compared with the s-channel's

ones, which could be important for the d-wave super-

conductivity in the crossover model [24]. Furthermore, the

effective mass of paired holes shows a signi®cant reduction

in comparison with that of single holes, since the correlated

hopping interaction introduces a new transport mechanism

of pairs, in which the presence of one hole enhances the

hopping of the other, even though in the regions the mobility

of single holes is almost null. This fact could help the Bose±

Einstein condensation of these hole singlets, when a small

interplane coupling is turned on; contrary to the case of the

negative U or V, where the effective mass of hole singlets

increases when the pairing interactions grow [26]. Finally,

the present study has shown that terms usually ignored in the

Hubbard model could be relevant in certain phenomena,

such as the d-channel pairing.

Acknowledgements

This work was supported partially by CONACyT-

32148E, DGAPA-105999, and UNAM-CRAY-SC008697.

Computations have been performed at the Cray Y-MP4/

432 of DGSCA, UNAM.

References

[1] R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Mod. Phys.

62 (1990) 113.

[2] E. Dagotto, Rev. Mod. Phys. 66 (1994) 763.

[3] H.-B. Schuttler, A.J. Fedro, Phys. Rev. B 45 (1992) 7588.

[4] J. Yu, S. Massidda, A.J. Freeman, Physica C 152 (1988) 273.

[5] D.A. Wollman, et al., Phys. Rev. Lett. 71 (1993) 2134.

[6] D.A. Wollman, et al., Phys. Rev. Lett. 74 (1995) 797.

[7] C.C. Tsuei, J.R. Kirtley, Rev. Mod. Phys. 72 (2000) 969.

[8] C.T. Shih, Y.T. Chen, H.Q. Lin, T.K. Lee, Phys. Rev. Lett. 81

(1998) 1294.

[9] A. Nazarenko, A. Moreo, E. Dagotto, J. Riera, Phys. Rev. B 54

(1996) R768.

[10] A.S. Blaer, H.C. Ren, O. Tchernyshyov, Phys. Rev. B 55

(1997) 6035.

[11] L. Arrachea, A.A. Aligia, Phys. Rev. B 59 (1999) 1333.

[12] L. Arrachea, A.A. Aligia, Phys. Rev. B 61 (2000) 9686.

[13] J.E. Hirsch, Phys. Lett. A 136 (1989) 163.

[14] H.Q. Lin, J.E. Hirsch, Phys. Rev. B 35 (1987) 3359.

[15] J.E. Hirsch, S. Tang, Phys. Rev. Lett. 62 (1989) 591.

[16] J.E. Hirsch, Phys. Rev. Lett. 53 (1984) 2327.

[17] F. Marsiglio, J.E. Hirsch, Physica C 171 (1990) 554.

[18] J. Hubbard, Proc. R. Soc. London Ser. A 276 (1963) 238.

[19] J. Appel, M. Grodziki, F. Paulsen, Phys. Rev. B 47 (1993)

2812.

[20] L.A. PeÂrez, C. Wang, Solid State Commun. 108 (1998) 215.

[21] M. Randeria, J.-M. Duan, L.-Y. Shieh, Phys. Rev. B. 41

(1990) 327.

[22] J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108

(1957) 1175.

[23] M.E. SimoÂn, A.A. Aligia, Phys. Rev. B 48 (1993) 7471, and

references therein.

[24] M. Randeria, in: A. Grif®n (Ed.), Bose-Einstein Condensation,

Cambridge University Press, 1995.

[25] R. Oviedo-Roa, C. Wang, O. Navarro, J. Low Temp. Phys.

105 (1996) 651.

[26] L.A. PeÂrez, C. Wang, Physica B 259-261 (1999) 771.

L.A. PeÂrez, C. Wang / Solid State Communications 118 (2001) 589±593 593


