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The pairing between holes at the dilute limit is studied by means of a
generalized Hubbard model, in which on-sit8 (nearest-neighbokf and
correlated-hopping At) interactions are considered. The problem is
addressed by mapping the original many-body problem into a tight-binding
one in a higher dimensional space. The results show a strong enhancement
of the hole pairing aroundt/t, = 0.5, even though the on-site or nearest-
neighbor repulsion is extremely high. A significant reduction of the
effective mass of pairs in comparison with non-pairing ones is also
observed in this region, which could be important in the Bose—Einstein
condensation of these hole singlets. Finally, the pairing phase diagrams
calculated in linear, square, triangular and cubic lattices show an enhanced
hole pairing in low-dimensional system®.1998 Elsevier Science Ltd. All
rights reserved
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electronic states.

1. INTRODUCTION pairing process and the dynamics of these pairs could be

The first decade of intensive investigations on the hidmportant to understand the hlgf}-superco_nducnwty._
. o A general way to analyze the electronic correlations
transition temperaturerl() superconductors has clarified.

important features, such as thavave symmetry in the in narrow-band systems might be worked out using the

. ) L Hubbard model [8], because it is probably thienplest
superconducting gap [1], the singlet pairing betWeenany-body model that considers the local electron—

holes (instead between electrons) [2], and their shonr}

. . electron interactions in a general form. In spite of its
coherence length [3], in spite of no general consensus an

the highT, superconducting mechanism. The normalmpllmty rigorous results have been obtained only for

state of these superconductors in the underdoped reg?onne [9] and infinite [10] dimensions. In particular, the

; . . ; i —.~2palring problem has been studied by means of the
is partlcularly m_terestlng, where the in-plane reS'SUV'%xtended [3] and the generalized Hubbard model [11].
asalm_earfunctlon of temperature [4] and the appeara %cently we have developed a mapping method in
of a spin—gap well above, [5_]_have been observed. It 'Swhich the original many-body problem is transformed
suggested [6] that the transition temperatlgeould be into a tight-binding one with impurities in a higher
much less than the pairing temperature and thendamensional space [12]

different scattering dynamics of the carriers is expectec'i In this papgr we rep;ort an extension of the mapping
in_this intermediate temperature regime. Certair”yrhethod to the géneralized Hubbard model and an analy-
there is a linear relationship between tfhgand ny/m’

[7], whereng is superconducting carrier density am

sis of the pairing between holes in comparison with the
their effective mass. Therefore, a detailed analysis of tﬁ(laectron case. In Section I, the mapping mthOd. applied
t0 generalized Hubbard electronic systems is discussed.
The binding energy, the coherence length and the effective
- mass of the pairs are analyzed in Section Ill. Phase
* Corresponding author. E-mail: chumin@servidordiagrams of the pairing ground states are also presented.
unam.mx Finally, some conclusions are given in Section IV.
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2. METHOD

The electronic correlation could be analyzed in
general by means of the generalized Hubbard model, in
which on-site ), nearest-neighboMj and correlated-
hopping (At) interactions are considered. Certainly, all
these three interactions are present in a real solid, even
their contributions could be very different, for example,
for 3d electrons in transition metdl, V and At are
typically about 20, 3 and 0.5 eV, respectively [8, 13].
Furthermore, the multiband problem of the CGuO
plane in highT, superconductors could be reduced to a
single-band one [14], since we are interested in their lokg. 1. Sketch of the one-dimensional generalized

energy electronic excitations. Therefore, this effectividubbard hole-singlet states, represented by circles with

one-band generalized Hubbard Hamiltonian can tR¢!-€nergies and hopping-strengths indicated inside and
In between, respectively. The projection procedure is

written as shown by dashed lines. The final effective states are
Vv represented by ellipses and the effective hopping para-
H=—t ¢ Co+UD nitniy+ = > nin meters arg8 = 2t cogKa/2) andBimp = 2tiy,p cOgKa/2),
OM%, ho: IZ WM 2%‘ o wheret;,, = t + At, K is the wave vector of the pair and
a is the lattice constant.
AL D GG 1), &

1,]),0
v hopping interactions have contribution only on single-
where i, j) denotes nearest-neighbor siteg, (c;,) is Pparticle hopping processes into from double occupied
the creation (annihilation) operator with spin= | orfat states.
site i and nj = nj; +ny; beingn, = CiJ,’gCi,a- When a As we have demonstrated previously [12], within the
particle—hole transformation is made in equation (1gxtended Hubbard model the problem of electronic
i.e. electron operators are mapped onto hole’s vi@rrelation is equivalent to a tight-binding one with
Cfa—’ hi.,, the Hamiltonian becomes: impurities and the correlated states correspond to those
impurity-states due to the negative self-enerdiesr V.
In our case, for the generalized Hubbard model, the
H=U+ 22V)<N - anho> + (to — 2At) Z hi,hic  correlated electronic states are originated from the
Lo (o enhanced bonds (bond-impurities), withr without
Y, negativeU or V. These two-particle correlated states
+U Z n{}nﬁ+5% n‘hnih will be analyzed in the following section.

h h
+ At(i%ohfvhi»ff(”h—ﬁ”h—v)’ @ 3. RESULTS
In order to study the hole pairing ground state and the
whereN is the total number of sites arélis the lattice dynamics of these pairs, the binding energy, the coher-
coordination number. The first term in equation (2) onlgnce length and the effective mass of the pairs are
contributes to a shift of the total energy and then, thenalyzed. The binding energy has been calculated from
holes also interact via a generalized Hubbard model bihie difference of energies between the lowermost pairing
with an effective hopping parametet t, — 2At, instead state K = 0) and the lower-most non-correlated state,
of —t, for electrons. which is localized at the lower non-correlated band edge.
When the correlated hopping interaction is introduceth Fig. 2(a), the binding energies between two holes vs
the previously developed mapping method should hgt/ty, beingU = V = 0, are shown for a linear chain, a
modified. As shown in Fig. 1 for the case of twosquare, a triangular and a simple cubic lattices, where the
holes in a linear chain, the projected hopping parametareamerical diagonalizations are performed in their
B and By, are respectively given by tZosKa/2) corresponding truncated projected lattices, as shown in
and 2, cosKa/2), where tinp =t+ At, K is the Fig. 1, of 301, 3969, 5677 and 35937 effective states,
wave vector of the center of mass of the pair anid respectively. The matrix sizes for numerical calculation
the lattice constant. Notice that the hopping.d] are chosen as the minimum size so that the physical
between “impurity states” (with self-energidd or V) quantities have no important variation with the matrix
is enhanced by adding a&t, since the correlated size.
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28— two-dimensional lattices and on the simple cubic lattice
2.0} T quare Latico (@) the requirement should hat < 2.7136,; both can be
£ 18| T et f A obtained from equations (3) and (4) by replacity —to
2 10} # and evaluating fol) =V = 0.
05l Another physical quantity to characterize a pair is its
0.0 |tz coherence length, which can be calculated as(r%*?,
8o} where
© 6.0}
S 40| _ PRAGIS()
20l Sy A=t 5
00 e PRAG) ©
1.04 & r
Q 08} .
§“ osl is the mean-square radius of the paj(r) is the two-
g% 04l particle wave-function amplitude and represents the
0.2} internal coordinates of the pair. If this wave function has
an exponential behavior with a characteristic length

0'%.0 0.1 0.2 03 0.4 OA 06 0.7 0.8
At/to ¢o = a, the difference betwee#f and £, is negligible.

. . , - In fact, £ would be reduced to the usual BCS coherence
Fig. 2. Hole-singlet's (a) binding energy, (b) COherean:éngth by introducing a numerical factor o{/Z_lw [17].

length and (c) effective mass for a linear chain. .
(opgen circlesg,)a square (open squares), a triangur|1%{9ure 2(b) shows the coherence lengths for holes in the

(open up-triangles) and a simple cubic lattice (opel@ur analyzed lattices as Fig. 2(a). It can be observed that
diamonds). in general a short coherence length is always associated

to a larger binding energy. However, an inverse

First, notice that there is a strong singlet-hole pairingroPortionality between these two quantities, as in the
CS theory [18], is not found. Finally, the minimum

for 0 < At/ty < 2/3 in one- and two-dimensional system )
and for 0294 < At/ty < 0.613 in the simple cubic lattice. coherence lengtttfyin = 1/\/5) is reached ait = 0.5to.
These pairing intervals are in very good agreement with 1° Study the dynamics of the pairs, a fundamental

that obtained following the procedure introduced b arameter is their effective mass, as discussed in [19].
Marsiglio and Hirsch [11]: or a three-dimensional gas of bosons, the Bose—

Einstein condensation temperature is fully determined
U(At, V) = 2k, by the density of the gag) and their effective massn()
in the following way [20]

.« Go(OEoV + 2ZA(2t + At)] — EoV — 2Z(t + AbY?

Go(O)[EoV — 2Z2] — EgV 1. 2nh’p®?
@ 0 1897%kgm

where EO is the Sing|et partic'e ground_state energ))ln .thIS WOI’k, the x-directional effeF:“Ve maSS of the

Go(0) = (UN)EZxEo/[Eo — e(K)], ande(K) is the dispersion Pairs (n_p), calculated from_ the dlspers_lon Curve_of
relation of a single hole. For a simple cubic latticeth® pairing ground state, is analyzed in comparison
Go(0) =~ 1.51638. However, for one- and two-dimensionaVith the effective mass of the lowermost non-correlated

lattices,Go(0) — o [11] and then state (n,). Figure 2(c) shows a significant reduction of
my/my, aroundAt = 0.5tg. This is due to that in general
EoV + 2ZAt(2t + At) the correlated hopping interaction enhances the mobility
U(ALV) = 2B EoV — 2712 ) ) of the carriers, but the effective mass of single holes

(my,) becomes extremely large, since their effective
Therefore, the pairing intervals are given by equatiof®pping € = to — 2At) is very small in the region
(3) and (4) evaluating forU=V =0. On the around At =0.5t,. It should be stressed that, even
other hand, the binding energy aAt=0.5t; is though the mobility of single holes is almost null in
given by (y/(U — V)? + 4Zt; — U — V)/2 [15], which is this region, the pair has a considerable mobility, which is
determined by the coordination numlt#rinstead of the proportional to the correlated hopping interactiakt)(
dimensionality, since in this case the problem can H&5].
reduced to a molecular-like one in the projected space, as The hole—singlet ground-state diagrams for a linear
shown in Fig. 1. It would also be worth mentioning thathain, a square, a triangular and a simple cubic lattice are
the pairing of electrons requirest > 2ty for one- and shown in Figs 3(a), 3(b), 3(c) and 3(d), respectively, for
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and in some cases easier way to calculate real-space
pairing properties, such as the coherence length. The
results show a strong enhancement of the hole—singlet
binding energy aroundt = 0.5t,, instead ofAt > 2t, for
electrons, which could be relevant since in real materials
At < U. Also, a significant reduction of the effective
mass of pairs in comparison with non-pairing ones is
observed in this region, which could help the Bose—
Einstein condensation of these hole singlets. Finally, the
phase diagrams show a favored hole pairing in low-
dimensional systems. This fact would not necessarily
imply a higher superconducting transition temperature,
since the superconductivity involves both the pairing and
condensation processes and there is no Bose—Einstein

Abonvbo

U/to
NONPPOOO®O

Pairing

A

Pairing

]
(o2}

54 2024664202486

Vito
Fig. 3. Phase diagrams of hole-singlets on (a) a line

chain, (b) a square, (c) a triangular and (d) a simple
cubic lattice, where the values af are 0 (open circles),

condensation irstrict two-dimensional systems at finite
temperatures [21]. However, a “local condensation”, i.e.
ase coherence persists over a finite distance, could
presumably become global when a small amount of

0.2, (open triangles), Ot5 (open diamonds) and @6 interplane coupling is turned on [22].

(open squares).

At = 0 (open circles), 013 (open triangles), 0t3 (open
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that there is hole—singlet pairing even thoudtor V is
very large, as shown in equations (3) and (4). Also, notice
that the pairing region is increased wh&hgoes from 0
to 0.8,. However, an inverse process occurs wheris

larger than 0.f, in agreement with Fig. 2(a). Finally, it
can be seen that the transition lines fisr= 0 (open

circles) in one- and two-dimensional systems pass
through the origin, in contrast to a smaller pairing 2.
region in the three-dimensional case, i.e. the low-3.
dimensionality of the system in general enhances the
pairing process. This is because the localization of thé"
correlated states in the equivalent one-particle higher-
dimensional space increases the kinetic energy of thg
system, known as the quantum confinement effect and
then the existence of pairing states implies that the

potential energies due to “impurities” must overcome

the discussed increase of kinetic one. In this energf-
competition, the dimensionality of the system plays a7
crucial role [16]. 8

1.

4. CONCLUSIONS 9.

We have studied the pairing problem between holdd.
within the generalized Hubbard model, by extendin
the previously introduced mapping method to includ
the correlated hopping interactions, which appear
additional “impurity bonds” in the one-particle higher-
dimensional space. This method has the advantage 10f
giving a clear association between the binding and thet.
impurity states. Also, the method provides an alternative

performed at the Cray Y-MP4/432 of DGSCA, UNAM.
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