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Abstract

The behavior of a classical charged point particle under the influence of only a Coulombic binding potential and c
electromagnetic zero-point radiation, is shown to agree closely with the probability density distribution of Schröd
wave equation for the ground state of hydrogen. These results again raise the possibility that the main tenets of
electrodynamics (SED) are correct.
 2003 Elsevier B.V. All rights reserved.
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The following fact probably comes as a surprise to most physicists. A group of researchers in the past h
proposed and deeply investigated the idea that classical electrodynamics, namely, Maxwell’s equations
relativistic version of Newton’s equation of motion, may describe much, if not all, of atomic physical proc
provided one takes into account the appropriate classical electromagnetic random radiation fields acting on
charged particles. Stochastic electrodynamics (SED) is the usual name given for this physical theory; it w
significantly advanced in the 1960s by Boyer [1,2] and Marshall [3–5], although its full history is somewha
complicated and is reviewed and described in Ref. [6]. Other useful reviews exist such as Refs. [7,8], and

SED is really a subset of classical electrodynamics. However, it differs from conventional treatments in c
electrodynamics in that it assumes that if thermodynamic equilibrium of classical charged particles is at all p
then a thermodynamic radiation spectrum must also exist and must be an essential part of the thermo
system of charged particles and radiation. As can be shown via statistical and thermodynamic analyzes
thermodynamic equilibrium is possible for such a system, then there must exist random radiation that is
even at temperatureT = 0. This radiation has been termed classical electromagnetic zero-point (ZP) rad
where the “ZP” terminology stands forT = 0, as opposed to “ground state” or “lowest energy state”. Eithe
the following requirements has been shown to enable the derivation of the required functional form of
radiation spectrum: (1) the ZP radiation must possess a Lorentz invariant character [1], and (2) no heat m
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during reversible thermodynamic operations [10–12]. Deriving the ZP spectral form from (1) follows only
the radiation properties, while (2) involves the interaction of both particles and fields.

Results have been obtained from SED that agree nicely with quantum mechanical (QM) predictions fo
systems [7], such as for systems of electric dipole simple harmonic oscillators [9,13], and for linear electrom
fields in Casimir/van der Waals type situations [6,12,14]. Moreover, most physicists, who know of SE
likely to agree that SED provides a better description of physical processes than does conventional
electrodynamics without the consideration of ZP and Planckian electromagnetic radiation. Nevertheless,
late 1970s and early 1980s, the vast majority of physicists have clearly concluded that SED cannot come
predicting the full range of QM phenomena for nonlinear dynamics found in real atomic systems [6,9,15–
particular, these past analyzes of SED predicted clear disagreements with physical observation, such as th
hydrogen atom will ionize atT = 0 and that the spectra predicted by SED does not agree with QM predictio

However, as discussed in Refs. [21,22], reasons exist to raise some doubts on these conclusions. In p
for atomic systems, all of the key physical effects should arise from electromagnetic interactions. Exa
other nonlinear binding potentials, other than ones arising from Coulombic binding potentials, have no
to real physical atomic systems. Even though one can place any potential function in Schrödinger’s e
and attempt to solve it, SED does not need to match these solutions as they have little relationship, in d
the real physical world of atomic systems. Instead, realistic binding potentials must be examined. Moreo
perturbation analyzes, if one assumes that the small effect of the electric charge is a key part of the per
analysis, then this effect must be consistently carried out for the radiation reaction as well as for the
potential and the effect of the ZP field acting on the orbiting charge [22]. Still, properly accounting for
objections into an improved analytic, or even semi-analytic, reanalysis of SED, has seemed quite difficult.

For that reason, in this Letter we have turned to attacking one of the more significant problems in S
simulation methods, namely, the hydrogen atom. The present results certainly seem to bear out the hop
earlier impasse in SED may have been due to the difficulties of analyzing nonlinear stochastic differential eq
rather than a fundamental physical flaw in the basic ideas of SED.

In quick summary, the present simulation work was carried out by tracking individual trajectories of ele
for long lengths of time, assuming classical electrodynamics governed the trajectories. Probability distr
were then obtained in coordinate space based on the length of time the electrons spent in regions of sp
the nucleus. Refs. [23–25], and [26] contain many of the technical details that led to the present work, a
these previous works concentrated on the nonlinear dynamical effects of a classical electron, with charge−e and
rest massm, in orbit about an infinitely massive nucleus of charge+e, where besides the binding potential actin
only a limited set of plane waves acted on the electron. In that work, as here, we have numerically so
nonrelativistic approximation to the classical Lorentz–Dirac equation [27,28]:

mz̈ = − e2z
|z|3 + Rreac+ (−e)

{
E
[
z(t), t

] + ż
c

× B
[
z(t), t

]}
,

where the radiation reaction term ofRreachas been approximated byRreac≈
2
3

e2

c3
d3z
dt3 ≈

2
3

e2

c3
d
dt

(− e2z
m|z|3 ), and where

E andB represent the electric and magnetic fields of the radiation acting on the electron. We note that to
have carried out a fair bit of numerical analysis involving full relativistic computation, but, for the results rep
here, the key effects of our present system are adequately represented by the above equations.

The electromagnetic ZP field formally consists of an infinite set of frequencies, which clearly wou
impossible to implement fully in any sort of numerical scheme. Consequently, we limited the number of frequ
in the simulation to ranges that had the most significant effect on the electron’s orbital motion. We did so
ways. Often the ZP radiation fields are represented in SED by a sum of plane waves [6]:

EZP(x, t) = 1

(LxLyLz)1/2

∞∑
nx ,ny,nz=−∞

∑
λ=1,2

ε̂kn,λ

[
Akn,λ cos(kn · x − ωnt) + Bkn,λ sin(kn · x − ωnt)

]
,
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with nx , ny , andnz integers,kn = 2π( nx

Lx
x̂ + ny

Ly
ŷ + nz

Lz
ẑ), ωn = c|kn|, kn · ε̂kn,λ = 0, ε̂kn,λ · ε̂kn,λ′ = 0 for λ = λ′,

andAkn,λ andBkn,λ are both real quantities.BZP(x, t) is expressed by replacinĝεkn,λ by ( k̂n × ε̂kn,λ) in the
above expression forEZP(x, t). In the above,Lx , Ly , andLz are dimensions of a rectilinear region in spa
Usually at the end of SED calculations, these dimensions are taken to a limit of infinity. For our simulati
wanted them to be large, but not so large that they created too many plane waves to prohibit numerical sim
The coefficientsAkn,λ andBkn,λ were taken to be independent random variables generated once at the start
simulation, via a random number generator routine, and then held fixed in value for the remainder of the sim
The random number generator algorithm was designed to produce a Gaussian distribution for these coe
with an expectation value of zero, and a second moment of,〈A2

kn,λ
〉 = 〈B2

kn,λ
〉 = 2πh̄ωn. The latter specification

corresponds to the energy spectrum of classical electromagnetic ZP radiation ofρZP(ω) = h̄ω3/(2πc3) [6].
For reasons to be explained shortly, the orbit of the electron was forced to lie in thex–y plane. We retained

plane waves in our simulation from the summation expression above for the ZP fields, up to an angular fr
that corresponded to that of an electron in a circular orbit of radius 0.1 Å, or, ωmax ≈ 5.03× 1017s−1. For our
simulations, we choseLx = Ly = 37.4 Å andLz = 40,850,000 Å ≈ 0.41 cm, bearing in mind that this scena
has some similarity to an atom situated in a rectilinear cavity with highly conducting walls of these dimen
thus, this “cavity”, or region of space, was made very narrow (≈ 37 Å), but still fairly large in width compared t
the Bohr radius (≈ 0.53 Å), and comparatively very long (≈ 0.41 cm). This procedure was done to keep the num
of plane waves needed as small as possible, while still attempting to retain the most important physical eff
makingLx andLy so very much smaller thanLz, then ifnx or ny was anything other than zero, the frequency of
associated plane wave would be greater thanc2π/Lx ≈ 5.04× 1017 s−1, thereby enabling us to drop such wav
in this approximation scheme. Consequently, only waves traveling in the+ẑ and −ẑ directions were retained
the value ofLz we chose then resulted in≈ 2.2 × 106 plane waves being used in the simulation. The minim
nonzero, angular frequency in the simulation wasωmin = c2π/Lz ≈ 4.61× 1011 s−1, which corresponds to th
angular frequency of an electron in a circular orbit of radius≈ 1.06× 10−5 cm, or, about 2000 times the size of t
Bohr radius,aB ≈ 0.53 Å. In this way, we expected to simulate the approximate behavior of the classical el
in the SED scheme, for radii lying between about 0.1 Å to hundreds of Angstroms. We note, however, that our t
show that changes to the specific numbers we have chosen forLx , Ly , andLz do not change the general resu
we report here (i.e., these are not “fitting parameters”); rather, the key point is the scheme of including
the described range of frequencies to obtain the probability density distribution for radii above about 0.1 Å for
essentially 2D circular motion, with the 2D motion consideration being implemented only in order to signifi
reduce computational time.

This approximate method for representing the desired physical situation greatly reduced the number
waves required ifLx , Ly , andLz were all made equal to≈ 0.41 cm. Although physically this last approa
would be more desirable, it would have resulted in an absurd number of plane waves to handle num
namely,(2.2 × 106)3 ≈ 1019 waves. Nevertheless, even our much reduced number of 2.2 × 106 waves created
expensive runs in CPU time. Consequently, we experimented with and found a second approximation
that reduced our CPU times yet further, while still retaining key physical effects. We will refer to this s
method as our “window” approximation. We note that the results of our window approximation described
have produced results that agree reasonably well with other simulation tests we have made that do not in
window approximation, but that require CPU times of about 250 times what we report below.

Specifically, as discussed in Refs. [23,26], we found that each plane wave effected near-circular orb
significantly for orbital angular frequencies lying within a fairly narrow range of the angular frequency
plane wave itself. Fig. 9 in Ref. [26] best illustrates this point. Our numerical experiments found that f
average range of plane wave amplitudes in the present simulation scheme, that a window of±3% about each
average radius more than adequately accounted for the most significant effects. We were prepared to e
much more complicated window algorithm due to elliptical orbit considerations, based on the work of Ref. [2
numerical experiments showed that the eccentricity of the orbits typically remained small throughout the sim
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Fig. 1. Typical plot ofr vs. t for one trajectory realization via the methods described here. The inset shows the probability densityP (r) vs. r
computed for this particular trajectory.

runs, thereby reducing the need for such considerations. Since the angular frequency of the classical ele
circular orbit ise/(mr3)1/2, the specific algorithm we implemented kept track of the radiusr and retained in the
simulation the plane waves with angular frequencies that fell within a range ofe/(mr3

H)1/2 to e/(mr3
L)1/2, where

rL = r(1−f ) andrH = r(1+f ), wheref was selected in these simulations to be 0.03, based on resonance
analysis. Asr changed, this scheme automatically changed the range of plane wave frequencies include
summation to act on the electron, but always considered only those specific plane waves already initialize
random number generation carried out at the beginning of the simulation. Future speedups in the simulati
well profit by lowering the value off yet further, and/or by treating it as a function ofr to better fit resonanc
width asr varies.

A typical simulation produced roughly circular orbits that would grow and shrink in radius over time, as
in Fig. 1. We carried out 11 simulations, each with the starting condition ofr = 0.53 Å, but with different seed
in the random number generation scheme to create a different set of plane waves. Consequently, the tra
each of these simulations was completely different, although the general character of each was similar. W
Runge–Kutta 5th order algorithm, with an adaptive stepsize. The simulation code was written in C; the ru
carried out on 11 separate Pentium 4 PCs, each with 1.8 GHz processing speed and 512 MB of RAM. T
times for each run was about 5 CPU days, with some more and some less, as we attempted to have all
tracked for reasonably close to the same length in time. However, for those electrons spending more time
nucleus, the calculations took longer because of the faster fluctuations involved. The net time for all runs w
55 CPU days.

Each of the four snapshots in Fig. 2 show the radial probability density curve,PQM(r) vs.r, from Schrödinger’s
wave equation for the ground state of hydrogen, versus the probability distribution calculated at the in
snapshot in time. In Fig. 2(a), the simulated trajectories still strongly show the character of the initial co
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Fig. 2. Plots of the radial probability density vs. radius. The solid line was calculated from the ground state of hydrogen via Schr
equation:P (r) = 4πr2|Ψ (x)|2 = (4r2/a3

B)exp(−2r/aB), whereaB = h̄2/me2. The dotted curves are the simulation results, calculate

a time average for all eleven simulation runs from timet = 0 to the average time indicated: (a) 1.417× 10−12 s; (b) 4.500× 10−12 s; (c)
5.705× 10−12 s; (d) 7.252× 10−12 s.

of r = 0.53 Å. However, each succeeding snapshot shows a striking convergence towardPQM(r). Moreover, the
probability distribution for the end of each of the individual eleven runs has a reasonable resemblance toPQM(r),
although combining all of the results together provides a better match, presumably due to the net longer si
run and the greater sampling over field conditions. We anticipate that future tests of interest will involv
initial starting points, deeper testing for ergodicity, etc.

These simulation results follow the qualitative idea that Boyer originally suggested in 1975 [8], [29] th
larger radial orbits, the dominant part of the ZP spectrum that will effect the orbit will be the low frequency re
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which has a low energetic contribution, thereby leading on average to a decaying behavior of the orbit. H
for orbits of smaller radius, then the electron will interact most strongly with the higher frequency compon
the ZP field, which have a larger energetic contribution. Hence, for smaller radii, the probability greatly inc
that the ZP field will act to increase the orbit size. In this way, a stochastic-like pattern should emerge
electron (Fig. 1).

We believe that the nonlinear behavior of the simple classical hydrogen atom has yet many une
properties; some aspects we have found and recently reported on [23–26], yet it seems clear to us tha
much more to yet uncover. We expect that the present simulation methods, and further advances along th
will continue to prove helpful in exploring this apparently simple, yet surprisingly complex nonlinear syste
well as provide means for investigating other aspects of SED.

Without question, the simulations presented here do not “prove” that SED works for atomic systems,
SED even fully works for the ground state of hydrogen. Far more simulation results, along with detailed an
analysis is essential. Along these lines we have carried out much lengthier simulations than even those d
here, such that the present “window approximation” is not imposed; we expect to report on this work in the
Moreover, there are far more additional tests and phenomena to still be examined, including ionization and
issues, high frequency effects, relativistic corrections, atomic spectra, many electron situations, spin,
understanding of how “photon” behavior arises. We are presently investigating some of these areas. Neve
while fully acknowledging and recognizing the need for these deeper investigations, it also seems clear t
very real and tantalizing possibility, far stronger now that we see predictions for the hydrogen atom in fairl
agreement with physical observation, that the core ideas of SED may well provide a deep fundamental pe
on nature and a potential basis for QM phenomena.
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