Measurement of X-ray production cross sections is a method useful to study atomic properties. Little information exists for L-shell X-ray production cross sections by heavy ion impact. In the case of B ions, there is only one published experiment [1, 2], measuring cross sections on Au and Bi.

Examples of results are shown for the L₂ line from Ce and the L₃ line from Eu. The best theoretical predictions are given by the ECPSSR-UA model with Puri et al. atomic parameters.

A simple way to look at the whole set of experimental results, including those published previously [1, 2], is to calculate the reduced velocity parameter \(q_B \), defined by Rodríguez-Fernández et al. [11] as:

\[
q_B = \frac{1}{\sigma_0} \left(1 + \frac{2L}{q_1} \right)
\]

where \(q_1 \) is the relativistic reduced velocity parameter of the L₂ subshell (\(q_1 = 1, 2 \) or 3). The ratios of experimental to theoretical cross sections are then plotted as a function of \(q_B \).

Conclusions
Results in this work are in agreement with other publications; the scaling with \(q_B \) seems appropriate for the particular ion-target combinations; The ECPSSR-UA theory, together with Puri et al. tabulation, offers the most accurate prediction of the X-ray production cross sections; The use of MI according to Lapicki et al. model is not adequate to explain the experimental results; A larger data set X-ray production cross sections using 10B ions must be obtained; The agreement of the X-ray production cross sections calculations using the ECPSSR-UA and Puri et al. tables suggest that already existing theoretical models may not require further refinement to predict accurately the experiments.

Acknowledgements
The authors thank the technical assistance of K. López and F.J. Jaimes for accelerator operation, and M. Galindo for sample preparation.

References