
ENHANCED HOLE PAIRING IN GENERALIZED HUBBARD SYSTEMS
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The pairing between holes at the dilute limit is studied by means of a
generalized Hubbard model, in which on-site (U), nearest-neighbor (V) and
correlated-hopping (Dt) interactions are considered. The problem is
addressed by mapping the original many-body problem into a tight-binding
one in a higher dimensional space. The results show a strong enhancement
of the hole pairing aroundDt=t0 ¼ 0:5, even though the on-site or nearest-
neighbor repulsion is extremely high. A significant reduction of the
effective mass of pairs in comparison with non-pairing ones is also
observed in this region, which could be important in the Bose–Einstein
condensation of these hole singlets. Finally, the pairing phase diagrams
calculated in linear, square, triangular and cubic lattices show an enhanced
hole pairing in low-dimensional systems.q 1998 Elsevier Science Ltd. All
rights reserved
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1. INTRODUCTION

The first decade of intensive investigations on the high
transition temperature (Tc) superconductors has clarified
important features, such as thed-wave symmetry in the
superconducting gap [1], the singlet pairing between
holes (instead between electrons) [2], and their short
coherence length [3], in spite of no general consensus on
the high-Tc superconducting mechanism. The normal
state of these superconductors in the underdoped region
is particularly interesting, where the in-plane resistivity
as a linear function of temperature [4] and the appearance
of a spin–gap well aboveTc [5] have been observed. It is
suggested [6] that the transition temperatureTc could be
much less than the pairing temperature and then a
different scattering dynamics of the carriers is expected
in this intermediate temperature regime. Certainly,
there is a linear relationship between theTc and ns=m

p

[7], wherens is superconducting carrier density andmp

their effective mass. Therefore, a detailed analysis of the

pairing process and the dynamics of these pairs could be
important to understand the high-Tc superconductivity.

A general way to analyze the electronic correlations
in narrow-band systems might be worked out using the
Hubbard model [8], because it is probably thesimplest
many-body model that considers the local electron–
electron interactions in a general form. In spite of its
simplicity rigorous results have been obtained only for
one [9] and infinite [10] dimensions. In particular, the
pairing problem has been studied by means of the
extended [3] and the generalized Hubbard model [11].
Recently, we have developed a mapping method in
which the original many-body problem is transformed
into a tight-binding one with impurities in a higher
dimensional space [12].

In this paper, we report an extension of the mapping
method to the generalized Hubbard model and an analy-
sis of the pairing between holes in comparison with the
electron case. In Section II, the mapping method applied
to generalized Hubbard electronic systems is discussed.
The binding energy, the coherence length and the effective
mass of the pairs are analyzed in Section III. Phase
diagrams of the pairing ground states are also presented.
Finally, some conclusions are given in Section IV.
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2. METHOD

The electronic correlation could be analyzed in
general by means of the generalized Hubbard model, in
which on-site (U), nearest-neighbor (V) and correlated-
hopping (Dt) interactions are considered. Certainly, all
these three interactions are present in a real solid, even
their contributions could be very different, for example,
for 3d electrons in transition metalU, V and Dt are
typically about 20, 3 and 0.5 eV, respectively [8, 13].
Furthermore, the multiband problem of the CuO2

plane in high-Tc superconductors could be reduced to a
single-band one [14], since we are interested in their low-
energy electronic excitations. Therefore, this effective
one-band generalized Hubbard Hamiltonian can be
written as

H ¼ ¹ t0
∑
〈i;j〉;j

cþ
i;jcj;j þ U

∑
i

ni;↑ni;↓ þ
V
2

∑
〈i;j〉

ninj

þ Dt
∑
〈i;j〉;j

cþ
i;jcj;jðni;¹ j þ nj;¹ jÞ; ð1Þ

where 〈i; j〉 denotes nearest-neighbor sites,cþ
i;j (ci,j) is

the creation (annihilation) operator with spinj ¼ ↓ or ↑ at
site i and ni ¼ ni;↑ þ ni;↓ being ni;j ¼ cþ

i;jci;j. When a
particle–hole transformation is made in equation (1),
i.e. electron operators are mapped onto hole’s via
cþ

i;j → hi;j, the Hamiltonian becomes:

H ¼ ðU þ 2ZVÞ N ¹
∑
i;j

nh
i;j

 !
þ ðt0 ¹ 2DtÞ

∑
〈i;j〉;j

hþ
j;jhi;j

þU
∑

i
nh

i;↑n
h
i;↓ þ

V
2

∑
〈i;j〉

nh
i nh

j

þ Dt
∑
〈i;j〉;j

hþ
i;jhj;jðn

h
i;¹ jþnh

j;¹ jÞ; ð2Þ

whereN is the total number of sites andZ is the lattice
coordination number. The first term in equation (2) only
contributes to a shift of the total energy and then, the
holes also interact via a generalized Hubbard model but
with an effective hopping parametert ¼ t0 ¹ 2Dt, instead
of ¹t0 for electrons.

When the correlated hopping interaction is introduced,
the previously developed mapping method should be
modified. As shown in Fig. 1 for the case of two
holes in a linear chain, the projected hopping parameters
b and b imp are respectively given by 2t cos(Ka/2)
and 2t imp cos(Ka/2), where timp ¼ t þ Dt, K is the
wave vector of the center of mass of the pair anda is
the lattice constant. Notice that the hopping (t imp)
between ‘‘impurity states’’ (with self-energiesU or V)
is enhanced by adding aDt, since the correlated

hopping interactions have contribution only on single-
particle hopping processes intoor from double occupied
states.

As we have demonstrated previously [12], within the
extended Hubbard model the problem of electronic
correlation is equivalent to a tight-binding one with
impurities and the correlated states correspond to those
impurity-states due to the negative self-energiesU or V.
In our case, for the generalized Hubbard model, the
correlated electronic states are originated from the
enhanced bonds (bond-impurities), withor without
negativeU or V. These two-particle correlated states
will be analyzed in the following section.

3. RESULTS

In order to study the hole pairing ground state and the
dynamics of these pairs, the binding energy, the coher-
ence length and the effective mass of the pairs are
analyzed. The binding energy has been calculated from
the difference of energies between the lowermost pairing
state (K ¼ 0) and the lower-most non-correlated state,
which is localized at the lower non-correlated band edge.
In Fig. 2(a), the binding energies between two holes vs
Dt/t0, beingU ¼ V ¼ 0, are shown for a linear chain, a
square, a triangular and a simple cubic lattices, where the
numerical diagonalizations are performed in their
corresponding truncated projected lattices, as shown in
Fig. 1, of 301, 3969, 5677 and 35937 effective states,
respectively. The matrix sizes for numerical calculation
are chosen as the minimum size so that the physical
quantities have no important variation with the matrix
size.

Fig. 1. Sketch of the one-dimensional generalized
Hubbard hole-singlet states, represented by circles with
self-energies and hopping-strengths indicated inside and
in between, respectively. The projection procedure is
shown by dashed lines. The final effective states are
represented by ellipses and the effective hopping para-
meters areb ¼ 2t cosðKa=2Þ andbimp ¼ 2timp cosðKa=2Þ,
wheretimp ¼ t þ Dt, K is the wave vector of the pair and
a is the lattice constant.
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First, notice that there is a strong singlet-hole pairing
for 0 , Dt=t0 , 2=3 in one- and two-dimensional systems
and for 0:294, Dt=t0 , 0:613 in the simple cubic lattice.
These pairing intervals are in very good agreement with
that obtained following the procedure introduced by
Marsiglio and Hirsch [11]:

UðDt;VÞ ¼ 2E0

3
G0ð0Þ½E0V þ 2ZDtð2t þ DtÞÿ ¹ E0V ¹ 2Zðt þ DtÞ2

G0ð0Þ½E0V ¹ 2Zt2ÿ ¹ E0V
:

ð3Þ

where E0 is the singlet particle ground-state energy,
G0ð0Þ ¼ ð1=NÞSkE0=½E0 ¹ eðkÞÿ, ande(k) is the dispersion
relation of a single hole. For a simple cubic lattice,
G0ð0Þ < 1:51638. However, for one- and two-dimensional
lattices,G0ð0Þ → ` [11] and then

UðDt;VÞ ¼ 2E0
E0V þ 2ZDtð2t þ DtÞ

E0V ¹ 2Zt2
: (4)

Therefore, the pairing intervals are given by equations
(3) and (4) evaluating for U ¼ V ¼ 0. On the
other hand, the binding energy atDt ¼ 0:5t0 is
given by ð

��������������������������������
ðU ¹ VÞ2 þ 4Zt20

p
¹ U ¹ VÞ=2 [15], which is

determined by the coordination numberZ, instead of the
dimensionality, since in this case the problem can be
reduced to a molecular-like one in the projected space, as
shown in Fig. 1. It would also be worth mentioning that
the pairing of electrons requiresDt . 2t0 for one- and

two-dimensional lattices and on the simple cubic lattice
the requirement should beDt , 2:7136t0; both can be
obtained from equations (3) and (4) by replacingt by ¹t0

and evaluating forU ¼ V ¼ 0.
Another physical quantity to characterize a pair is its

coherence length, which can be calculated asy ¼ 〈r2〉1=2,
where

〈r 2〉 ¼

∑
r

wpðr Þr2wðr Þ∑
r

wpðr Þwðr Þ
(5)

is the mean-square radius of the pair,w(r ) is the two-
particle wave-function amplitude andr represents the
internal coordinates of the pair. If this wave function has
an exponential behavior with a characteristic length
y0 < a, the difference betweeny and y0 is negligible.
In fact, y would be reduced to the usual BCS coherence
length by introducing a numerical factor of 2

���
2

p
=p [17].

Figure 2(b) shows the coherence lengths for holes in the
four analyzed lattices as Fig. 2(a). It can be observed that
in general a short coherence length is always associated
to a larger binding energy. However, an inverse
proportionality between these two quantities, as in the
BCS theory [18], is not found. Finally, the minimum
coherence length (ymin ¼ 1=

���
2

p
) is reached atDt ¼ 0:5t0.

To study the dynamics of the pairs, a fundamental
parameter is their effective mass, as discussed in [19].
For a three-dimensional gas of bosons, the Bose–
Einstein condensation temperature is fully determined
by the density of the gas (r) and their effective mass (mp)
in the following way [20]

TBE ¼
2pÉ2r2=3

1:897kBmp
:

In this work, the x-directional effective mass of the
pairs (mp), calculated from the dispersion curve of
the pairing ground state, is analyzed in comparison
with the effective mass of the lowermost non-correlated
state (mnp). Figure 2(c) shows a significant reduction of
mp/mnp aroundDt ¼ 0:5t0. This is due to that in general
the correlated hopping interaction enhances the mobility
of the carriers, but the effective mass of single holes
(mnp) becomes extremely large, since their effective
hopping (t ¼ t0 ¹ 2Dt) is very small in the region
around Dt ¼ 0:5t0. It should be stressed that, even
though the mobility of single holes is almost null in
this region, the pair has a considerable mobility, which is
proportional to the correlated hopping interaction (Dt)
[15].

The hole–singlet ground-state diagrams for a linear
chain, a square, a triangular and a simple cubic lattice are
shown in Figs 3(a), 3(b), 3(c) and 3(d), respectively, for

Fig. 2. Hole-singlet’s (a) binding energy, (b) coherence
length and (c) effective mass for a linear chain
(open circles), a square (open squares), a triangular
(open up-triangles) and a simple cubic lattice (open
diamonds).
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Dt ¼ 0 (open circles), 0.2t0 (open triangles), 0.5t0 (open
diamonds) and 0.6t0 (open squares). First, observe the
hyperbolic transition lines forDt ¼ 0:5t0, which means
that there is hole–singlet pairing even thoughU or V is
very large, as shown in equations (3) and (4). Also, notice
that the pairing region is increased whenDt goes from 0
to 0.5t0. However, an inverse process occurs whenDt is
larger than 0.5t0, in agreement with Fig. 2(a). Finally, it
can be seen that the transition lines forDt ¼ 0 (open
circles) in one- and two-dimensional systems pass
through the origin, in contrast to a smaller pairing
region in the three-dimensional case, i.e. the low-
dimensionality of the system in general enhances the
pairing process. This is because the localization of the
correlated states in the equivalent one-particle higher-
dimensional space increases the kinetic energy of the
system, known as the quantum confinement effect and
then the existence of pairing states implies that the
potential energies due to ‘‘impurities’’ must overcome
the discussed increase of kinetic one. In this energy
competition, the dimensionality of the system plays a
crucial role [16].

4. CONCLUSIONS

We have studied the pairing problem between holes
within the generalized Hubbard model, by extending
the previously introduced mapping method to include
the correlated hopping interactions, which appear as
additional ‘‘impurity bonds’’ in the one-particle higher-
dimensional space. This method has the advantage of
giving a clear association between the binding and the
impurity states. Also, the method provides an alternative

and in some cases easier way to calculate real-space
pairing properties, such as the coherence length. The
results show a strong enhancement of the hole–singlet
binding energy aroundDt ¼ 0:5t0, instead ofDt . 2t0 for
electrons, which could be relevant since in real materials
Dt ! U. Also, a significant reduction of the effective
mass of pairs in comparison with non-pairing ones is
observed in this region, which could help the Bose–
Einstein condensation of these hole singlets. Finally, the
phase diagrams show a favored hole pairing in low-
dimensional systems. This fact would not necessarily
imply a higher superconducting transition temperature,
since the superconductivity involves both the pairing and
condensation processes and there is no Bose–Einstein
condensation instrict two-dimensional systems at finite
temperatures [21]. However, a ‘‘local condensation’’, i.e.
phase coherence persists over a finite distance, could
presumably become global when a small amount of
interplane coupling is turned on [22].
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