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Abstract Previous research investigated the subharmonic resonant behavior for the
classical hydrogen atom, with classical radiation damping and circularly polarized light
acting on the classical electron. The predicted behavior is believed to be physically
accurate when the electron lies far from the nucleus, so that quantum mechanical
effects are minimized, thereby applying to Rydberg atomic situations and highly excited
hydrogen states. This work examines several new physical effects. First, the semimajor
axis is shown to remain relatively constant when in subharmonic resonance; second,
the eccentricity steadily increases until a maximum value is reached, at which point
orbital decay again sets in. If the initial orbit is circular, the maximum value of
the eccentricity, ε, before decay sets in, is shown to always be the same value for
each subharmonic condition. Specifically, with f1 being the applied frequency of light
and with n = 2, 3, 4, ... , denoting the subharmonic orbital frequency corresponding
to 1

n × f1, then a unique and critical value of ε occurs for each n before decay sets
in, where ε2 < ε3 < ε4 < ... , regardless of the initial radius of the circular orbit. A
mixture of simulation results are shown, combined with an analytic derivation for these
critical values of eccentricity.

Keywords hydrogen · Rydberg · stochastic electrodynamics · simulation · classical ·
nonlinear · subharmonic · resonance

Mathematics Subject Classification (2000) 70Kxx · 65Pxx · 65Zxx

1 Introduction

The present article builds on work first discussed in [1]; related work can be found in
[2],[3],[4],[5],[6]. The Rydberg atom is considered here again, with the key example
being of a hydrogen atom in a high excited state, so that classical physics can safely
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be applied in the main analysis. Reference [1] showed that when a circularly polarized
(CP) plane wave is directed normal to the outer electron’s orbit, strong subharmonic
resonances occur that prevent orbital decay for surprisingly long times, and under a
fairly wide range of conditions. As shown, if the electric field amplitude of the CP light
exceeds a certain value that depends to first degree on the order of the subharmonic
resonance, but also on the semimajor axis value and relative phase, then orbital and
energy decay can be held at bay for times long compared to the classical time of orbital
decay. This system is taken up here again, but new results and a deeper analysis and
understanding are provided.

By subharmonic resonance, we mean here the behavior of the classical electron’s
orbit when the period of the orbit is equal to an integer multiple of n = 2, 3, 4, 5, ...,
etc., times the period of the incident CP plane wave; or, in other words, the orbital
frequency of the classical electron orbit is equal to 1

2 ,
1
3 ,
1
4 , etc., to that of the frequency

of the incident plane wave. Here we will show that when the classical electron is caught
in one of these subharmonic resonances, starting initially in a circular orbit, then the
semimajor axis, a, remains fairly constant, with a relatively small fluctuation that
grows larger and larger over time. Meanwhile, the semiminor axis b steadily decreases,
thereby making the orbit more and more elliptical. Consequently, the eccentricity, ε,
of the orbit, given by

ε =

√
1−

(
b

a

)2
, (1)

steadily increases during this time, starting at zero and increasing toward unity, until
a particular critical value, which we will call εcrit,n, is reached. At that moment, the
classical electron falls out of subharmonic resonance and the orbit falls into steady
decline. As shown in the present article, εcrit,n is only dependent on the particular
subharmonic state, n, mentioned above. Thus, for any subharmonic resonance of state
n = 2 (incident light’s frequency is twice that of the electron’s orbital frequency), one
obtains the rather surprising result that the transition from resonance to orbital decay
occurs when the eccentricity reaches the value of εcrit,2 ≈ 0.554. This result holds
under a wide range of conditions, to be qualified somewhat in Sec. V. For example,
this transition point holds for any resonant semimajor axis a value, such as 1 Å or 10 Å,
that satisfies the classical orbit criteria. Likewise, for n = 3, εcrit,3 ≈ 0.671; for n = 4,
εcrit,4 ≈ 0.732. Simulation results will show this behavior. In addition, we will derive
analytically why these specific εcrit,n values occur, arriving at an analytic expression
for them.

Rydberg atomic systems, and the hydrogen atom in particular, are of interest for
a number of reasons. Paths to ionization have subtleties not fully investigated before;
related work to that presented here shows that such paths can be analyzed more deeply
and thereby possibly be controlled better, at least in a statistical sense, which might
be used to advantage in plasma devices and the important area of plasma etching.
In addition, it appears that the “state” of a Rydberg atom can be controlled, which
prompts the ideas of “reading” and “writing” information, or changing the state, of
such a system. By this we mean not just the large quantum number for a highly excited
Rydberg atom, as at this point such a state is nearly a continuum of states, but as
discussed here, the classical subharmonic resonances that can result in semi-stable
states for lengths of time.

Interesting and related experimental work related to the theory and simulation
work reported here, has been carried out by others. For example, there appears to
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be suggestive connections with the experimental work in [7], [8], [9] involving applied
microwaves perturbing atomic Rydberg systems. Their work involve both ionization
and stabilization effects that depend on many critical factors for Rydberg atoms.

Finally, the hydrogen atom has long been a key physical system for our understand-
ing, due to it’s simplicity, yet rich history of physical analysis [10]. Moreover, the work
presented here may well be helpful in a deeper understanding of the connections and
differences between the theory of stochastic electrodynamics (SED) [11],[12] and both
quantum theory and quantum phenomena, and for being applicable to systems other
than linear harmonic oscillators [13]. Some work seems to indicate that the ground
state of hydrogen may be understood to some extent by SED [14], [6], [15], [16], [17].

A very quick way to clarify this discussion on subharmonic resonance, before getting
into the full analysis, is to simply show some simulations of this phenomena. We will
turn to that next. After this brief set of illustrations, an outline of the remainder of
this article, including equations of motion, analysis, and computational method, will
be provided.

Figures 1a-h illustrate most of the essential points that will be brought out here.
Figures 1a-f pertain to one arbitrary n = 2 subharmonic resonance simulation, while
Figs. g,h are of a similar n = 2 situation, but with a five times as large as the former,
just to illustrate that these size changes hold. In the first case, the classical electron
is started in a circular orbit, with radius 1.08 Å. Now, to be really classical, where
quantum effects would be minimized, then it is true that this orbit should be chosen
much larger. However, the same effect illustrated here will still occur if the Lorentz-
Dirac equation [18],[19] is taken to be the governing equation of motion, as has been
verified by numerous simulation tests of ours; the only restriction is that one should
expect this subharmonic resonance to hold, physically, at the larger radius connections,
where the correspondence principle provides the connection between large quantum
numbers and continuous classical trajectories. The reason for showing smaller radii is
that simulations certainly run much faster at small radii, plus if SED is to be explored
further to understand better about it’s applicability and deficiencies, then the smaller
radii are of most interest.

In Fig. 1a, the y-axis shows the semimajor, a, and semiminor, b, axes of the classical
electron’s orbit. Since the orbit starts in a circle, then a ≈ b, up until t ≈ 0.42 ×
10−10 s. During each orbit, namely, about 105 orbits up until the resonance point at
t ≈ 0.42×10−10 s, energy in the form of classical electromagnetic radiation is constantly
being given off, resulting in the orbit constantly decreasing from a = 1.08 Å to where
the n = 2 subharmonic resonance occurs. Note that during this entire simulation,
a circularly polarized plane wave is acting, however, it has a very weak effect on the
trajectory until a decreases to the resonance point, at which time a very sharp resonance
can be seen. In this simulation, the amplitude of the electric field of the CP wave was
chosen to be A = 1000 statvolt/cm, in cgs units (we will use cgs units throughout).

The angular frequency of the CP wave, in this simulation, is given by ω1 =
(
e2

ma31

)1/2
,

where, in cgs units, the charge of the classical electron is e = 4.80298× 10−10esu, the
mass of the electron is m = 9.1091 × 10−28 g, and here a1, for this simulation, was
chosen to be 0.6 Å = 0.6 × 10−8 cm. Thus, ω1 = 3.4241 × 1016 s−1. The n = 2 net
angular frequency resonance, when a CP wave is applied with an angular frequency

ω1, is given by ω2 = ω1
2 , which occurs if ω2 =

(
e2

ma32

)1/2
= 1

2ω1 = 1
2

(
e2

ma31

)1/2
, or

a2 = a1 × 22/3. For this simulation, that means a2 = 0.6 Å × 22/3 ≈ 0.9524Å. As
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can be seen from Fig.1a, this is precisely where this resonance takes place, and indeed
holds to many decimal places if we were to zoom in on the plot much closer.

At this point, the applied CP wave has a clear effect on the orbit. The semimajor
axis a no longer decays, but stays fairly constant, while the semiminor axis, b, begins a
steady decline. The orbit abruptly changes from a circular one (ε = 0) during the initial
decay period between 0 ≤ t / 0.42 × 10−10 s, to becoming more and more elliptical
between 0.42 × 10−10 s / t / 1.07 × 10−9 s. Figure 1b shows this behavior. During
this resonance period, about 2.8×106 orbits occur, each with a period of approximately
3.67× 10−16 s.

Fig. 1 All of the Figs. 1a to 1f were carried out under the same conditions, namely,

a1 = 0.6 Å, ω1 for the CP wave was ω1 =
(
e2

ma31

)1/2
, the orbit began at a = 1.08 Å in

a circular orbit, so εinitial = 0, A = 1000 statvolt/cm, and a2 = a12
2/3 ≈ 0.9524 Å,

and α = 0 in (12) and (13). Fig. 1a Plots of a (t) and b (t) vs. t, for the start of an
n = 2 subharmonic resonance, shown to the end of the resonance in Fig. 1b. The
key points to note are that the orbit initially decays, during which a = b, then a
sharp change occurs when resonance is reached at a2 = a12

2/3 = 0.9524 Å, after
which a stays flat, while b decreases.
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Fig. 1b Plots of a, b, and ε vs. t, from start to finish, where the orbit begins in a
decaying circular orbit (Fig. 1a), then proceeds to the start of the n = 2 subharmonic
resonance, then to the end of this resonance, finally ending in orbital decay. As will
be shown, both analytically and via simulation, εcrit,n ≈ 0.5542 for n = 2, is the
eccentricity when the transition of orbital resonance to decay occurs.

Each of the curves, a vs. t, b vs. t, and ε vs. t, contain a fluctuation to them that
increasingly grows larger with time. This can be seen by the increasing “blocky”width
of each of these lines gradually increasing from the point of resonance t ≈ 0.42×10−10 s,
to when decay eventually sets in at about t ≈ 1.07 × 10−10 s. This growing width of
each of these three curves contains a very fine oscillating line, growing in amplitude as
time increases. To illustrate, Fig. 1c focuses closely in on a vs. t at t ≈ 8 × 10−10 s,
where a periodic oscillation of a vs. t is seen, constituting the source of the blocky curve
in Fig. 1b that grows in width until the decay point is finally reached. The oscillatory
nature of a vs. t for this n = 2 subharmonic resonance has many similar features to the
n = 1 resonance analyzed in detail in Refs. [2],[4],[5], in that as A grows, the period of
the oscillation in Fig. 1c decreases and the amplitude of the oscillations increases.



6

Fig. 1c This plot focuses in on the a vs. t curve in Fig. 1b at about 75% into the
subharmonic resonance, at t ≈ 8× 10−10 s. At this scale of the plot, the variation in
a looks large, but it is only about a ±0.2% variation in a (t). By the point in Fig. 1b
where orbital decay sets in, this variation in a (t) rises to about a ±1.4% variation.
However, the larger A is, the larger will be this variation. Aside: for each full
oscillation of a (t) in this figure, there are approximately 46 orbital periods at this
point in time.

Other than the magnitude of A effecting the fluctuation amplitude of a (t), most
other features of this resonance remain independent of A (provided it is above a critical
value), namely: the resonance at a2 = 0.9524 Å still occurs at this precise value of
a1n

2/3, where n = 2; the center of the a vs. t slightly fluctuating curve remains quite
flat; and resonance stands out as a clear feature, although decay always eventually sets
in. The time in resonance before decay sets in certainly depends on A as well as the
initial phase α between the CP wave and the orbit, all very similar to the studies carried
out on primary (n = 1) resonance in previous studies [4],[5], where the orbital and CP
wave period are essentially the same. In addition, the length of time in resonance also
depends on the starting point of a above the resonance point, and if the initial orbit is
circular or has some degree of ellipticity.

Figure 1d examines the basic behavior of the eccentricity. When resonance sets in,
ε increases in value as the orbit becomes more elliptical. Also, the ε vs. t curve widens
in width as the decay point is approached, due to the increasing oscillation amplitude
of ε. After the decay transition point and the orbit changes from one of resonance to
that of decay, ε decreases rapidly toward zero, meaning a circular orbit, as discussed
in [3].
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Figure 1e clarifies some of the points on fluctuations of ε (t), as it examines the point
in Fig. 1d where orbital decay begins. The oscillations of ε are largest right before the
decay point. A critical change occurs when the larger oscillations to the left “close
over at the top,”becoming smaller humped oscillations on the right, that now decrease
in both amplitude, and average value. From this point on, the CP plane wave loses
it ability to remain in phase with the orbit. The amount of positive energy pumped
into the orbit decreases, on average, while the amount of negative work increases, as
seen in the degree that the CP electric field pushes and opposes the electron along its
trajectory. Thus, for 1.07385×10−10 s / t, little to no net energy is gained from the CP
electric field, as the orbiting electric and CP field become unable, on average, to remain
in a net positive energy phase condition. Consequently, the radiation reaction of the
electron, corresponding to the electron emitting electromagnetic radiation, results in
the orbit returning to one of steady decay. If we were to show the oscillations in the
decaying curve farther out to the right in Fig. 1e, they become smaller and smaller,
the farther away from the resonance point.

However, perhaps the most significant point of Fig. 1e is the value εcrit,n ≈ 0.5542,
for this n = 2 simulation. It turns out that whether we repeat this simulation for
a2 = 2 Å, 10 Å, 20 Å, etc., εcrit,2 is independent of the subharmonic resonance point,
for the case of an initial circular orbit that decays into the resonance point. . This will
be deduced analytically in Sec. IV, and has the remarkable property that it appears
to hold for all other n = 2 situations, aside from a few points to be discussed in Sec.
V. Moreover, Sec. V will address the n = 4, 5, 6, subharmonic resonance situations as
well.

Fig. 1d Plot of ε (t) vs. t, containing the same information as in the ε (t) curve in
Fig. 1b, but now focusing in at the point leading up to decay and showing more
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clearly the widening of the curve, until decay sets in. Once ε ≈ 0.5542 is reached, ε
then rapidly decays toward zero, a circular orbit.

Fig. 1e This plot of ε (t) vs. t, focuses in at the point where the widening curve in
Fig. 1d, changes to a decaying orbit. For t . 1.07385× 10−9 s, the oscillations have
lower and upper humps that look something like a “pinched”sine wave. However, at
t ≈ 1.07385× 10−9 s, the top peaks pinch off entirely, leaving the smaller, decaying
oscillations that can be seen for 1.07385× 10−9 s . t. Similar “signatures”of this
behavior also appear for a (t) , b (t), and energy and angular momentum. Far to the
left of the decay point, the oscillations of these variables look more like Fig. 1c, but
the closer to the decay point, the more “pinched”become the peaks and valleys, until
decay sets in. The εcrit,2 point noted here, of ≈ 0.5542, will agree closely with later
analytical results.

Figure 1f shows two plots, the top one being the potential plus kinetic energy of,
E (t) = − e2

r(t)
+ 1

2m |v (t)|2, as a function of time, t, where r is the radial distance to
the nucleus and v is the classical electron’s velocity. The bottom curve is F · v vs. t,
where F is the sum of the CP wave and radiation reaction forces. The narrow time
region shown in Fig. 1f of 2.65× 10−13 s (same interval as in Fig. 1e) encompasses the
moment when the orbit in Fig. 1b changes from one of resonance to that of decay.

The top curve in Fig. 1f of − e2

r(t)
+ 1

2m |v (t)|2, closely matches the approximate

energy − e2

2a(t)
, where a (t) is of course the relatively slowly changing semimajor axis

of the approximate elliptical orbit, as the elliptical orbit slowly grows and shrinks.
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Indeed, at the scale in Fig. 1f, E (t) = − e2

r(t)
+ 1

2m |v (t)|2 and − e2

2a(t)
, are virtually

indistinguishable from each other. This fact will be illustrated in Sec. IV and will be
used to advantage there when deducing values for εcrit,n.

For the situation of Fig. 1f, a ≈ a2 = 0.6 × 22/3 Å = 0.9524 Å, with a small
oscillation of about ±1.4% (this was measured by zooming in on Fig. 1b) about this

value at the onset of orbital decay, so the center of E vs. t is very close to − e2

2a2
=

−1. 211 × 10−11 erg, as can be seen in Fig. 1f. The bottom curve is the work per unit
time put into the trajectory. When in resonance, the sign of this curve changes roughly
n times per orbit when in an nth subharmonic resonance, since the orbital period is
close to n times the period of the CP wave. With about 720 orbital periods in the
2.65× 10−13 s time interval in Fig. 1f, and roughly twice as many sign changes in F · v
for this n = 2 subharmonic resonance, the plot of F · v vs. t in the bottom of Fig. 1f
is quite complicated, considerably more so than n = 1 resonance situations discussed
in earlier references [2],[4],[5], where the times between sign changes of F · v may last
tens to hundreds of orbits before changing.

A white line was drawn across the bottom plot in Fig. 1f for when F · v = 0. If one
compares the bottom, rapidly changing plot, to the top plot, one can see that when
the average of F · v over a short time interval is positive, then E (t) in the top plot
increases, and when the average of F · v over a short time interval is negative, then
E (t) decreases. This is similar to the n = 1 resonance situation, but also significantly
different in that here, the average over many plus and minus fluctuations of the power
F · v is the key entity that leads to changes in E (t). We will make use of this aspect
when carrying out the analytic predictions of εcrit,n in Sec. IV.
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Fig. 1f The top plot is of E (t) = − e2

r(t)
+ 1
2m |v (t)|2, which will be shown later in

Sec. IV, to be close to − e2

2a(t)
for the range of values of A considered here in this

article. Of course these would be exactly equivalent if the CP wave and radiation
reaction were not present. The bottom plot is of F · v vs. t, where F is the sum of
the CP wave and radiation reaction forces. This “power”of the work per time by the
CP wave and radiation reaction is of course what changes E (t) in the top curve; if
these two forces were zero, then E (t) would be a constant and we would be back to a
pure Coulombic elliptical orbit that does not change. The fast fluctuations of F · v
create a complicated scenario, but by averaging in time over short regions, one can
see that when F · v is more positive than negative, then E (t) increases, and vice
versa. The white line indicates when F · v = 0, to help make it easier to see this last
connection. The time span here is the same as in Fig. 1e, so right when the orbit
changes from a state of resonance to one of decay.

Lastly, Figs. 1g and 1h correspond to an n = 2 subharmonic resonance with an a2
value that is five times as large as the situation in Figs. 1a-f. Figure 1g shows a vs. t
and ε vs. t for the a2 resonance situation of a2 = 3.0×22/3 Å = 4.7622Å, which should
be compared with the plots in Fig. 1b for a2 = 0.6×22/3 Å = 0.9524Å. Likewise, Fig.
1h focuses in on the ε vs. t point where orbital decay sets in; this figure corresponds to
Fig. 1e. The n = 2 situation of a2 = 3.0×22/3 Å in Figs. g,h and of a2 = 0.6×22/3 Å in
Figs. 1b,e, contain essentially the same εcrit,2 value at the point when orbital resonance
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changes to orbital decay, despite the large difference in semimajor axis. This is one of
the key points to be shown in the analytical derivation in Sec. IV.

Fig 1g This n = 2 subharmonic resonance condition has an a2 value that is five
times as large as in Figs. 1a-f. Here, a1 = 3.0 Å and a2 = a12

2/3 = 4.7622 Å, while
A = 50 statvolt/cm, εinitial = 0, α = 0. The ε vs. t curve is also shown. Note that
ε = 0 (a circular orbit) while a decreases until a (t) hits the n = 2 resonance, at which
point ε (t) starts increasing.
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Fig 1h This plot of ε (t) vs. t, focuses in at the point in Fig. 1g where the orbit
changes from one of resonance to orbital decay. Compare with Fig. 1e, where a (t)

was about 1/5 times the size. In both cases, εcrit,2, the eccentricity at the point
between resonance and decay, is nearly identical. Later analytical results in Sec. IV
will establish this connection in a deeper manner.

Finally, soon we will examine conditions such as an n = 3 or n = 4 subharmonic
resonance, where ω3 = 1

3ω1, ω4 = 1
4ω1, etc., where ω1 = f1

2π is the net angular

frequency of the CP wave, f1 is the CP wave’s frequency, ω3 = f3
2π , ω4 = f4

2π , and
f3 and f4 are the net orbital frequencies of the classical electron orbit. We will see
that similar scenarios to our n = 2 example will play out. We will find a unique
value of εcrit,3 ≈ 0.669 for all n = 3 subharmonic resonances, no matter the orbital
resonance size. For n = 4, the basic behavior will again hold, but now εcrit,4 ≈ 0.732.
These points will be brought out, with some caveats, and analyzed in more detail in
subsequent sections.

The plots shown above are in sharp contrast to the work shown in Ref. [1], where
the analysis concentrated on radius and energy versus time, as opposed to recognizing
that the orbits were changing from circular to becoming more elliptical in nature.
Consequently, the previous work did not touch on the essentially constant semimajor
axis during resonance, nor the critical values of ε when decay eventually arose.

The remainder of the article proceeds as follows. Section II turns to the specific
equations governing this phenomena and our method for extracting the near elliptical
parameters for the orbits. More simulation results are shown in Section III, such as
the effect of increasing A for various subharmonic resonance cases, and showing the
unique result of εcrit,n. Section IV then analyzes and derives a formula for εcrit,n for
different subharmonic resonances Section V comments on some physical aspects and
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caveats that need to be mentioned about this work. Concluding comments are in Sec.
VI.

2 Equations of motion and elliptical parameter extraction

The motion of the classical electron, with point charge −e and mass m, no spin, and for
nonrelativistic speeds, while bound to an infinitely massive center with opposite point
charge +e (nucleus), is described by the nonrelativistic Lorentz-Dirac (LD) equation
of motion in cgs units: [18],[20]:

m
d2z

dt2
=− e2 z

|z|3
+

2e2

3c3
d3z

dt3
− eECP [z (t) , t]− e

c

dz

dt
×BCP [z (t) , t] . (2)

Here, m is the mass of the classical electron, −e is its charge, c is the speed of light,
−e2 z

|z|3 is the Coulombic binding force, −
2e2

3c3
d3z
dt3

is the nonrelativistic radiation reac-

tion term, and E [z (t) , t] and B [z (t) , t] are additional electric and magnetic fields act-
ing on the system, acting via the Lorentz force on the motion of the particle. Certainly
other radiation fields than a CP wave can be examined, but this study concentrates
only on the effects of a CP wave. Section VI comments further on this emphasis, with
qualitative discussions on other choices.

In place of (2), the full relativistic LD equation [18] can certainly be used, but for
typical Rydberg orbits, where the orbit radius is quite large, it is quite unnecessary
as the classical electron’s speed |v| is so small compared to the speed of light. For
circular orbits, only when the radius r shrinks to about 0.28 Å is v/c ≈ 0.01, or 1%,
and not until r is nearly 100 times smaller than that does v/c reach about 0.1, or 10%,
where relativistic corrections are then clearly needed. For elliptical orbits, the need
for relativistic corrects can occur earlier, as the maximum speed in an elliptical orbit
from the nonrelativistic and the classical Kepler-like equation of

m
d2z

dt2
=− e2 z

|z|3
, (3)

is given by

vmax =
e

m1/2a1/2

(
1 + ε

1− ε

)1/2
. (4)

When ε = 0, the orbit is circular, vmax/c = e
(ma)1/2c

, and it is this quantity that

equals 0.01 when a ≈ 0.28 Å, as mentioned before. However, as can be seen from
(4), for extremely elliptical orbits, where ε approaches 1, then the full relativistic LD
equations should be used. We will not be examining such situations here, nor examining
very small a situations.

The “damping”term in (2) of 2e
2

3c3
d3z
dt3

is much weaker than other forces, due to the
extremely small magnitude of

τ ≡ 2e2

3c3
= 6.266031× 10−24 s . (5)

Moreover, the magnitude of the Lorentz force of the CP plane wave acting on the
electron, is typically orders of magnitude smaller than the Coulombic force of the
nucleus, −e2 z

|z|3 , acting on the electron, at least for the simulation examples considered
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here, as well as what might normally be encountered experimentally. Hence, as is often
done in such problems, the small term 2e2

3c3
d3z
dt3

is approximated by [18],[20]:

2e2

3c3
d3z

dt3
=

2e2

3c3
d

dt

(
d2z

dt2

)
≈ 2e2

3c3
d

dt

(
−e2 z

|z|3

)

= −2e4

3c3

[
dz
dt

|z|3
−

3z(z·dzdt )

|z|5

]
. (6)

The situation considered here is where the orbit of the classical electron begins in
the x−y plane and where the CP plane wave is directed in the −ẑ direction toward the
z = 0, x− y plane. The following expressions for the CP electric and magnetic fields
are due to two traveling plane waves, one π2 with respect to the phase of the other, but
both traveling in the −ẑ direction, so k = −ẑω1c , where ω1 is the angular frequency of
the incident plane waves. Thus,

k̂ = −ẑ =
ECP×BCP
|ECP×BCP |

, (7)

and
ECP = A

[
x̂ cos

(
k · z−ω1t+

π

2
− α

)
− ŷ cos (k · z− ω1t− α)

]
, (8)

BCP = A
[
−x̂ cos (k · z− ω1t− α)− ŷ cos

(
k · z−ω1t+

π

2
− α

)]
. (9)

The electric and magnetic fields lie solely in the x − y plane of the orbiting electron,
with k̂×ECP = −ẑ × ECP = BCP . The electric field vector points and rotates in
the counterclockwise direction, with a constant magnitude of A, with the same for the
magnetic field, which is perpendicular to the electric field. The phase factor α allows
for the situation where the force −eECP and the velocity of the electron, dzdt , are at an
angle α at t = 0. The significant effect of α on length of time to decay was explored in
some detail in Ref. [5] for the primary resonance case of n = 1; the effect can be quite
significant. Section VI comments briefly on the interest here for a single CP wave;
however, clearly the infinite other types of radiation states possible, simply magnify
the phenomena that might occur.

The only force that acts to move the classical electron out of the x− y plane orbit
is due to the Lorentz force from the magnetic field, or

−e
c

dz

dt
×BCP [z (t) , t] .

The magnitude of this force is typically fairly weak force due to the 1/c factor. For
the length of time of the simulations considered here, the contribution of this force in
the z direction, is fairly negligible. It acts to slowly change the planar orbit to a more
3D behavior, but the time scale is quite long.

Consequently, our following analysis will entail the CP fields in the x− y plane at
z = 0. Rewriting slightly:

ECP = A
[
x̂ cos

(
ω1t−

π

2
+ α

)
− ŷ cos (ω1t+ α)

]
, (10)

BCP = A
[
−x̂ cos (ω1t+ α)− ŷ cos

(
ω1t−

π

2
+ α

)]
. (11)
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Combining (2) with (6), (10) and (11), and writing the equations of motion in the
x− y plane using polar coordinates, r and θ, results in:

m
(
r̈ − rθ̇2

)
= −e

2

r2
+ 2τe2

ṙ

r3
+ eA sin (θ − ω1t− α) , (12)

and

m
(
rθ̈ + 2ṙθ̇

)
= −τe2 θ̇

r2
+ eA cos (θ − ω1t− α) . (13)

The left side of (12) equals the mass times the acceleration in the positive radial
direction; the right side equals the sum of forces in the same direction. The left side
of (13) equals the mass times the acceleration in the increasing θ direction; the right
side equals the sum of forces in the same direction.

The nonlinear, coupled, ordinary differential equations (12) and (13), second or-
der in time, will be solved numerically here using an adaptive stepsize Bulirsch-Stoer
routine [21], similar to the work in [1]. However, here a least squares method was devel-
oped and implemented to extract elliptical parameters matching the electron’s slowing
changing orbit. The premise here is that with the Coulombic potential being the dom-
inant forcing mechanism on the orbit, then the orbit should be essentially elliptical,
since from far back with Newton’s work, (3) leads to elliptical orbits for bound systems.
The CP plane wave is the next strongest force, which can result in the elliptical orbit
slowly changing, while the damping term acts to slowly shrink the orbit. Indeed, if no
CP wave is present, the damping term slowly collapses any elliptical orbit, making it
more circular, and shrinking the radius to zero (for example, see Fig. 4 in [3], where
this effect is clearly shown). Of course, when the radius becomes too small, perhaps
less than about 0.1 Å (vmax/c ≈ 0.017), then the relativistic Lorentz-Dirac equation
should be used.

Thus, r (t) and θ (t) were numerically solved for here, plus a parameter extraction
method was implemented to approximate the trajectory as an ellipse that slowly rotates
and changes in the size of its two axes. The parameters extracted were the approximate
values for the semimajor axis, a, the eccentricity, ε, and the angle, θ0, of the center axis
of the ellipse with respect to the x axis. From a and ε, one can obtain the semiminor
axis, b, from (1). The radius of the orbit, from the nucleus center of the Coulombic
force (again, approximating that this much more massive center does not move), can
be written as a function of θ via

r (θ) =
a
(

1− ε2
)

1− ε cos (θ − θ0)
, (14)

where x = r cos (θ) and y = r cos (θ). The above expression, when a, ε, θ0 are constants,
is the geometrical solution to the Kepler-Coulombic (3) equation. The parameters a,
ε, and θ0 were obtained via the least squares method described in [3], that keeps track
of r and θ values of the orbiting particle, for N points, where N is made large enough
to encompass at least one or more orbits. Thus, a, ε, and θ0 were treated as slowly
changing parameters in time to match the approximate elliptical orbit at any instant.
These parameters were extracted by rewriting (14) as

1

r
=

1

a (1− ε2) −
[
ε cos (θ0)

a (1− ε2)

]
cos (θ)−

[
ε sin (θ0)

a (1− ε2)

]
sin (θ) , (15)
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and then making a table of 1/r, cos (θ), and sin (θ) for N points, sequentially in time.
The parameters

P1 ≡
1

a (1− ε2) , (16)

P2 ≡ −
ε cos (θ0)

a (1− ε2) , (17)

P3 ≡ −
ε sin (θ0)

a (1− ε2) , (18)

were then obtained by least-squares methods. From P1, P2, and P3, then a, ε, and θ0
were obtained.

3 Simulation Results

Similar to the n = 2 example in Fig. 1 in Sec. I, Fig. 2 below shows a similar scenario for
a subharmonic resonance of n = 3, where the incident CP wave has a frequency three
times that of the electron’s orbital frequency. In Fig. 2a, the electron’s orbit started
in a circular orbit with r = 0.7 Å. To “catch”an electron in an n = 3 state, versus an
n = 2 one, for similar radii values, requires much stronger CP plane wave amplitudes,
as discussed in [1] (e.g., see Fig. 4 in [1]). Here, A = 35, 000 statvolt/cm was used. If
A is too low, then the resonance condition is not met, and the electron will continue to
decay through the n = 3 resonance point. A related important characteristic feature
is that the larger A is above the critical value to “catch and hold”the decaying orbit,
the wider the a vs. t resonance envelope becomes as t increases, as will be clearly seen
shortly in Fig. 3a.

In Fig. 2, the angular frequency of the CP wave was chosen to be ω1 =
(
e2

ma31

)1/2
,

with a1 = 0.3 Å, so ω1 = 9.6848×1016 s−1, while the resonant orbital angular frequency
was ω3 = 1

3ω1. As seen in Fig. 2a, the electron decays from the starting point of
r = 0.7 Å, despite the CP wave constantly acting. During this initial decay period, the
electron’s motion is barely effected by the CP wave. Although not shown, if plots with
A = 0 and A = 35, 000 statvolt/cm, or other values of A, were superimposed, little
difference would be seen until resonance is reached. However, when the semimajor
axis (which up to now is the same as the radius) decays to the point of a3 = a1 ×
32/3 = 0.6241 Å, then the CP wave’s action on the orbit becomes very significant.
The decaying orbit stops, the semimajor axis a vs. t becomes fairly flat, although with
an envelope, due to oscillations in a vs. t, that widens as t increases. As in Fig. 1

for the n = 2 case, b decreases over time, resulting in the eccentricity ε =

√
1−

(
b
a

)2
increasing. Prior to reaching the n = 3 resonance point, ε ≈ 0, as the orbit is essentially
circular. After reaching the resonance point, ε increases steadily until the orbit goes
back into a decaying mode, which is reached for n = 3 conditions when ε ≈ 0.6706, to
be deduced analytically in Sec. IV.

Figure 2a also contains a fairly typical plot of θ0, before, during, and after reso-
nance. Until resonance is reached, θ0 ≈ 0. After the start of resonance, which occurred
at about t ≈ 1.1× 10−11 s, the orbit becomes more and more elliptical and the axis of
the orbit undergoes rotations adding up to about 2800 radians, or about 446 revolu-
tions. Of course during this resonance period the classical electron undergoes orders
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of magnitude more revolutions about the nucleus, namely, about 6 × 105 revolutions,
or about a factor of 1000 for this particular example.

Resonance makes the axis of the orbit rotate, with larger amounts of rotation
occurring as A becomes larger. Before and after resonance, however, the axis rotations
essentially stop, which makes sense since at these points, the orbit is little influenced by
the CP wave and is largely dictated by the 1/r2 Coulombic attraction to the nucleus,
which of course results in the well known elliptical orbit behavior explained so long ago
by Newton.

Fig. 2a Here, A = 35, 000 statvolt/cm, a1 = 0.3 Å, a3 = 0.3× 32/3 Å = 0.6240 Å,
ainitial = 0.7 Å, εinitial = 0, and α = 0 in (12) and (13). The classical electron orbit
begins in a spherical orbit at a = 0.7 Å, but upon hitting resonance at
a3 = 0.6240 Å,the orbit sharply transitions into one of resonance, where a remains
“constant with growing fluctuations,” for about 1.2× 1010 s, until orbital decay
starts. a (t) , b (t), ε (t), and θ0 (t) are shown in this plot.

Figure 2b shows a “focused-in” view of the a vs. t curves during the period from
when the n = 3 resonance changes into a decaying orbital trajectory. As can be
seen, two other resonances, not really visible in Fig. 2a, are past through, namely, the
a2 = a12

2/3 = 0.4762 Å and a1 = 0.3 Å resonance points. The conditions imposed by
A, ε, α at these resonance points was insuffi cient to significantly delay further decay,
unlike the a3 = 0.6240 Å point. Ultimately, the orbit must have a close correlation in
phase with the CP wave for sustained resonance to occur. More will be said about
this later.
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Fig. 2b Here, the a (t) vs. t curve in Fig. 2a is examined closely at the region where
the n = 3 subharmonic resonance changes to one of orbital decay. After the electron
leaves the n = 3 subharmonic state, it past through two other resonant states, with
conditions of A, ε, α, insuffi cient to delay decay at these points. These other
resonant positions occurred at the n = 2 and n = 1 positions:
a2 = a1 × 22/3 Å = 0.4762 Å, and a1 = 0.3 Å. As in Fig. 2a, A = 35, 000

statvolt/cm, ainitial = 0.7 Å, and εinitial = 0.

Figure 2c shows a blown up view of ε vs. t when the end of the n = 3 subharmonic
resonance state is reached. As can be seen, ε ≈ 0.669 when decay sets in. The value
of 0.6706 is shown, which is the analytic value computed in Sec. IV, and close (good
to three digits) to the simulated/computed value, although not as close as the n = 2

case shown in Sec. I, which agreed to four digits.
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Fig. 2c This plot shows the behavior of ε vs. t at the point where the n = 3

resonance condition in Fig. 2a changes to orbital decay.

Figure 3 demonstrates the “universality” of εcrit,n ≈ 0.554 for the n = 2 sub-
harmonic resonance, for the situation where the classical electron’s orbit begins in a
circular orbit with semimajor axis a greater than the a2 = a12

2/3 resonance point, and
with the CP wave amplitude large enough to cause resonance once the orbit decays
to a2. Figures 3a and 3b concern the situation, where a1 = 0.5 Å, or the angular fre-

quency of the CP wave is ω1 =
(
e2

ma31

)1/2
= 4.5011× 1016 s−1. The starting radius is

0.9 Å, and six simulations are superimposed, each with a different CP wave amplitude:
A = 100, 500, 1000, 5000, 10, 000, and 50, 000 statvolt/cm.

In Fig. 3a, a vs. t is shown. As can be seen, the electron is “caught” at a2 =

a12
2/3 = 0.7937 Å in all six cases. The length of time in the n = 2 subharmonic

resonance varies, with the 500 statvolt/cm being the longest, then with decreasing
times in the order of 1000, 5000, 10,000, 50,000, and 100 statvolt/cm. Similar situations
were shown for the n = 1 case in Refs. [4] and [5]. The larger the value of A, the larger
becomes the “envelope” of the a vs. t fluctuations around the a2 = 0.7937 Å point,
with the widest ending envelope here being the one with A = 50, 000 statvolt/cm.

Figure 3b turns to examine these same simulations, but now plotting ε (t) vs. t. In
each case, ε starts at zero, since the initial orbit is circular, then increases until the
value of εcrit,2 ≈ 0.554, at which point the orbit goes back into decay, similar to Fig.
1d. The key point is that all have essentially the same value of εcrit,2 for when the
orbit changes from one of n = 2 subharmonic resonance to decay, of ε = 0.554 (Sec. V
will cover related points).
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Fig. 3a Here a range of CP amplitude A values (100, 500, 1000, 5000, 10,000, and
50,000 statvolt/cm) are simulated for the conditions of the CP wave’s angular

velocity being ω1 =
(
e2

ma31

)1/2
, with a1 = 0.5 Å. In each case the starting radius is

0.90 Å, with εinitial = 0, α = 0. The resonance encountered here is n = 2,
a2 = a12

2/3 = 0.7937 Å. As can be seen, all situations have a strong resonance at
this a2 value, with the main difference being twofold: (1) the larger A is, the larger
the envelope of oscillations of a about a2; (2) A can clearly effect the duration time in
this n = 2 subharmonic resonance.
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Fig. 3b The same simulation conditions as in Fig. 3a also here, but now ε vs. t is
plotted for each of the six A values examined of 100, 500, 1000, 5000, 10,000, and
50,000 statvolt/cm. All curves show that εcrit,2 ≈ 0.5542. This result occurred
despite the difference of 500 factor difference in A values, from 100 to 50,000
statvolt/cm. Other behaviors differed, such as the envelope size of the fluctuations in
ε, and the length of time in resonance, but εcrit,2 was largely independent of A, much
like a2 was common for all the curves in Fig. 3a.

Originally, we intended to display several more sets of figures like 3a and 3b, each
at different a1. However, the same behavior is observed in each, so perhaps displaying
all these plots is not necessary. Indeed, the following same behavior would have been
seen for a wide range of a1 values, namely, (1) the final eccentricity before decay is
very close to 0.554, if not even closer to the the 0.5542 analytical value later calculated
in Sec. IV; (2) the envelope around the a vs. t curve always increases in width as A
increases; and (3) that the length of time of an n = 2 resonance certainly depends
on the value of A, reaching a longest value (here it was for 500 statvolt/cm), then
decreasing as A becomes larger beyond that point.

Incidentally, it is a curious point from a classical physics point of view, that circular
orbits have a bit of “preference,” or likelihood of occurrence, over orbits with ε > 0,
for simple situations with either no radiation applied, or perhaps one CP wave applied.
When a large range of radiation frequencies and amplitudes are applied, as in the
stochastic situation of Ref. [6], then the following comment does not hold, but for
simple situations as just mentioned, the radiation reaction term in the Lorentz-Dirac
equation acts in such a way as to return an initially decaying elliptical orbit back toward
a circular (decaying) orbit. This was noted in Ref. [3], Fig. 4, in particular, and also
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in several points and figures later in [3] where various applied radiation conditions
occurred. Here, we also see this point in Fig. 3b, where once the electron falls out of
resonance, the radiation reaction term acts to make ε→ 0 as the orbit decays.

To help illustrate these behaviors further, Fig. 4 shows how r vs. t occurs for the
a1 = 0.5 Å case in Fig. 3. As the eccentricity starts to increase once subharmonic
resonance is reached, the orbit changes from circular to elliptical character, with a
minimum radius of (1− ε) a and a maximum radius of (1 + ε) a in each orbit. At
the point of onset of decay, with a2 = a12

2/3 = 0.7937 Å and εcrit,n ≈ 0.554, then
rmin = 0.354 Å and rmax = 1.234 Å, agreeing fairly nicely with the data shown in Fig.
4. Changing the CP amplitude A does not significantly alter the envelope of the huge
number of orbit fluctuations in Fig. 6, nor does it influence the final value of εcrit,2 ,
but it does alter the length of time that the subharmonic resonance lasts before decay
sets in again.

Fig. 4 This figure contains a set of plots that corresponds to Fig. 3, where
a1 = 0.5 Å. The large radius change is due to the orbit, initially in a circular state,
changing to an elliptical state, where the maximum of the eccentricity is about 0.554,
and is largely independent of the value of the CP amplitude. The two horizontal
lines of 1.234 Å and 0.353 Å represent the maximum and minimum of the radius,
given that εmax ≈ 0.554.

Finally, before turning to the next section involving an analytical analysis of εcrit,n,
Fig. 5 shows a plot of θ0 vs. t for the corresponding case of Fig. 1, where a1 = 0.6 Å

and a2 = a12
2/3 = 0.9524 Å. Here, θ0 increases the most in the situation in Fig. 1

(a1 = 0.6 Å) when A = 50, 000 statvolt/cm (of the six situations examined of 100, 500
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1000, 5000, 10,000, 50,000 statvolt/cm), with about 57,000 radians change occurring for
θ0, when in subharmonic resonance. If we were to plot θ0 for the case of Fig. 4 where
a1 = 0.5 Å, we would see about 33,500 radians being the maximum when A = 50, 000

statvolt/cm, and if we were to examine a yet smaller semimajor case, when a1 = 0.4 Å,

then 17,000 radians would occur during resonance when A = 50, 000 statvolt/cm.

Fig. 5 Plot of θ0 vs. t, for the situation in Fig. 3. Here, a1 = 0.6 Å. The larger the
value of A, the more the elliptical orbit rotates while the classical electron is in the
subharmonic resonance state.

4 Analysis of critical values of ε

To deduce the values of εcrit,n, we will start with the conserved quantities in the classic
Kepler-Coulombic case of a central force with a 1/r2 dependence, which in our case
means the situation where no CP plane wave acts and no radiation reaction exists.
We will then examine how these otherwise conserved quantities, change with time due
to the CP wave and the radiation reaction. The natural conservation quantities to
consider are the energy, the angular momentum vector, and the Laplace-Runge-Lenz
vector. As discussed in [22], the angular momentum vector and the energy alone
contain only four independent constants of the motion, while the Laplace-Runge-Lenz
vector adds one more. We will make use of this work, nicely presented in texts such
as [22] and [23]. We make the approximation that the orbit remains essentially in a
two dimensional plane during the duration of the resonance and the subsequent decay
and that the natural Coulombic based orbit is slowly modified by the additional forces
of the CP plane wave and the small, but constant, radiation reaction. Identifying the
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normally constant Coulombic parameters and having them slowly change due to these
additional forces, will be suffi cient to deduce much about εcrit,n.

Multiplying (12) by the radial speed ṙ, and multiplying (13) by the speed rθ̇ in
the increasing θ direction, adding the two contributions, then yields, after a bit of
manipulation:

d

dt

[
m

2

(
ṙ2 + r2θ̇

2
)
− e2

r

]
= τe2

(
2
ṙ2

r3
− θ̇

2

r

)
+ eA

[
ṙ sin (θ − ω1t− α) + rθ̇ cos (θ − ω1t− α)

]
. (19)

The left side is the time rate of change of the kinetic energy, in polar coordinates, plus
the time rate of change of the Coulombic potential energy. On the right side, the first
term is the nonrelativistic rate of work by the radiation reaction term, very weak, but
always present and causing the tendency for orbital decay. The second term on the
right is the rate of work by the Lorentz force of the CP wave acting on the classical
electron, normally varying rapidly in sign, but with a sign correlation occurring when
orbital angular frequency and applied frequency ω1 match up. If the radiation reaction
and CP wave did not exist, then the left side would equal zero, and the kinetic plus
Coulombic potential energy would be a constant.

Similarly, the angular momentum rate equation can be deduced by multiplying (13)
by r and converting it into:

d

dt

(
mr2θ̇

)
= −τe

2θ̇

r
+ erA cos (θ − ω1t− α) . (20)

The left side is the time rate of change of Lz = mr2θ̇, the angular momentum com-
ponent perpendicular to the plane of the orbit, written in polar coordinates. On the
right side, the first term is the nonrelativistic torque expression due to the radiation
reaction, again, very weak, but always present. The second term on the right is the
torque acting on the orbiting classical electron due to the Lorentz force of the CP wave.
If the radiation reaction and CP wave were not present, Lz would be a constant.

Following standard treatments such as in [22], [23], [24], when the right sides of
(19) and (20) equal zero, corresponding to the pure Kepler-Coulombic problem of (3),
then for a bound orbit,

θ̇ =
e [1− ε cos (θ − θ0)]2

m1/2a3/2 (1− ε2)3/2
, (21)

and from (14) and (21)

Lz = mr2θ̇ = e (am)1/2
(

1− ε2
)1/2

, (22)

where the approximation sign would be replaced by an equality sign if radiation damp-
ing and the CP wave were not present.

Assuming the rate of time variation in a, ε, and θ0 is small, compared to the much
more rapid time variation in θ (t), then also from (14) and (21), one can show that

m

2

(
ṙ2 + r2θ̇

2
)
− e2

r
≈ − e

2

2a
. (23)
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From (19) and (23),

d

dt

(
− e

2

2a

)
≈ τe2

(
2
ṙ2

r3
− θ̇

2

r

)
+eA

[
ṙ sin (θ − ω1t− α) + rθ̇ cos (θ − ω1t− α)

]
, (24)

and from (20) and (22),

d

dt

[
e (am)1/2

(
1− ε2

)1/2]
≈ −τe

2θ̇

r
+ erA cos (θ − ω1t− α) . (25)

The simulations reported in this article arise from numerically solving for r (t) and
θ (t) in (12) and (13), while the fitted parameters a, ε, and θ0 to these orbits come
from the least squares fit method discussed in Sec. II. Equations (24) and (25) contain
a mixture of these variables and were deduced to enable an understanding of the
interesting values of εcrit,n that result when orbits in a subharmonic state eventually
fall out of resonance and turn back into decaying orbital paths.

To ensure that the approximations make sense, Fig. 6 offers some insight into the
approximations by comparing the situation for the exact same conditions of Fig. 1 in
Sec. 1. As observed in Fig. 6, the plots of E = 1

2mv
2 − e3

r versus the approximate

value of − e
2

2a , and Lz = mr2θ̇ versus the approximate value of e (am)1/2
(

1− ε2
)1/2

,

works quite well for this situation, and helps to justify the above analysis.

Fig. 6a There are four curves here. The top two involving energy, are essentially on
top of each other. Likewise, the bottom two involving angular momentum, are
essentially indistinguishable at this view. The top two curves are E = 1

2mv
2 − e3

r
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and the approximate value − e
2

2a . The bottom two are Lz = mr2θ̇ and the

approximate value e (am)1/2
(

1− ε2
)1/2

. The conditions for the simulation are the

same as in Fig. 1, namely, a1 = 0.6 Å, ω1 =
(
e2

ma31

)1/2
, the orbit began at a = 1.08 Å

in a circular orbit, so εinitial = 0, A = 1000 statvolt/cm, and a2 = a12
2/3 ≈ 0.9524 Å,

and α = 0.

Fig. 6b This plot “zooms”in on the transition point between subharmonic resonance
and orbital decay in the top two curves in Fig. 8a, around t ≈ 1.07385× 10−9 s. The
two curves are E = 1

2mv
2 − e3

r and − e
2

2a , with the former curve of
1
2mv

2 − e3

r vs. t
having the more “wiggles,” for lack of a better description. Clearly, the two curves
match each other quite well.



27

Fig. 6c This plot also “zooms”in on the transition point between subharmonic
resonance and orbital decay in the top two curves in Fig. 4a, around

t ≈ 1.07385× 10−9 s. The two curves are Lz = mr2θ̇ and e (am)1/2
(

1− ε2
)1/2

,

with the former curve of mr2θ̇ vs. t having the more “wiggles.”Clearly, the two
curves match each other quite well.

To make further progress on deducing the εcrit,nvalues, we first note that when
in resonance, a ≈ constant; hence, the kinetic plus potential energy (23), which is

approximately − e
2

2a , is therefore also approximately constant. Now, this isn’t exactly
true, as a is certainly fluctuating when in resonance, and the fluctuation grows over
time, as evident from Fig. 3a; this fact we will need to take into account. This will be
done by taking a short time average,

〈 〉 ≡ 1

τ

t+τ∫
t

( ) dt′ ,

where the interval τ is suffi ciently large to contain many oscillations of the quantities
of interest, as in Fig. 2c, but not so large as to miss the key features, such as the start
and end of resonance; i.e., we anticipate usually hundreds to thousands of orbits, then
some of these diffi culties can be avoided, and thereby pertain closer to the idea of a, ε,
and θ0 in the first place, since these parameters are intended to model the relatively
slow evolution of the orbit.

Taking this time average over both sides in (24) during resonance, then the left side
of (24) reduces to essentially zero. Physically, this is equivalent to saying that the time
average of the first term on the right, which is negative, and in classical physics due to
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electromagnetic energy being radiated off, is compensated by the positive energy, on
average, that is pumped back into the orbit by the CP wave.

Taking a similar time average for (25) also helps. However, the left side does not
always equal zero when in resonance as can be seen in Fig. 6a. The orbit becomes
more and more elliptical throughout the evolution of the subharmonic resonance, so ε
increases on average, with small oscillations superimposed. However, when ε reaches
its maximum, as in Figs. 1d and 3b, then the time rate of change of 〈ε〉 is essentially
zero. This is the point we are interested in, as this involves the value of εcrit,n.

Physically speaking, the time average of the first term on the right in 25 provides a
fairly constant acting torque that decreases the orbital angular momentum. The time
average of the second term on the right averages over a stronger, but rapidly varying
torque, between positive and negative values, from the CP wave. 〈Lz〉 decreases while
in resonance, as in Fig. 6a, eventually arriving at a minimum, which is when orbital
decay again sets in. At this point, the CP wave is no longer able to continue to stay
in phase on average, particularly in terms of providing a positive average energy to
counteract the small but constant radiation reaction. At this point 〈Lz〉 flattens out,
which is where decay sets in, and is where

〈
d
dtLz

〉
≈ 0.

In Sec. V, we will come back to this last point of
〈
d
dtLz

〉
≈ 0, when the orbit

changes from one of resonance to one of decay. This point turns out to not always
be true. It is true for the simulation examples shown so far in this article, where the
classical electron was started in a circular orbit with a either slightly larger, or a fair
bit larger, than the n subharmonic resonance point of an. However, starting right
near an, leads to a bit of an error in this conclusion. Again, we will return to this
point in Sec. V.

Otherwise, by taking the time average of (24) and (25), setting the left sides to zero
near the onset of orbital decay, and taking the ratio of the resulting nonzero terms, we
obtain: 〈

τe2θ̇
r

〉
〈
τ e

2

r3

[
2ṙ2 −

(
rθ̇
)2]〉 ≈ − 〈erA cos (θ − ω1t− α)〉〈

eA
[
ṙ sin (θ − ω1t− α) + rθ̇ cos (θ − ω1t− α)

]〉 . (26)

An immediate satisfactory feature of this expression for deducing εcrit,n, is that A
cancels out on the right, as expected from Fig. 3b. Also, the τe2 term cancels on the
left, and e cancels on the right.

In the denominator on the right,

ṙ sin (θ − ω1t− α) + rθ̇ cos (θ − ω1t− α)

=
d

dt
[r sin (θ − ω1t− α)] + rω1 cos (θ − ω1t− α) (27)

Upon taking the time average,〈
d

dt
[r sin (θ − ω1t− α)]

〉

=
1

τ

t+τ∫
t

d

dt′
[
r sin

(
θ − ω1t′ − α

)]
dt′

=
1

τ
{r (t+ τ) sin [θ (t+ τ)− ω1 (t+ τ)− α]− r (t) sin [θ (t)− ω1t− α]} . (28)
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Since r is bounded, then for a value of τ that is much larger than the period of an
orbit, and encompasses a number of the fluctuations in a and ε, as in Figs. 1c, 1e, 2c,
and as in evidence in 6b and 6c, then (28) becomes negligible compared to the time
average of the remaining term on the right in (27). Hence,

〈
ṙ sin (θ − ω1t− α) + rθ̇ cos (θ − ω1t− α)

〉
≈ ω1 〈r cos (θ − ω1t− α)〉 , (29)

and the right side of (26) then simplifies enormously to simply being − 1
ω1
.

Working on the left side of (26) now,

〈
θ̇

r

〉
=

1

τ

t+τ∫
t

dt′
dθ

dt′
1

r
=

1

τ

θ(t+τ)∫
θ(t)

dθ

r

=
1

τ

θ(t+τ)∫
θ(t)

[1− ε cos (θ − θ0)]
a (1− ε2) dθ . (30)

As shown in the simulation figures, a and ε do have a small fluctuation about their
center value when in resonance, but if we take their center values along the curves, and
recognize the true source of rapid fluctuations, namely cos (θ − θ0), which fluctuates
with every orbit, while a, ε, and θ0 vary over tens to hundreds of orbits, and if τ is
made equal to N × T , where T is the orbital period and N is of the order of perhaps
100, then the second term in the numerator contributes negligibly with larger N . The
first term, however, without the large fluctuation on every orbit, can be evaluated via,

1

τ
[θ (t+ τ)− θ (t)] ≈ 1

(N × T )
2πN =

2π

T
, (31)

which does not diminish as N grows, resulting in the reasonable approximation of

〈
θ̇

r

〉
≈ 2π

Ta (1− ε2) . (32)

Here, a and ε are the central values over which the short time interval during which

the average of θ̇r was taken, and T is the period of the orbit.

Finally for the denominator on the left in (26), first we note that

ṙ ≈ θ̇ d
dθ

 a
(

1− ε2
)

1− ε cos (θ − θ0)

 = − eε sin (θ − θ0)
m1/2a1/2 (1− ε2)1/2

, (33)



30

ignoring the small fluctuations in a, ε, and θ0 here and using (21). Then,〈
2ṙ2 −

(
rθ̇
)2

r3

〉

=
1

τ

θ(t+τ)∫
θ(t)

dθ

θ̇

[
2ṙ2 −

(
rθ̇
)2]

r3

≈ 1

τ

θ(t+τ)∫
θ(t)

dθ{
e[1−ε cos(θ−θ0)]2
m1/2a3/2(1−ε2)3/2

}
{

2
[
− eε sin(θ−θ0)
m1/2a1/2(1−ε2)1/2

]2
−
[
e[1−ε cos(θ−θ0)]
m1/2a1/2(1−ε2)1/2

]2}
[

a(1−ε2)
1−ε cos(θ−θ0)

]3
=

e

a5/2m1/2 (1− ε2)5/2
1

τ

θ(t+τ)∫
θ(t)

dθ
(
−1 + 3Cε− 3C2ε2 + 2S2ε2 + C3ε3 − 2CS2ε3

)
,(34)

where cos (θ − θ0) and sin (θ − θ0) were abbreviated by C and S in the last line.
Again treating that ε and θ0 vary insignificantly during τ , at least as compared with

θ (t), then there are only three terms in the integrand that do not fluctuate between
negative and positive, namely, −1, −3C2ε2, and +2S2ε2. The remaining terms after
being integrated over and divided by τ , will be negligible. Thus, again for N of the
order of 100 or more orbital periods,

1

τ

θ(t+τ)∫
θ(t)

dθ
(
−1 + 3Cε− 3C2ε2 + 2S2ε2 + C3ε3 − 2CS2ε3

)

→ 1

NT

θ(t)+N2π∫
θ(t)

dθ
(
−1− 3C2ε2 + 2S2ε2

)

=
1

NT

(
−N2π − 3Nπε2 + 2Nπε2

)
=

1

T

(
−2π − πε2

)
. (35)

The result is 〈
2ṙ2 −

(
rθ̇
)2

r3

〉
≈ −

eπ
(

2 + ε2
)

a5/2m1/2 (1− ε2)5/2 T
. (36)

Combining the numerator and denominator on the left side of (26), noting that T
cancels out, and equating to our result on the right of − 1

ω1
,

2π
a(1−ε2)

−
[

eπ(2+ε2)

a5/2m1/2(1−ε2)5/2
] = − 1

ω1
. (37)

Finally, the relation between the n = 1 period T1 due to the CP wave ω1, and the
period Tn of the nth order subharmonic orbit, is Tn = nT1, so the period for the n = 2

subharmonic resonance orbital is twice the period of the CP wave, etc. Moreover, for a
classical electron in an elliptical orbit with semimajor axis a (Kepler-Coulomb result),

T =
2π(
e2

ma3

)1/2 , (38)
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so that

ω1 =
2π

T1
=

2πn

Tn
= n

(
e2

ma3n

)1/2
, (39)

where an is the semimajor axis of the orbit while in the nth subharmonic resonance.

Combining, (37) reduces to

n =

(
2 + ε2crit,n

)
2
(

1− ε2crit,n
)3/2 . (40)

The label εcrit,n was inserted here since this was deduced at the peak of the eccentricity

curve, when
〈
d
dt

[
e (am)1/2

(
1− ε2

)1/2]〉
≈ 0 in (25). Here, n = 2, 3, ..., and further

examples will be provided in the next section that confirm the above result.

Numerically solving for εcrit,n in (40) for a number of values of n in (40), Table 1
lists the first set of values of εcrit,n for n = 2, 3, ..., 7. Figure 9 plots these values of
εcrit,n up through n = 20, assuming that the orbit can be caught into a subharmonic
resonance state. As can be seen for the n = 2 and 3 subharmonic resonance cases
shown in Figs. 1 and 2, respectively, the first two values in Table 1 agree to three (Fig.
2) or four (Fig. 1) decimal places of the earlier simulation examples.

n εcrit,n

2 0.5542

3 0.6706

4 0.7316

5 0.7703

6 0.7975

7 0.8178

Table 1: εcrit,n calculated for the first six (2, 3, ...,7) subharmonic resonances,
assuming the orbit can be “caught”, starting with a circular orbit.
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Fig. 7: Plot of εcrit,n vs. n, where n represents the subharmonic resonance level.
The first six values are in Table 1.

5 Physical insight into resonance behavior, and caveats on this work

The analysis in the previous section works reasonably well. Here we briefly comment
on some of the physical insights regarding these resonances. In addition a number of
caveats will be discussed, including some subtle and qualitative points.

To start, the n = 1 resonances discussed in some detail in [2]-[5], have many in-
teresting properties and similarities to the subharmonic resonance examples covered
here (n = 2, 3, ...). The n = 1 resonances can have fairly long resonance times, and
are effected by A and α in interesting ways. However, as not discussed in earlier work,
n = 1 resonances seem very “poor” at “catching” an electron, meaning, if an orbit
decays into an n = 1 resonance position, rarely are the conditions such that the orbit
turns into a long lasting resonance state. Indeed, the long lasting n = 1 states analyzed
in [2], [4], and [5] were created with the orbit starting essentially already in the n = 1

state.
In contrast, the n = 2 and 3 cases are “generally quite good” at catching the

electron, providing that A is above a critical value. However, for n ≥ 4, the “poor
catching” situation again arises; indeed, it was nontrivial to come up with examples
for this article where such events can happen. Nevertheless, three examples were
obtained for n = 4, 5, 6, but they were not obtained from an initial circular ε ≈ 0 start.

Note that when the electron’s orbit decays into and past a subharmonic resonance
point, even though it may not be “caught” for a relatively long duration, the “sign”
or “presence”of the resonance is nearly always observable, as in the “blips”of a vs. t
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in Fig. 2b and the soon to be discussed Fig. 8b. Indeed, if one “zooms”into the small
resonance regions, such signatures can be seen in nearly all such plots of the relevant
physical properties such as a, b, ε, E, and Lz , versus t.

Regarding what enables “capture,” the key parameters are certainly: (1) A, as
this ultimately dictates how much energy can be pumped into the orbit to offset the
constant, but small, energy lose due to radiation reaction; (2) the phase difference α
between the initial velocity vector and the CP electric field; and (3) the initial ε of
the orbit as it nears or enters the resonance. However, except for this simple listing of
parameters, the key factor comes back to F · v vs. t, where F is the sum of the Lorentz
force due to electromagnetic radiation, and the largely resistive, but weak, radiation
reaction force. Figure 1f gave an example of this behavior at the point when the orbit
changed from one of resonance to decay. The behavior of this plot largely dictates the
conditions and behavior of resonance, in a statistical sense involving the correlation in
time of F and v.

As mentioned earlier, the n ≥ 2 situations are typically many times more compli-
cated than the n = 1 case. For n = 1, the “applied CP force” is roughly in “sync”or
out of sync for tens to hundreds of orbits, leading to plots like Fig. 5 in [2] and Fig. 3 in
[4]. In contrast, for n ≥ 2, the CP electric field is in and out of sync with v (t) roughly
by a factor of n during every orbit. At first blush, there should be some surprise that
there is any resonance at all for n ≥ 2, but there is, and in certain cases, such as n = 2

and 3, the resonance is quite significant, of long duration, and able to “catch”decaying
orbits under a variety of conditions. Ultimately, it comes down to a statistical analysis
averaging over the “energy in”and “energy out”periods, with the former being larger
during resonances, before final decay begins. Such predictive calculations are not easy
to deduce, and hence the large reliance on simulation here.

Possibly why the n = 3 and 4 subharmonic resonances more easily catch a decaying
orbit, than the n = 1, is that the n = 2 and 3 situations (Fig. 1f) provide rapid plus
and minus power contributions in every orbit. If the phase is not quite right, over a
series of such fluctuations, one or more will eventually provide the right input power
to put the orbit on a resonance path. In contrast, for the case of n = 1, the scenario
is quite different, as positive and negative power inputs to the orbit last over tens to
hundreds of orbits. However, this is just a qualitative idea and there clearly is more to
be tested and examined here to better understand the situation in more detail. Two
key pieces here are that (1) the orbit is altered by the CP wave, and the (2) CP force
and electron velocity must be in sync, at least on average, for a net power input to be
created to compensate the radiation reaction effects.

Turning to more “caveats” and qualitative points, first, the analytical/numerical
results of Table 1 and Fig. 7 do seem to reasonably hold, but there are problems beyond
n ≥ 4. We illustrate that they can certainly happen, as shown in Figs. 8a,b,c,d. Figure
8a shows catching the electron in an n = 4 state. The center of the eccentricity curve is
good through the first two digits of the predicted value from Table 1 (i.e., εcrit,4 ≈ 0.73),
but not better, which is a bit interesting since the n = 5 case was similar, but the n = 6

comes closer, and certainly the opening n = 2 example in Sec. I was far better. We
will shortly be able to explain part of this reason as being due to the starting point of
a in the simulation.

Figure 8b focuses on the point of decay in Fig. 8a. a vs. t is plotted in this narrow
time region, showing that as the electron decays, a net of four, very clear subharmonic
resonances are passed through. The values of an = a1n

2/3 are extremely precise.
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Here, as in most cases, only one clear “catch” is made (i.e., at n = 4, but not at the
subsequent n = 3, 2, or 1 resonance points).

The other interesting feature of Fig. 8b, is that additional small signs of resonances
can be observed that have not been discussed yet. In terms of the a vs. t curve, these
are far less noticeable than the ω1/n subharmonic resonances discussed in this article.
Their values are midway between the subharmonic resonances with periods T1 times
1, 2, 3, 4 (T1 = 2π

ω1
is the CP wave period), and have precise values T1 times 32 ,

5
2 , and

7
2 . Such resonances of the type

n
mω1, where n and m are integers, have been studied

for one dimensional oscillators. Here we see their presence, but clearly their effect on
the orbit is small compared to the ω1/n resonances.

Figure 8c shows a case where a decaying electron orbit is caught in a n = 5

subharmonic resonance, while Fig. 8d shows a similar case for n = 6. The “caveats”to
mention here is that none of these examples of n = 4, 5, 6 “catches in Fig. 8, were easy
to come by. As mentioned earlier, resonance signs of “blips” in an a vs. t decaying
curve are easy to spot, such as in Fig. 2b or 8b, and can be obtained for high numbers
like n = 10, and higher. However, it appears nontrivial for n ≥ 4 to obtain conditions
such that the electron doesn’t just decay through the resonance, but rather hangs for a
substantial time at an. Evidently, the higher the value of n, to some extent the harder
it is to find the right condition.

For n = 2 or 3, the key concern seems to be to make A larger than some critical
value, as discussed in [1]. For the n = 4 case here, besides the value of A (here
75,000 statvolt/cm), the initial eccentricity had to be about 0.05, and the electron
had to start very close to a4. For the n = 5 case in Fig. 8c, the initial value of ε
had to be increased to 0.1 before the “catch”was accomplished. The same was true
for the n = 6 case in Fig. 10d, but here the electron needed to be “dropped” at a
slight “height”above a6 before the “catch”could be accomplished. Indeed, starting at
a6 = 0.25× 62/3 Å = 0.8255 Å, resulted in the electron not being caught at the n = 6

point, nor at the next n = 5, 4, and 3 resonance points, but decayed right past all of
these before finally being caught at n = 2. The resonance “blips”were observable, but
the conditions were not such as to make the “catch.” Changing the starting a value
just slightly, from a6 = 0.8255 Å to 0.83 Å, however, enabled the n = 6 catch shown in
Fig. 8d.

This article does not address why such slight changes can have such large effects.
Physically speaking, the reason is certainly clear, as the answer goes back to Fig. 1f
concerning F · v vs. t. When the CP wave can provide a positive energy input to the
trajectory, on average, over many orbits, then the decaying effect of the constantly
acting radiation reaction can be compensated. F · v alters the orbit in subtle ways,
providing a statistical impact of positive and negative energy input. A positive corre-
lation effect between F and v can keep the orbit in a somewhat stable resonance state.
Predicting precise effects from A, initial a, initial ε, and α, has apparently greater
sensitivity for higher values of n.

Thus, some mention and examples have been provided of the often subtle, but im-
portant impact on obtaining sustained subharmonic resonances due to different values
of A, initial a, initial ε, and α. Regarding α, the angle between −eECP and d

dtz at
t = 0, we have not discussed its effect much yet, but it can have a fair impact on the
length of time that the semi-stable resonances lasts, as covered in some detail in [5]
for n = 1. Not surprisingly, for n ≥ 2 resonances, similar effects occur, as α can effect
how long correlation can exist between the electron’s motion and the CP wave.
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Fig. 8a Here the classical electron was “caught” in an n = 4 subharmonic resonance
state. a = 0.25 Å, a4 = a14

2/3 = 0.6300 Å. A = 75, 000 statvolt/cm, α = 0,
εinitial = 0.05, ainitial = a4. The simulation value of εcrit,4 agreed to the first two
digits of the analytically computed value in Table 1 of 0.7316.
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Fig. 8b Here, the very narrow region in Fig. 8a, for the n = 4 catch, is examined
where the resonance state changes to decay. As can be seen, after leaving the n = 4

subharmonic resonance, there are three very clear signs of other resonances, namely
at the n = 3, 2, 1 states. Their positions agree very precisely with the expected values
of an = a1n

2/3, as shown. None of these resonances have the right conditions to
again catch the electron, with one large reason being that during this decay, the orbit
is also relaxing from a fairly high eccentricity value of 0.73, and decreasing toward
zero. All conditions need to be “right”, including ε, A, α, to created a sustained
correlation between F and v. Also, one can see three interesting, very small
resonances, that correspond with ω n

m
= 7

2ω1,
5
2ω1, and

3
2ω1 type resonances.
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Fig. 8c Here the classical electron was “caught” in an n = 5 subharmonic resonance
state. a = 0.25 Å, a5 = a15

2/3 = 0.7310 Å. A = 75, 000 statvolt/cm, α = 0,
εinitial = 0.1, ainitial = a5. The simulation value of εcrit,5 agreed to within the first
two digits of the analytically computed value in Table 1 of 0.7703. If we were to blow
up the decay region, as in Fig. 8b, now five clear resonant points would be
recognizable.



38

Fig. 8d Here the classical electron was “caught” in an n = 6 subharmonic resonance
state. a = 0.25 Å, a6 = a16

2/3 = 0.8255 Å. A = 75, 000 statvolt/cm, α = 0,
εinitial = 0.1. When using ainitial = a6 = 0.8255 Å, the electron was not caught, but
decayed right through this resonant point, as well as the subsequent n = 5, 4, and 3
resonant points, before finally being caught in the n = 2 state. However, by changing
the ainitial ever so slightly, from a6 = 0.8255 Å to 0.83 Å, then the n = 6 state was
achieved, as shown here. The simulation value of εcrit,6 agreed to within the first 3 to
4 digits of the analytically computed value in Table 1 of 0.7975. If we were to blow
up the decay region, as in Fig. 8b, six clear resonant points would be recognizable.

Several investigations were carried out as to why many of the examples here only
agree to just two or three digits with the analytic predictions in Table 1, while some
examples agree to about four digits. These investigations were carried out for variations
in A, α, ainitial , and εinitial . The last two seemed to have the biggest effect in terms
of determining εcrit,n more precisely. In particular, if the electron’s orbit is started at
an, or just slightly above, it turns out that the resonant state will not fully evolve to
the situation where Lz relaxes to the condition where d

dtLz → 0, as in Fig. 6a. This

assumption was made in Sec. IV, or rather that
〈
d
dtLz

〉
≈ 0 at the point of decay. This

assumption turns out to be not quite true and can lead to a small difference with the
predictions of Table 1. Figure 9a illustrates this point for an n = 2 situation. Several
related examples were carried out, but they all were similar. If ainitial .is close to an, the

resonance point, then the transition from resonance to decay will occur before
〈
d
dtLz

〉
reaches zero. For the examples checked here, once ainitial is larger than an by only

0.05 Å to 0.10 Å, then the approximation of
〈
d
dtLz

〉
≈ 0 at the point of decay is valid.
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Otherwise, particularly starting right at an, did not provide enough time for the orbital

dynamics to evolve to a condition of
〈
d
dtLz

〉
≈ 0 at the point of decay.

Fig. 9a Five curves are shown here, each a plot of Lz vs. t, but with different
starting conditions. In each simulation, a1 = 0.7 Å, ω1 for the CP wave being

ω1 =
(
e2

ma31

)1/2
, a2 = a12

2/3 ≈ 1.1112 Å, A = 1000 statvolt/cm, εinitial = 0, α = 0.

The first curve on the left has ainitial = a2, so right at the n = 2 resonance. The next
four curves to the right start at a2 + 0.01 Å, a2 + 0.02 Å, a2 + 0.05 Å, and a2 + 0.10 Å,
respectively. As can be seen the first curve starting at a2 does not end with〈
d
dtLz

〉
≈ 0 at the point of decay, although subsequent curves, starting just slightly

above a2, realize this condition closer and closer.
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Fig. 9b The same simulation cases as in Fig. 9a are shown here, but now ε vs. t is
plotted. The expected εcrit,2 value for n = 2 subharmonic resonance as predicted in
Table 1 is shown, of εcrit = 0.5542. As expected by now, the simulation with the
classical electron starting at a2 is a bit off from this predicted value, because of Fig.

9a, which showed that if the electron starts too close to a2, then
〈
d
dtLz

〉
will not

evolve fully to zero before decay sets in. However, even a2 + 0.01 Å is enough to
change this situation quite a bit.
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Fig. 9c To put the simulations in Figs. 9 a,b in better perspective, a (t) vs. t is
shown here for these same five simulation cases. The top lines on the upper left
indicate the five starting points in terms of ainitial . All curves hit resonance and stay
there for a while before decaying, with the longer times before decay increasing the
larger x is in ainitial = a2 + x. Sets of simulations for much larger values of x were
carried out as well (0.25 Å, 0.50 Å, 0.75 Å) and this monotonic increase of resonance
time with x dies out, as might be expected.

The effect of changing the initial eccentricity is somewhat similar. Both ainitial
and εinitial can change the value of εcrit,n from the results in Table 1, as well as change
whether the classical electron is even “caught” in a long subharmonic resonance or
not. For example, if εinitial is too large, then it is quite possible that no “catch”will
be made at all. We have not explored the latter in detail here, but just noted this fact.

6 Concluding remarks

Under the conditions outlined here, where a CP wave of frequency f1 = 1
2π

(
e2

ma31

)1/2
is directed perpendicular to a classical electron’s orbit, significant orbital resonances
can occur, if the CP wave amplitude A is large enough. The first such resonance
behavior that was investigated analytically and via simulation methods for hydrogen
and Rydberg atoms, was for the primary resonance situation [2]-[5], when the CP
frequency equals the orbital frequency; resonance then occurs at the semimajor axis
value of a1. Reference [1] turned to examining subharmonic resonances that occur at
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orbital frequencies fn = 1
nf1 and at semimajor axis values of an = a1n

2/3. In many
ways, these subharmonic resonances are of even higher interest than the primary ones,
as the subharmonic resonances, especially n = 2, 3, are able to “catch”a decaying orbit
and hold it in resonance without the semimajor axis a decreasing for comparatively
long times.

The present article investigated the n ≥ 2 resonances in more detail, showing some
new information, in particular that a remains essentially constant during subharmonic
resonance, while the semiminor axis b steadily decreases. When the orbit is initially

circular, the eccentricity ε =

[
1−

(
b
a

)2]1/2
equals zero, but during subharmonic res-

onance, ε continues to increase until a critical value, εcrit,n, is reached. In Sec. IV,
an analytic derivation was given for these values; see Table 1 and Fig. 7. These are
new results, not deduced elsewhere. These values were also calculated via detailed
simulation methods for n = 2, 3, 4, 5, 6 examples, producing εcrit,n values that agreed
reasonably well with the analytic predictions. As noted, the higher the value of n, the
more diffi cult it became to find values of ainitial and εinitial to enable the catch and
subsequent resonance to be found.

How might these results be utilized? Two possibilities seem of particular interest.
First, for a true Rydberg atomic system, where the outer electron is nearly ionized,
the quantum energy states of the outer electron are nearly a continuum. The classical
physics analysis studied here, should hold extremely well for much of this phenomena.
Even though the quantum states are in a near continuum, the classical resonances
reported here still hold. Evidently, a classical electron can be held in a classical sub-
harmonic resonance with an incident CP laser beam, for fairly long times. Incidentally,
as reported in [1], the larger a1, the smaller needs to be A to retain the electron in a
subharmonic resonance. For example, Fig. 1a-f examined the n = 2 case of a1 = 0.6 Å

(a2 = 0.9524 Å) needing A = 1000 statvolt/cm to achieve this resonance. Figures
1g,h examined the n = 2 case of a1 = 3.0 Å (a2 = 4.7622 Å), but only needing 50

statvolt/cm, considerable less.
By taking advantage of subharmonic resonances, and developing novel schemes for

their control, it is possible that new means for reading and writing information to atoms
can be realized. Similarly, controlling plasma-like states for etching, display, etc., via
strategies not taken before, may be possible. Undoubtedly such controls will likely be
of the statistical process control type, since atoms of different initial conditions, even
somewhat different, will not all respond the same way. Ensemble variations would need
to be taken into account.

The second possible interest here is for more deeply investigating the classical the-
ory of stochastic electrodynamics (SED). This theory considers the interaction of
classical charged particles and classical electromagnetic radiation, viewing them both
as critically dependent on each other in terms of arriving at any sort of stochastic equi-
librium. Relevant background information is contained in [11],[12],[13]. Linear systems
such as interacting simple harmonic electric dipole oscillators, are nicely predicted by
this theory to be in agreement with quantum electrodynamics. In a few instances,
such as uniformly accelerating a system of electric dipole harmonic oscillators through
the vacuum [25], [26], [27], or Casimir and van der Waals force calculations at various
temperatures [28], [29], [30], [31], SED actually provides a faster and often significantly
clearer physical picture for the basis of the calculations.

However, when turning to nonlinear physical systems, agreement with QED has
in general not been found. Boyer has been the main person to emphasize that we
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should not be seeking agreement with just any nonlinear binding force, but rather
only binding forces that actually occur in nature. For the electrodynamic interaction,
one of the four recognized physical interactions in nature, and the one that forms the
basis for the atomic electron/nucleus construction and arguably the explanation for the
atomic properties in the periodic table, the key binding force is of course the Coulombic
interaction between nucleus and electrons.

The ground state of hydrogen has been explored by theoretical means in SED,
plus more extensively, by detailed simulation efforts [14], [6], [15], [16], [17]. The early
simulation work in [6] looked promising for SED’s agreement with quantum mechanics,
but much more recent work with far more powerful computational power [15], [16], [17],
disputes this point. The work in the present article was aimed at providing deeper
insight into the simple classical electron dynamics within a Coulombic potential. Some
of the early initiative was to gain an understanding of what might give rise to the excited
states of hydrogen, thereby helping to go beyond the thermodynamic equilibrium state
at absolute zero temperature for the “ground state”. Clearly this article does not
provide that full insight, but it does raise a number of interesting properties that may
be important in the full picture.

Regarding the interesting subharmonic resonance behaviors detailed here, a point
made earlier is that the rapidly varying F · v power put into the orbit from the CP wave
is what dictates the resonance behavior, and also complicates the analytical analysis.
The sign of F · v varies about n times per orbit in an n subharmonic resonance, with
more gradual average changes in the energy (Fig. 1f); the CP wave also alters the orbit,
of course, which is what causes an initial circular orbit changing to an elliptical one
under resonance conditions.

An interesting insight just from the above observation, is that one key difference
with an n = 1 resonance versus n ≥ 2 resonances, is that an n = 1 resonance may
go for tens or hundreds of orbits before the F · v changes in sign, since the CP wave
and the orbit only fall out of phase once the orbit grows or shrinks in size (see, for
example, Fig. 5 in [2] and Fig. 3 in [4]). In contrast, for n ≥ 2, this sign change of
F · v happens about n times for every orbit, giving rise to the stochastic-like behavior
in Fig. 1f. Possibly this difference in behavior may result in differences in the ability to
“catch and retain”decaying orbits. This conjecture could readily be tested in future
work.

The analytic prediction in Sec. IV seems certainly of interest, and reasonably close
to the simulations carried out here. However, it should be pointed out that these
predictions depend on: (1) the set of approximations that E = 1

2mv
2 − e3

r ≈ −
e2

2a ,

and Lz = mr2θ̇ ≈ e (am)1/2
(

1− ε2
)1/2

, which seem quite sound for the situations

examine here; (2) that time averages are taken over the fluctuations in E and Lz , due

mainly to the CP plane wave action on the orbit, and (3) that
〈
d
dtLz

〉
≈ 0 when the

subharmonic resonance condition changes to one of decay. If the analysis in Sec. IV
is to be criticized, it is likely this last point that should be attacked, as it would be
better to be able to predict the point of resonance to decay via a more fundamental
manner. Otherwise, the predictions seem of interest and reasonably close to simulation
prediction.

Some other points that should be made are the following. Clearly the emphasis
has been on a single CP wave, as opposed to a linear, or, more generally, an incident
electromagnetic radiation with arbitrary elliptical polarization. The reason for focusing
on a CP wave is of several fold. First, as first studied in [2] with a CP wave, “ideally”
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one can obtain a perfect balance with the radiation reaction, and can then proceed
from there to study deviations from this condition. For this reason, some of the initial
physical behavior for balance and resonance seems easier to examine with CP waves.
Second, any radiation field can be decomposed into CP waves, just as readily as with
plane waves. Third, if one does examine, via simulation, just linear or more general
elliptically polarized radiation, it turns out that the “signatures”of resonance show up
here as well, as in [3]. But, admittedly, the full scope of these other conditions has
certainly not be examined here.

In conclusion, the subharmonic resonances for hydrogen and Rydberg atoms provide
interesting possibilities for technology applications. In addition, such study provides
insight into surprising quasi-stable conditions for classical resonances of an electrody-
namic Coulombic atomic system.
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