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Abstract

Superconducting states with d symmetry in anisotropic hole systems are investigated within a generalized Hubbard model
and the BCS framework. The results reveal a key participation of the next-nearest-neighbor correlated-hopping interaction (Atz)
in the appearance of cos k, — cos k, superconducting gap, in spite of its small strength in comparison with other terms of the
model. This interaction favors the superconducting state over the phase separation, which is an important obstacle when the d-
wave superconducting state is originated from an attractive nearest-neighbor density—density interaction. Furthermore, the
superconducting critical temperature is highly enhanced by the low-dimensionality of the system and the gap ratio exhibits a

non-BCS behavior. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Low-dimensionality, short coherence length, and pairing
of holes, instead of electrons, are believed to be essential to
understand the properties of the cuprate high-7, supercon-
ductors [1]. During the last years, the Hubbard model has
been extensively studied due to its simplicity and emphasis
on the local electron—electron correlation [2]. Three-band
Hubbard models have been proposed to describe the elec-
tron and hole dynamics on the CuO, planes [3]. These
models can be reduced into a single-band one [4] and the
electronic states close to the Fermi energy can be reasonably
well described by a square-lattice single-band tight-binding
model with a next-nearest-neighbor hopping ¢, = 0.451, [5],
where 1 is the nearest-neighbor hopping parameter. Nowa-
days, it is widely accepted that the single-band Hubbard
model is an appropriate starting point to describe the elec-
tronic correlations on the CuQO, planes. However, the non-
existence of d-wave superconductivity in the standard
Hubbard model has been proved [6] and only extended
s-symmetry pairing has been found within the usual general-
ized Hubbard models [7]. On the other hand, the experimental
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evidence reveals a d,2_» symmetry superconducting gap for
many cuprate supercohductors [8—12]. Numerical studies
performed in r—J model indicate a dominant d-supercon-
ducting channel [3], in spite of no long-range d-wave super-
conducting correlation has been found for J/t = 0.5 [13].
The d._,. pairing correlation is also observed within
Hubbard-type models including a three-body interaction
[14] and in a negative nearest-neighbor interaction Hubbard
model [15,16]. In this attractive Hubbard model a phase
separated state appears, inhibiting the formation of the
superconducting ground state as the strength of the attrac-
tion grows [15]. Recently, we have analyzed the two-hole
problem within a generalized Hubbard model, finding an
important participation of the second-neighbor correlated-
hopping interaction (A#;) in the formation of a d,2_,» sym-
metry hole singlet, in spite of its apparently small strength in
comparison with direct Coulomb repulsions [17]. In this
communication, we extend the previous work to study the
case of finite density of holes within the well-known BCS
framework [18].

The present paper is organized as follows. Section 2
contains a brief description of the Hamiltonian and the
corresponding BCS equations. In Section 3, we investigate
the dependence of the critical temperature on the hole

density for both s- and d-channel superconducting ground
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states. The competition between d-wave superconducting
ground state and phase separation is also analyzed. Finally,
some conclusions are given in Section 4.

2. The model

The usual generalized Hubbard model considers only the
on-site (U), nearest-neighbor (V) Coulomb interactions, and
a nearest-neighbor correlated-hopping interaction (Af),
which has shown an enhanced hole-superconductivity with-
out negative U and V [19]. In this paper, we consider a
generalized Hubbard model that includes additionally a
next-nearest-neighbor correlated hopping interaction (At3)
in the CuO, planes. Certainly, all these interactions are
present in a real solid, even their contributions are very
different, for example, for 3d electrons in transition metals
U, V, At, and At; are typically about 20, 3, 0.5, and 0.1 eV,
respectively [20,21].

Let us consider an anisotropic cubic lattice, i.e. square
lattices in the xy plane with lattice parameter a and these
planes are separated by a distance a, . A single-band general-
ized Hubbard Hamiltonian in this system can be written as:

H= -1, Z ('ma' Cno — 1o Zczlr]zr t() Z ('10']0'

(m.n),o (ijho (o
+ UZn, iy + = 3 Znn + At Z cifgcj’g(n,»’_g
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+ 'j 70’) + AtS Cijro'cj,a'nl’ (1)
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where c,f,(c, ») is the creation (annihilation) operator with
spin o= or 1 at site i, n;, = Ci\yCips Ny = Nig + iy, {ivj)
and ({i, j)) denote, respectively, the nearest-neighbor and the
next-nearest-neighbor sites in the same plane, and (m,n)
denotes nearest-neighbor sites in two adjacent planes.
Note that only electron—electron interactions in the same
plane are considered. When an electron—hole transforma-
tion is made in Eq. (1), i.e. electron operators are mapped
onto hole’s via c,-l', — h; ,, the Hamiltonian becomes
H=1, Y hyoh,+ U +2ZV)N!

h
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where nf‘a = h,-f,h,-,g, nl = n,}fT + nffl, Nb“ is the total number

of sites in each plane, and Z is the lattice coordination
number in the plane. The second term in Eq. (2) only contri-
butes to a shift of the total energy and then, the holes also
interact via a generalized Hubbard model but with effective
hopping parameters ¢,, t = t, — 2At, and ' = t{, — 2At,
instead of —¢,, —t,, and —t{, for electrons. The Hamiltonian
of holes (Eq. (2)) can be written in the momentum space as
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where N is the total number of sites,

Iy = \/_ Z kR, )

ey(k) =2t cos(k,a,) — U — 2ZV + 2t[cos(k.a)

+cos(kya)] + 4t cos(ka)cos(k,a),

Viwg = U + VB — k') + Af[Bk + q) + B(—k + q)
+ B +q)+ B(—k' + @]+ A[yk+q, k' +q)
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and
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being B(k) = 2[cos(k.a) + cos(kya)], ¥(K, k') = 4cos(k,a)
cos(kya) + 4cos(kra)cos(kya), and 2q is the wave vector
of the pair center of mass. After a normal Hartree—Fock
decoupling of the interaction terms in Eq. (3) within the
standard BCS scheme, the reduced Hamiltonian can be
written as [18]:

H—uN = (k) = ol
k,o

1
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where u is the chemical potential, N is the number of holes,
and

e(k) = 2t, cos(ka,) + (% + ZV)nh + 2(t + nyAr)

X (cos(k,a) + cos(k,a)) + 4('

+ 2nyAts)cos(k,a)cos(kya), (6)
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Fig. 1. (a) The d-wave and (b) s-wave superconducting critical
temperatures (7,) are plotted as functions of the second-neighbor
correlated hopping (A1), for a square lattice with U = 6|ty|, V = 0,
ty = 0.45ty, At = 0.5to|, and n, = 0.2.

being n, the density of holes per site. Notice that the disper-
sion relation e(k) is now modified by adding terms n,Atz,
2n,Aty and (U/2 + 4V)ny, to the single hole hoppings ¢, ¢/
and the self-energy, respectively. On the other hand, the
term Wyyq in Eq. (3) is ignored since it has no contribution
on the singlets. At a finite temperature 7, the equations for
determining the superconducting gap and the chemical
potential are [22],

E I
Z ka'o tanh( £ )’ @)
N, & 2k T
1 ek’) — u Ey
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"th N, kz E. (2kBT)’ ®)

where the single excitation energy (Ej) is given by:

Ey =/(e(k) — p)* + A7 ©)

For a negative-U Hubbard model analyzed within the BCS
scheme [2], Viqo = —U, in consequence only an isotropic
s-wave superconducting gap is obtained. However, in our
case, due to the nature of Vi, the last two equations admit
solutions in both the extended s- and the d-channels, whose
superconducting gaps are, respectively, given by A, = A, +
Ag[cos(kea) + cos(kya)] and Ay = A j[cos(ka) — cos(k,a)],
where A is the standard s-channel contribution. Therefore,

for the d-channel Eq. (7) can be written as,

1= — (V — 4At3) cos(ka)[cos(k.a) — cos(kya)]
B N, % Ey
Ey
xtanh( e ) (10)

and for the s-channel, Eq. (7) becomes two simultaneous
equations,

Ay = —(V + 4An) LAy + 11 Ay) — 4A11 Ay + 1HAy),

(11)
and
Ay = UL Ay + IhAy) — 4A1(L Ay + 11 A)), (12)

where
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Notice that given n, and 7, Egs. (8) and (10) have to be
solved together for p and A,. Analogously, Egs. (8), (11),
and (12) should be solved simultaneously for u, A;and A,..
In particular, the critical temperature 7, is determined by
A(T,) = Ayx(T,) = 0, or Ay(T,) = 0. It is worth mentioning
that within the generalized Hubbard model the condition for
d-channel gap can be obtained by rewriting conveniently
Eq. (10) as

T (V — 4A1) [cos(k,a) — cos(k,a)]’
2Ny X \/(e(k) — w)? + Al(cosk,a — cosk,a)?
Ey
Xtanh( e ) (13)

where the fact that &, and k, are dummy variables has been
used. Notice that the sum in Eq. (13) is always positive since
Eyx/(2kgT) > 0. Therefore, the necessary condition for a
solution of A, is 4As; — V > 0, which coincides with that
for a single pair [17].

3. The results

In this communication, the s- and d-wave superconduct-
ing states are analyzed by looking at their critical tempera-
ture (7,), the superconducting gaps (4,,A4,., or A,), and the
single-excitation energy gap (4,) that is defined as the mini-
mum value of Ey, given by Eq. (9), with A,[cos(ka) —
cos(kya)] evaluated at the antinode [23]. In Fig. 1(a) T, of
the d-channel and Fig. 1(b) T, of the s-channel, both as
functions of Az, are shown for a system with U =
0, to = 0.45t;, At = 0.5|ty|, t, =0, and n, = 0.2. A loga-
rithmic analysis of Fig. 1(a) suggests the non-existence of a
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Fig. 2. The d-channel (a) superconducting gap (4,), (b) supercon-
ducting critical temperature (7,.) and (c) gap ratio [24/(kgT,)]
versus the hole concentration (r,) are shown for the same system
as in Fig.1 with a fixed Aty = (/4.

minimum value of Az in the d-channel. Nevertheless, the
maximum negative value of 97T./d(Af3) occurs at Atz =
to/(4 — 2n,) = 0.125]to|, which corresponds to the change
of sign of #'. On the other hand, for a given value of T, the
required At; is much smaller for the d-channel than that for
the s one. This fact is relevant since small values of Aty are
expected in real systems as discussed previously. It is worth
mentioning that the maximum value of the s-channel’s T
depends strongly on the value of U, while the d-channel’s
one does not.

In Fig. 2(a)—(c), the d-channel superconducting gap (4 ),
the critical temperature (7,) and the gap ratio [24,/(kgT,)]
versus the hole concentration (n,) are, respectively, shown
for the same system as in Fig. 1 with a fixed Ar; = £(/4. The
values of Ar and At; are chosen to minimize the kinetic
energy of the pairs. In this case, for the low density regime
(n, < 1) analytical results can be obtained, since e(k) — 0,

and they are
Ad = 2(At3 - %)\/Znh, (14)

4A; — V(1 —
ks T, = (4Ar; _ ) ny)
4tanh™ (1 — ny)

2 — ny
21n( )
ZAO _ ny (16)

kB TC 1- ny

(15)

as indicated by dashed lines in Fig. 2. Indeed, for n;, = 0, the
chemical potential at zero temperature is half of the hole-
singlet binding energy [17]. Note that the gap ratio in the
dilute limit is independent of the parameters as found in Ref.
[24]. In general, T, and A, rise initially as ny, increases,
because the attractive interaction grows with the Fermi
surface size. However, for high hole densities, the decreasing
of the Az; term in Eq. (4) together with the nearest-neighbor
and next-nearest-neighbor hoppings renormalization, causes
superconductivity to disappear. Also, notice that in the low
density limit the gap ratio reaches very high values in
comparison with 3.57 predicted by the BCS theory [25],
and it decreases as hole density grows in concordance
with experimental data [26]. Furthermore, around n, =
0.25 a slight change of behavior is observed in Fig. 2(a)
and (c), since below this density of holes the chemical
potential is lower than the minimum of the single-hole
band, as found in Ref. [24]. For a A#; lower than t6/4 the
general behavior of T, versus ny, is sharper than that shown in
Fig. 2. Moreover, the maximum of 7, diminishes and shifts
to lower densities when At; decreases.

The effects of the dimensionality on the superconducting
state are shown in Fig. 3(a)-(c), corresponding to the
same quantities as in Fig. 2(a)—(c), respectively, except
they are versus the interplane hopping strength (fy,). Two
cases are considered: isotropic f, =1,, (open circles)
and anisotropic ¢, = ¢, (k) (open squares) ones. For high-
T. materials, band structure calculations yield ¢, (k) =
(to 1)[cos(ka, ) — cos(kya L)]2 so that interplane coupling
is dominated by states near the (*m,0) and (0, = ) points
of the Brillouin zone at which the superconducting gap
is maximal [27]. It is observed that in general the super-
conducting state is weakened by increasing fy,, being the
effects more pronounced for the isotropic case.

Fig. 4 shows the temperature dependence of the gap ratio
[24y/(kgT,)] for the same system as in Fig. 2(c) (solid line),
in comparison to the s-wave one obtained from a negative-U
Hubbard model with ¢, = 0.45t), U= —2|t,|, V= Ar=
At; = t, = 0 (dashed line), both for a hole density n, =
0.5. It is worth mentioning that the gap ratio of a negative-
U Hubbard model is essentially independent of U, and it is
very close to the BCS prediction, even though in the former
case the attractive interaction is uniform on the whole k
space. In the inset of Fig. 4, the normalized gap ratios for
the same systems as in the main plot are comparatively
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Fig. 3. The d-channel (a) superconducting gap (4,), (b) supercon-
ducting transition temperature (7;) and (c) gap ratio [24/(kgT,)]
versus the interplane hopping strength (#,, ) for both isotropic (open
circles) and anisotropic (open squares) cases are shown for the same
system as in Fig. 2 with a fixed n, = 0.2.

shown. Observe that the temperature-dependence behavior
of a d-channel superconducting state is quite different from
the s-one, similar conclusions can be obtained from Ref.
[28].

In Fig. 5, a ground-state phase diagram for a system with
U= At =0, t;, = 4At;, and n, = 1 is presented in order to
analyze the competition between the superconducting state
and the phase separation, where holes doubly occupy a
macroscopic region of the system to minimize the energy,
when a negative-V is considered. The energy of the phase-
separated state has been calculated as it is done in Ref. [29].
In particular, this system has been chosen for analysis since
the starting point, i.e. Az; = 0, reproduces part of fig. 8 of
Ref. [29]. We can observe that the presence of At; enhances
the d-wave superconductivity and enlarges the d-channel
superconducting zone, which could be important since the

24 /k.T,

0 " 1 " 1 " 1 " 1

00 02 04 06 08 10
T

c

Fig. 4. The temperature dependence of the gap ratio [24,/(kgT,)] for
the same system as in Fig. 2(c) (solid line), in comparison to the s-
wave one obtained from a negative-U Hubbard model with ¢, =
0.45ty, U = —2|to|, V = At = At; = t, = 0 (dashed line), both for
a hole density n, = 0.5. In the inset, the corresponding normalized
gap ratios are shown.
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Fig. 5. Ground-state phase diagram for a system with U = Ar = 0,
o = 4Aty, and ny, = 1.

phase separation would dominate over the superconducting
phase as V grows (Fig. 5).

4. Conclusions

We have studied the principal features of the super-
conducting ground state within a generalized Hubbard
model, in which a second-neighbor correlated-hopping
term is included. In spite of its smaller strength in compari-
son with other terms of the model, we have found its key
participation in the formation of the d-channel super-
conducting state. In particular, we have shown that, within
this model, a d-symmetry superconducting ground state with
relatively high T is suitable for small values Af;, in contrast
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to the higher values required in the s-channel. Furthermore,
the d-wave superconducting state is not sensitive to the on-
site repulsion as occurs for the s-wave one.

In comparison with the negative-V Hubbard model, the
second-neighbor correlated hopping extends the d-wave
superconduction to the low hole-density region, in agree-
ment with that observed in experiments [26]. Furthermore,
At; enhances the d-channel superconductivity in the compe-
tition with the phase separation. On the other hand, the d-
wave superconducting state has a normalized gap ratio
[Ay(T)/Ay(0)] differing from that of the BCS theory. More-
over the superconductivity is in general favored by the low
dimensionality of the system, and the d-channel one is not
an exception.

In summary, the present study has shown that terms
usually ignored in the Hubbard model could be relevant in
certain phenomena, such as the d-channel superconductiv-
ity. Finally, this study is suitable to analyze real materials by
including specific parameters and then compare closely with
the experimental data, which is currently in progress.
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