Accelerator physics, hardware, and operations at NSLS and NSLS-II.

Wednesday 24 Nov 2010 at 12:15 (00h55')

Primary authors : Dr. PODOBEDOV, Boris (BNL)

Co-authors :

Presenter : Dr. PODOBEDOV, Boris (BNL)
Principles of Synchrotron Radiation and Storage Ring Light Sources

Boris Podobedov
boris@bnl.gov
November 22, 2010
Outline

• Synchrotron Radiation (SR) Primer
 • SR definition & properties (brightness, flux, opening angle, polarization, BW, power)
 • Generation of SR
 • Bend magnets, Undulators and Wigglers

• Principles of Synchrotrons
 • How to build a synchrotron light source
 • Performance metrics
 • Properties of e-beam that affect performance

• Few generations of synchrotron light sources (LS)
• Summary
• Not Covered (but important)
 • Injection System, Vacuum, RF, power supplies, controls, etc.
 • Beamlines, Detectors, SR Uses and Techniques

Thanks to
 J.B. Murphy
 G. Rakowsky
 F. Sannibale

Boris Podobedov, Nov. 22, 2010
Charged Particle Radiation Processes

- Synchrotron
- Bremsstrahlung
- Diffraction / Transition
- Cerenkov

Periodicity in the “structure” yields a repetitive pulse train in the time domain, resulting in a spectral narrowing in the frequency domain!
Synchrotron Radiation

SR is EM radiation emitted when charged particles are radially accelerated (move on a curved path).

Electrons accelerating by running up and down in a radio antenna emit radio waves.

Both cases are manifestation of the same physical phenomenon:

Charged particles radiate when accelerated.
Why Do Particles Emit SR?

• A charge moving in free space is “surrounded” by a cloud of virtual photons that indissolubly travel with it.

• When accelerated, the particle receives a “kick” separating it from the photons that become real and independently observable.

• Lighter particles are easier to accelerate so they radiate photons more efficiently

=> light sources use electrons

In a light source electrons follow curved trajectories in bend magnets and insertion devices. The transverse acceleration creates e⁻ - γ separation generating synchrotron radiation.
SR Angular Distribution

At low electron velocity (non-relativistic case) the radiation is emitted in a non-directional pattern.

\[\gamma \equiv \frac{E}{mc^2} >> 1 \]

When the electron velocity approaches the velocity of light, the emission pattern is folded sharply forward.

\[\text{Cone aperture } \sim \frac{1}{\gamma} \]

Radiation becomes more focused at higher energies.

Boris Podobedov, Nov. 22, 2010
SR Bandwidth

Due to the small opening angle the observer sees the electron first when it arrives on its trajectory at an angle of $-1/\gamma$ with respect to the z-axis and last when this angle is $+1/\gamma$. The length of the electromagnetic pulse observed is just the difference in travel time between the electron and the photon going from the point at $-1/\gamma$ to the point at $+1/\gamma$,

$$\Delta T = T_e - T_\gamma = \frac{2\rho}{\beta \gamma c} - \frac{2\rho \sin(1/\gamma)}{c} \approx \frac{2\rho}{\beta \gamma c} \left(1 - \beta + \frac{\beta}{6\gamma^2}\right) \approx \frac{4\rho}{3c \gamma^3}.$$

The characteristic frequency is then,

$$\omega_c \approx \frac{2\pi}{\Delta T} = \frac{3\pi c \gamma^3}{2\rho}.$$
To “see” atoms, molecules & nanostructures you need light with wavelengths comparable to the size of those objects (UV, X-rays)
SR Geometry

\[\rho \] – orbit radius
\[\phi \] – rotation angle
\[\psi \] - out of plane observation angle
\[\Omega \] - solid angle, \(d\Omega = d\phi \cdot d\psi \)

A. Hoffmann, CERN-98-04
Most power in hor. polarization, distribution peaks at \(\psi=0, \psi_\sigma_{\text{rms}}(\omega_c) \approx 1/\gamma \)

Less power in ver. polarization; double peaks around \(\psi=0, \psi_\pi_{\text{rms}}(\omega_c) \approx 1/\gamma \)
Synchrotron Radiation Power

Spectral Power

\[
\frac{dP}{d\omega} = \int \frac{d^2P}{d\omega d\Omega} d\Omega = \frac{P_0}{\omega_c} \left[S_\sigma \left(\frac{\omega}{\omega_c} \right) + S_\pi \left(\frac{\omega}{\omega_c} \right) \right]
\]

Total Power & Loss/turn

\[P_0 \sim \gamma^4/\rho^2 \sim \gamma^2 B^2 \sim E^2 B^2\]

Rises fast with beam energy!

Electron energy loss per turn

\[U_0(\text{KeV}) = 88.5 \frac{E^4(\text{GeV})}{\rho(\text{m})}\]

Total Power

\[P_{\text{total}}(\text{kW}) = 88.5 \frac{E^4(\text{GeV}) I(\text{A})}{\rho(\text{m})}\]

for beam current I

\[\int_0^1 S \left(\frac{\omega}{\omega_c} \right) d(\omega/\omega_c) = 0.50 \quad \omega_c = \frac{3c\gamma^3}{2\rho}\]

Half the power is below \(\omega_c\), the other half is above 7/8 is horiz. polarization; 1/8 is vertical polarization.

SR power sharply falls down at \(\omega >> \omega_c\)

Boris Podobedov, Nov. 22, 2010
Bend (Dipole) Magnets

Typical Synchrotron Dipole Magnet

Field in gap $B = \mu_0 NI / g$ (typ. 1.4 T)
Water-cooled copper coils
Low-carbon steel C-frame yoke

NSLS X-ray Ring Dipole

$\rho = 6.875 \text{ m}, L = 2.7 \text{ m}, \text{gap}=55 \text{ mm}$

At $E=2.8 \text{ GeV}$:

$\epsilon_c = 7.1 \text{ keV}, B = 1.36 \text{ T}, I = 1.5 \text{ kA}$
Motivation for Having Insertion Devices

- **Wigglers (K >> 1)**
 - Wavelength shifter to get harder photons,
 - \(\varepsilon_c = 0.665 B [T] E^2 [GeV] \)
 - Increased flux \(\approx 2N_w \) (Arc source flux)
 - Typical parameters: \(\lambda_w = 10 \text{ cm} \) & \(B = 5 \text{ T} \)

- **Undulators (K ~ 1)**
 - Concentrate photons in frequency & position leading to higher brightness
 - Lower power consumption
 - Variable polarization (for some designs)
 - Typical parameters: \(\lambda_u = 6 \text{ cm} \) & \(B = 0.2 \text{ T} \)

- High Intensity
- Tunable, Narrow Spectrum
- Natural Vertical Collimation
- High Degree of Polarization
- High Brightness

Boris Podobedov, Nov. 22, 2010
Wigglers & Undulators:
Arrays of Dipoles of Alternating Polarity

Photon flux from N bends = \sim N \times \text{flux from single bend;}

Peak field \(B = B_{\text{rem}} \exp[-\pi(g/\lambda_u)] \)

Deflection parameter \(K \): \(K = 0.0934 \lambda_u [\text{mm}] B [\text{T}] \)

Resonant wavelengths:
\(\lambda_m = \frac{\lambda_u}{2m\gamma^2} \left(1 + \frac{K^2}{2} \right) \), \(m = 1, 3, 5 \ldots \)

In a **Wiggler** \(K \gg 1 \);
- Radiation from poles adds **incoherently**, producing a broad, dipole-like spectrum

Wiggler Spectrum

- In a **Undulator** \(K < 3 \);
- Radiation from poles adds **coherently** at resonant wavelengths, thus a sharply peaked spectrum.
- Spectral peaks are **tunable** by varying \(K \) (i.e., \(B \)) by varying the gap

Undulator Spectrum
More on Wigglers & Undulators

Halbach Pure-PM Undulator
- Horizontally magnetized blocks boost on-orbit field

Halbach PM-hybrid Undulator
- Iron poles concentrate flux from larger magnet blocks

In-Vacuum Undulator
(For hard x-rays)

- Put magnet arrays *inside* vacuum chamber
- Minimum gap can be reduced to stay-clear required by electron and photon beams (a few mm)
- Reduce period → more periods → more photons!
- Shorter period → higher photon energies
- Must be UHV-compatible → Ni- or Ti-N-coated
- PM must withstand baking to >100°C without demagnetizing → Use Hybrid car motor grades of PM

Boris Podobedov, Nov. 22, 2010
Mini-Gap In-Vacuum Undulators

NSLS X13 MGU

- Installed 2002
- Lower array @ pulsed wire bench
- 3.3 mm gap, $\lambda_p = 12.5$ mm, $K \sim 1.1$

NSLS X25 MGU

- NdFeB Magnets: new "hybrid car motor" grade
- Vanadium Permendur Poles
- Design:
 - NSLS (magnetic)
 - ADC, Inc (mech.)
- Installed Dec. 2005
- 5.6 mm gap, $\lambda_p = 18$ mm, $K \sim 1.5$

• MGUs are one of greatest successes at NSLS
• Provide hard X-ray photons on the cheap
• Paved the way for Intermediate Energy Light Sources
• Will be heavily used at NSLS-II
Elliptically Polarizing Wiggler

- Vertical field: PM hybrid
- Horizontal field: Electromagnet
- Hor. array offset by \(\frac{1}{4}\) period
- Switching polarity of current switches helicity (RH & LH) at up to 100 Hz (typ. 22 Hz)

Varying horizontal field “moves” the beamline in-and-out of orbit plane => time-varying elliptical polarization
APPLE-II Variable Polarization Undulator

Planned for NSLS-II

4 Movable PM Arrays

Apple II on the ESRF
Period: 88 mm
Gap: 16 mm,
Power density @ 30m

Linear incline Field & Polar.

Vertical Field
Horizontal Traj. & Polar.

Horizontal Field
Vertical Traj. & Polar.

Helical Field
Helical Traj. & Circul Polar.

Boris Podobedov, Nov. 22, 2010
Superconducting Wigglers

- $B_0 = 4.2$ Tesla
- Period = 17.5 cm
- $K = 68$
- $E_{\text{crit}} = 22$ keV

NSLS X17 SCW
Provides the hardest (up to 100 keV) usable x-rays at NSLS

Boris Podobedov, Nov. 22, 2010
1) Take evacuated beam pipe

ADD:

2) Bends (dipoles) to form e-beam trajectory (& as SR sources)

3) Quadrupole magnets to focus e-beam transversely

4) Sextupoles for achromatic focusing

5) RF to make up for energy loss; also provides longitudinal focusing (bunching)

6) Injection system

7) IDs into avail. straight sections

8) Beamlines to deliver photons to the Users
Essential Elements of a Light Source

VUV Ring Construction ~1980

Sextupoles
Bend magnet
Quadrupoles
Beamline ports

53 MHz RF cavity

Boris Podobedov, Nov. 22, 2010
Beam Brightness

- **Phase Space**
 - X', angle
 - X, position

- **Emittance**, ε, is the area occupied in phase space.

- **Brightness** is the density in phase space:

 \[
 \text{Number of “fish”/unit time} \quad \propto \frac{I}{\varepsilon_x \varepsilon_y}
 \]

- **Average Brightness** ~ photons/pulse x pulse rate
- **Peak Brightness** ~ photons/pulse/pulse time

\[
B_{\text{peak}} \approx \frac{B_{\text{ave}}}{f \times \tau_{\text{pulse}}}
\]

Boris Podobedov, Nov. 22, 2010
Beam Brightness Continued

- **brightness** is the key parameter of any particle source, incl. SR sources

- **brightness** is defined as 6-D phase space \((x, p_x, y, p_y, t, E)\) density of particles

- The same definition applies to the photon case; taking into account that the Pauli exclusion principle does not apply to bosons => no limitation to achievable photon brightness exists from Quantum Mech.

\[
\text{Brightness} = \frac{\text{# of photons in given } \Delta \lambda / \lambda}{\text{sec, mrad } \theta, \text{ mrad } \varphi, \text{ mm}^2}
\]

\[
\text{Flux} = \frac{\text{# of photons in given } \Delta \lambda / \lambda}{\text{sec}}
\]

\[
\text{Flux} = \frac{d\dot{N}}{d\lambda} = \int \text{Brightness} \, dS \, d\Omega
\]

• For a given flux, **smaller emittance** (transverse phase space area) **sources** have **larger brightness**
How Bright Are We?

X1 Undulator

X-Ray Ring Bend Magnet

NSLS

Brightness (photons/sec/mm²/mrad²/0.1% BW)

10^20
10^19
10^18
10^17
10^16
10^15
10^14
10^13
10^12
10^11
10^10
10^9
10^8
10^7
10^6
10^5
10^4
10^3
10^2
10

X Ray Tube

60-W Light Bulb

Candle

Boris Podobedov, Nov. 22, 2010
NSLS-II Brightness Curves

EPU49 APPLE-II Undulator
\(\lambda_u = 49 \text{ mm}, L = 4 \text{ m (low-} \beta \text{)} \)
\(K_{\text{max lin}} = 4.34, K_{\text{max circ}} = 3.69 \)

U(100) PM Und.
\(\lambda_u \approx 100 \text{ mm} \)
\(L \approx 6 \text{ m (high-} \beta \text{)} \)
\(K_{\text{max}} \approx 9.2 \)

In-Vacuum Undulators:
IVU20: \(\lambda_u = 20 \text{ mm}, K_{\text{max}} = 1.83, L = 3 \text{ m (low-} \beta \text{)} \)
IVU21: \(\lambda_u = 21 \text{ mm}, K_{\text{max}} = 1.79, L = 1.5 \text{ m (low-} \beta \text{)} \)
IVU22: \(\lambda_u = 22 \text{ mm}, K_{\text{max}} = 1.52, L = 6 \text{ m (high-} \beta \text{)} \)

SCW(60)
Supercond. Wiggler
\(B \approx 3.5 \text{ T}, \lambda_w \approx 60 \text{ mm} \)
\(K \approx 19.6, \epsilon_c \approx 21 \text{ keV} \)
\(I \approx 1 \text{ m (low-} \beta \text{)} \)

DW90 Damping Wiggler
\(B = 1.85 \text{ T}, \lambda_w = 90 \text{ mm} \)
\(K = 15.8, \epsilon_c = 11 \text{ keV} \)
\(L = 7 \text{ m (high-} \beta \text{)} \)

Three-Pole Wiggler
\(B = 1.14 \text{ T}, \epsilon_c = 6.8 \text{ keV} \)

Bend Magnet
\(B = 0.4 \text{ T}, \epsilon_c = 2.4 \text{ keV} \)

Spectral Brightness [Pb/s/1%bw/mm²/mrad²]

Photon Energy

Boris Podobedov, Nov. 22, 2010
Equilibrium Beam Sizes in Storage Ring: Transverse Emittance

- For bright source photon beam emittances need to be small
- Photon beam emittance is due to convolution of e-beam emittance and “light emittance” $\lambda/4\pi$
- In storage ring LS typically $0.1\,\text{nm} < \varepsilon_x < 100\,\text{nm}$, $\varepsilon_y = \varepsilon_x / 100$
- Diffraction limited (x-rays) in vert. plane, but not in the horizontal
- \Rightarrow electron beam emittance is important until its $< \lambda/4\pi$
- Emittance is invariant, but beam sizes vary around the ring, i.e.
 \[
 \sigma_y = (\beta_y(z) \varepsilon_y)^{1/2},
 \]
 here $\beta_y(z)$ is periodic β-function

\[
\varepsilon_{x,y} = 68 \pm 3, 0.36 \pm 0.05 \,\text{nm}
\]
\[
\varepsilon_y / \varepsilon_x \sim 0.53 \pm 0.08 \%
\]
Transverse Emittance Cont’d

- Emittance in electron storage rings is due to balance of SR damping (makes it smaller) and quantum excitation (increases it), i.e. $\varepsilon_x = S_x \tau_x$

$$S_x \approx E^5 \int B^3 \frac{\eta_x^2 + \left(\beta_x \eta_x - \frac{\beta'_x}{2} \eta_x \right)^2}{\beta_x} \, ds, \quad \frac{1}{\tau_x} \approx J^3 \int B^2 \, ds$$

- When e emits a photon, it goes on a different energy orbit => increase in beam energy spread and beam size.

- Emittance generated by SR where there is dispersion η_x.

- Vertical emittance is usually due to coupling from the horizontal.

- Modern LS minimize the dispersion => many short magnet cells, $N \gg 1$, $\varepsilon_x \sim N^{-3}$
Longitudinal Beam Sizes in Storage Ring and Bunch Train Structure

- RF cavity provides longitudinal E-field that makes up beam energy loss/turn due to SR:
 \[V_{RF}(\tau) \sim \cos(2\pi f_{RF}\tau) \]

- Beam arrival and RF phase are synchronized => there are maximum
 \[h = \frac{f_{RF}}{f_{rev}} \]
bunches stored in the ring

- Each electron randomly loses discrete photons to SR, each exciting energy-time oscillations

- Balance of quantum excitation and SR radiation damping determines bunch length and energy spread

Time structure @ NSLS

- \(~19\) ns
- \(~10\) cm (X)
- 10-50 cm (U)

\[f_{RF} = 53 \text{ MHz} = \frac{1}{(19\ \text{ns})} \]
\[h = 30 \ (\text{X-ray}) \]
\[h = 9 \ (\text{VUV}) \]

Longitudinal Bunch shape is constant around the ring

Boris Podobedov, Nov. 22, 2010
Light Sources: Definition of Generation

- **1st Gen**: parasitic synchrotron radiation source from the dipoles of HEP ring (SPEAR, CESR, etc)
- **2nd Gen**: dedicated ring for synchrotron radiation, dipole rad & some undulators; medium brightness
- **3rd Gen**: dedicated ring optimized for undulator radiation; high brightness
- **4th Gen**: dedicated free electron lasers, IR to X-Ray

NSLS X-ray and VUV rings are (one of the first) 2nd generation LS
NSLS-II ring will be 3rd generation LS
Recently commissioned LCLS at SLAC is 4th generation X-ray LS
Synchrotron Light Source Quality Factors

<table>
<thead>
<tr>
<th>ID Capacity</th>
<th>Ave Flux</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{ID} \gg 1$</td>
<td>$\Phi \sim I E$</td>
<td>$\frac{\Delta_{x,x',...}}{\sigma_{x,x',...}} < \Delta_{\text{limit}}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ave Brightness</th>
<th>Pulse length & rep. rate</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B \propto \frac{I N_u}{\left(\varepsilon_x + \frac{\lambda}{2}\right)\left(\varepsilon_y + \frac{\lambda}{2}\right)}$</td>
<td>$\sigma_t = 1-100$ ps (0.1 ps @ low rep. rate)</td>
<td>$$ < $_{\text{limit}}$</td>
</tr>
</tbody>
</table>

Try to break new ground on the first 5 without violating the last!

$$\frac{\lambda}{2} \equiv \frac{\lambda}{4\pi} \quad \text{Diffraction limit}$$

Boris Podobedov, Nov. 22, 2010
3rd & 4th Generation Sources Survey

Figure 5.1: Proposed and legacy x-ray light sources and R&D facilities around the world.

Key:
- Red - funded (operational or under construction)
- Blue - funded R&D program
- Black - concepts and proposals
Photon beam brightness is determined (mostly) by electron beam emittance that defines the source size and divergence.
Summary

• **SR generation and properties**: spectrum, BW, power, polarization, angular distribution, ...
• **Brightness, emittance and diffraction limit**
• **Benefits of having IDs** (wigglers and undulators)
• **LS Performance Metrics**: brightness, flux, \(N_{ID} \), ...
• **Building blocks of a storage ring**: dipoles, quads, sextupoles, RF system, ...
• **Emittances and beam sizes in a storage ring**: balance of SR damping and SR quantum excitation
• **SR lightsources worldwide**
For primers and further information, link to www.lightsources.org

Good reviews of synchrotron radiation and electron storage ring physics
• M. Sands: http://www.slac.stanford.edu/pubs/slacreports/slac-r-121.html

Review of present state-of-the art and future directions in LS world
• Scientific Needs for Future X-Ray Sources in the U.S.